Advertisement

An Atomic-Scale Perspective of the Challenging Microstructure of YBa2Cu3O7−x Thin Films

  • Bernat Mundet
  • Roger Guzmán
  • Elena Bartolomé
  • Andrew R. Lupini
  • Steven Hartman
  • Rohan Mishra
  • Jaume Gázquez
Chapter

Abstract

Defects are ubiquitous in materials. In high-temperature superconductors (HTS), certain defects play an important role; by pinning quantized vortices in the presence of magnetic field, they enable dissipationless transport of high current densities. Therefore, determining the atomic structure of defects as well as understanding how they behave and interact is critical to control the physical properties of HTS. This chapter presents an in-depth look into the complex microstructure of YBa2Cu3O7−x, a paradigmatic HTS, at different length scales using aberration-corrected scanning transmission electron microscopy (STEM). Furthermore, a synergistic combination of aberration-corrected STEM imaging, electron energy loss spectroscopy, X-ray magnetic circular dichroism, and density-functional-theory calculations have recently revealed point defects, such as individual vacancies and complex vacancy clusters, which affect the host crystal structure on a single unit-cell level. One such defect consisting of a complex of copper and oxygen vacancies is also shown to induce dilute ferromagnetism in YBCO HTS, which opens a playground to study the interaction between the two highly antagonistic phenomena by atomic-scale control over these defects.

Keywords

Superconductivity Magnetism High-temperature superconductors YBCO STEM-EELS XMCD DFT Microstructure Defects Oxygen vacancies 

Notes

Acknowledgements

Authors acknowledge the MICIN (NANOSELECT, DUARFS MAT2017-83468-R and MAT2014-51778- C2-1-R), Generalitat de Catalunya (2014SGR 753 and Xarmae), and the EU (EU-FP7 NMP-LA-2012-280432 EUROTAPES project). They also acknowledge financial support from the Spanish Ministry of Economy, Industry and Competitiveness, through the “Severo Ochoa” Programme for Centres of Excellence in R&D (SEV-2015-0496). STEM imaging and analysis at 200 kV was sponsored by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, and STEM imaging at 100 kV was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. STEM imaging and analysis at 300 kV was conducted in the Laboratorio de Microscopías Avanzadas (LMA) at Instituto de Nanociencia de Aragón (INA) at the University of Zaragoza. J.G. also acknowledges the Ramón y Cajal program (RYC-2012-11709). The work at Washington University (S.T.H. and R.M.) was supported by the National Science Foundation (NSF) grant number DMR-1806147. This work used the computational resources of the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grants ACI-1053575 and ACI-1548562.

The authors are grateful to all the collaborators who made this work possible over the years, especially to Teresa Puig, Xavier Obradors, Mariona Coll, Anna Palau, Anna Llordes, Juan Salafranca, Maria Varela, Juan Carlos Idrobo, Cesar Magen, Pablo Cayado, S. Manuel Valvidares, Pierluigi Gargiani, Eric Pellegrin, Javier. Herrero-Martin, Wolfgang Windl, Matt Chisholm, Sokrates T. Pantelides, and Stephen J. Pennycook.

References

  1. 1.
    D. Dimos, P. Chaudhari, J. Mannhart, Phys. Rev. B 41, 4038 (1990)Google Scholar
  2. 2.
    M.P. Paranthaman, T. Izumi, MRS Bull. 29, 533 (2004)Google Scholar
  3. 3.
    X. Song, Z. Chen, S.-I. Kim, D.M. Feldmann, D. Larbalestier, J. Reeves, Y. Xie, V. Selvamanickam, Appl. Phys. Lett. 88, 212508 (2006)Google Scholar
  4. 4.
    Y. Yamada, K. Takahashi, H. Kobayashi, M. Konishi, T. Watanabe, A. Ibi, T. Muroga, S. Miyata, T. Kato, T. Hirayama, Y. Shiohara, Appl. Phys. Lett. 87, 132502 (2005)Google Scholar
  5. 5.
    S. Kang, A. Goyal, J. Li, A.A. Gapud, P.M. Martin, L. Heatherly, J.R. Thompson, D.K. Christen, F.A. List, M. Paranthaman, D.F. Lee, Science 311, 1911 (2006)Google Scholar
  6. 6.
    T. Haugan, P.N. Barnes, R. Wheeler, F. Meisenkothen, M. Sumption, Nature 430, 867 (2004)Google Scholar
  7. 7.
    J.L. MacManus-Driscoll, S.R. Foltyn, Q.X. Jia, H. Wang, A. Serquis, L. Civale, B. Maiorov, M.E. Hawley, M.P. Maley, D.E. Peterson, Nat. Mater. 3, 439 (2004)Google Scholar
  8. 8.
    P. Mele, R. Guzman, J. Gazquez, T. Puig, X. Obradors, S. Saini, Y. Yoshida, M. Mukaida, A. Ichinose, K. Matsumoto, M. Idries Adam, Supercond. Sci. Technol. 28, 024002 (2015)Google Scholar
  9. 9.
    A. Llordés, A. Palau, J. Gázquez, M. Coll, Nat. Mater. 11, 329 (2012)Google Scholar
  10. 10.
    C. Cantoni, Y. Gao, S.H. Wee, E.D. Specht, J. Gazquez, J. Meng, S.J. Pennycook, A. Goyal, ACS Nano 5, 4783 (2011)Google Scholar
  11. 11.
    R. Guzman, J. Gazquez, V. Rouco, A. Palau, C. Magen, M. Varela, J. Arbiol, X. Obradors, T. Puig, Appl. Phys. Lett. 102, 081906 (2013)Google Scholar
  12. 12.
    J. Gazquez, R. Guzman, R. Mishra, E. Bartolomé, J. Salafranca, C. Magén, M. Varela, M. Coll, A. Palau, S.M. Valvidares, P. Gargiani, E. Pellegrin, J. Herrero-Martin, S.J. Pennycook, S.T. Pantelides, T. Puig, X. Obradors, Adv. Sci. 3, 1500295 (2016)Google Scholar
  13. 13.
    R. Guzman, J. Gazquez, B. Mundet, M. Coll, X. Obradors, T. Puig, Phys. Rev. Mater. 1, 024801 (2017)Google Scholar
  14. 14.
    A.K. Jha, K. Matsumoto, T. Horide, S. Saini, P. Mele, A. Ichinose, Y. Yoshida, S. Awaji, J. Appl. Phys. 122, 093905 (2017)Google Scholar
  15. 15.
    T. Horide, F. Kametani, S. Yoshioka, T. Kitamura, K. Matsumoto, ACS Nano 11, 1780 (2017)Google Scholar
  16. 16.
    T. Maeda, K. Kaneko, K. Yamada, A. Roy, Y. Sato, R. Teranishi, T. Kato, T. Izumi, Y. Shiohara, Ultramicroscopy 176, 151 (2017)Google Scholar
  17. 17.
    G. Deutscher, Appl. Phys. Lett. 96, 1 (2010)Google Scholar
  18. 18.
    A. Llordés, A. Palau, J. Gázquez, M. Coll, R. Vlad, A. Pomar, J. Arbiol, R. Guzmán, S. Ye, V. Rouco, F. Sandiumenge, S. Ricart, T. Puig, M. Varela, D. Chateigner, J. Vanacken, J. Gutiérrez, V. Moshchalkov, G. Deutscher, C. Magen, X. Obradors, Nat. Mater. 11, 329 (2012)Google Scholar
  19. 19.
    S.J. Pennycook, P.D. Nellist, Scanning Transmission Electron Microscopy (Springer, New York, 2011)Google Scholar
  20. 20.
    S.J. Pennycook, D.E. Jesson, Ultramicroscopy 37, 14 (1991)Google Scholar
  21. 21.
    P.D. Nellist, S.J. Pennycook, Ultramicroscopy 78, 111 (1999)Google Scholar
  22. 22.
    P.D. Nellist, S.J. Pennycook, Science 274, 413 (1996)Google Scholar
  23. 23.
    A.Y. Borisevich, A.R. Lupini, S.J. Pennycook, Proc. Natl. Acad. Sci. U. S. A. 103, 3044 (2006)Google Scholar
  24. 24.
    R. Ishikawa, E. Okunishi, H. Sawada, Y. Kondo, F. Hosokawa, E. Abe, Nat. Mater. 10, 278 (2011)Google Scholar
  25. 25.
    W.M. Temmerman, H. Winter, Z. Szotek, A. Svane, Phys. Rev. Lett. 86, 2435 (2001)Google Scholar
  26. 26.
    R. Liang, D.A. Bonn, W.N. Hardy, Phys. Rev. B 73, 180505 (2006)Google Scholar
  27. 27.
    N.D. Browning, J. Yuan, L.M. Brown, Phys. C Supercond. 202, 12 (1992)Google Scholar
  28. 28.
    N. Gauquelin, D.G. Hawthorn, G.A. Sawatzky, R.X. Liang, D.A. Bonn, W.N. Hardy, G.A. Botton, Nat. Commun. 5, 4275 (2014)Google Scholar
  29. 29.
    D.G. Hawthorn, K.M. Shen, J. Geck, D.C. Peets, H. Wadati, J. Okamoto, S.-W. Huang, D.J. Huang, H.-J. Lin, J.D. Denlinger, R. Liang, D.A. Bonn, W.N. Hardy, G.A. Sawatzky, Phys. Rev. B 84, 075125 (2011)Google Scholar
  30. 30.
    M. Grioni, J.F. van Acker, M.T. Czyžyk, J.C. Fuggle, Phys. Rev. B 45, 3309 (1992)Google Scholar
  31. 31.
    P. Cayado, B. Mundet, H. Eloussifi, F. Vallés, M. Coll, S. Ricart, J. Gázquez, A. Palau, P. Roura, J. Farjas, T. Puig, X. Obradors, Supercond. Sci. Technol. 30, 1361 (2017)Google Scholar
  32. 32.
    S.H. Wee, Y.L. Zuev, C. Cantoni, A. Goyal, Sci. Rep. 3, 2310 (2013)Google Scholar
  33. 33.
    A.A. Gapud, D. Kumar, S.K. Viswanathan, C. Cantoni, M. Varela, J. Abiade, S.J. Pennycook, D.K. Christen, Supercond. Sci. Technol. 18, 1502 (2005)Google Scholar
  34. 34.
    J. Gutiérrez, A. Llordés, J. Gázquez, M. Gibert, N. Romà, S. Ricart, A. Pomar, F. Sandiumenge, N. Mestres, T. Puig, X. Obradors, Nat. Mater. 6, 1893 (2007)Google Scholar
  35. 35.
    X. Obradors, T. Puig, S. Ricart, M. Coll, J. Gazquez, A. Palau, X. Granados, Supercond. Sci. Technol. 25, 123001 (2012)Google Scholar
  36. 36.
    K. Matsumoto, P. Mele, Supercond. Sci. Technol. 23, 14001 (2010)Google Scholar
  37. 37.
    P. Mele, K. Matsumoto, T. Horide, A. Ichinose, M. Mukaida, Y. Yoshida, S. Horii, R. Kita, Supercond. Sci. Technol. 21, 015019 (2008)Google Scholar
  38. 38.
    T. Horide, N. Sakamoto, A. Ichinose, K. Otsubo, T. Kitamura, K. Matsumoto, Supercond. Sci. Technol. 29, 105010 (2016)Google Scholar
  39. 39.
    D.M. Feldmann, T.G. Holesinger, B. Maiorov, S.R. Foltyn, J.Y. Coulter, I. Apodaca, Supercond. Sci. Technol. 23, 095004 (2010)Google Scholar
  40. 40.
    M. Coll, S. Ye, V. Rouco, A. Palau, R. Guzman, J. Gazquez, J. Arbiol, H. Suo, T. Puig, X. Obradors, Supercond. Sci. Technol. 26, 015001 (2013)Google Scholar
  41. 41.
    D.A. Muller, N. Nakagawa, A. Ohtomo, J.L. Grazul, H.Y. Hwang, 430, 657 (2004)Google Scholar
  42. 42.
    P.J. Phillips, M. De Graef, L. Kovarik, A. Agrawal, W. Windl, M.J. Mills, Ultramicroscopy 116, 47 (2012)Google Scholar
  43. 43.
    H.W. Zandbergen, R. Gronsky, G. Thomas, Phys. Status Solidi 105, 207 (1988)Google Scholar
  44. 44.
    H.W. Zandbergen, R. Gronsky, K. Wang, G. Thomas, Nature 331, 596 (1988)Google Scholar
  45. 45.
    J. Rabier, P.D. Tall, M.F. Denanot, Philos. Mag. A 67, 1021 (1993)Google Scholar
  46. 46.
    J. Tafto, M. Suenaga, R.L. Sabatini, Appl. Phys. Lett. 52, 667 (1988)Google Scholar
  47. 47.
    P. Hirel, P. Marton, M. Mrovec, C. Elsässer, Acta Mater. 58, 6072 (2010)Google Scholar
  48. 48.
    F. Sandiumenge, T. Puig, J. Rabier, J. Plain, X. Obradors, Adv. Mater. 12, 375 (2000)Google Scholar
  49. 49.
    F. Sandiumenge, J. Rabier, Studies of High Temperature Superconductors (Nova Science, Narlikar, 1999)Google Scholar
  50. 50.
    T. Puig, J. Gutiérrez, A. Pomar, A. Llordés, J. Gázquez, S. Ricart, F. Sandiumenge, X. Obradors, Supercond. Sci. Technol. 21, 34008 (2008)Google Scholar
  51. 51.
    J.A. Xia, N.J. Long, N.M. Strickland, P. Hoefakker, E.F. Talantsev, X. Li, W. Zhang, T. Kodenkandath, Y. Huang, M.W. Rupich, Supercond. Sci. Technol. 20, 880 (2007)Google Scholar
  52. 52.
    A. Goyal, S. Kang, K.J. Leonard, P.M. Martin, A.A. Gapud, M. Varela, M. Paranthaman, A.O. Ijaduola, E.D. Specht, J.R. Thompson, D.K. Christen, S.J. Pennycook, F.A. List, Supercond. Sci. Technol. 18, 1533 (2005)Google Scholar
  53. 53.
    T.G. Holesinger, L. Civale, B. Maiorov, D.M. Feldmann, J.Y. Coulter, D.J. Miller, V.A. Maroni, Z. Chen, D.C. Larbalestier, R. Feenstra, X. Li, Y. Huang, T. Kodenkandath, W. Zhang, M.W. Rupich, A.P. Malozemoff, Adv. Mater. 20, 391 (2008)Google Scholar
  54. 54.
    H. Yamasaki, K. Ohki, I. Yamaguchi, M. Sohma, W. Kondo, H. Matsui, T. Manabe, T. Kumagai, Supercond. Sci. Technol. 23, 105004 (2010)Google Scholar
  55. 55.
    E.D. Specht, A. Goyal, J. Li, P.M. Martin, X. Li, M.W. Rupich, Appl. Phys. Lett. 89, 2006 (2006)Google Scholar
  56. 56.
    F. Vallès, A. Palau, V. Rouco, B. Mundet, X. Obradors, T. Puig, Sci. Rep. 8, 5924 (2018)Google Scholar
  57. 57.
    C.J. Jou, J. Washburn, J. Mater. Res. 4, 795 (1989)Google Scholar
  58. 58.
    V. Rouco, A. Palau, R. Guzman, J. Gazquez, M. Coll, X. Obradors, T. Puig, Supercond. Sci. Technol. 27, 125009 (2014)Google Scholar
  59. 59.
    M.J.J. Hÿtch, E. Snoeck, R. Kilaas, Ultramicroscopy 74, 131 (1998)Google Scholar
  60. 60.
    G. Deutscher, J. Appl. Phys. 111, 112603 (2012)Google Scholar
  61. 61.
    E. Bartolomé, P. Cayado, E. Solano, C. Mocuta, S. Ricart, B. Mundet, M. Coll, J. Gázquez, A. Meledin, G. van Tendeloo, S.M. Valvidares, J. Herrero-Martín, P. Gargiani, E. Pellegrin, C. Magén, T. Puig, X. Obradors, Adv. Electron. Mater. 3, 1700037 (2017)Google Scholar
  62. 62.
    J.C. Cheang Wong, C. Ortega, J. Siejka, I. Trimaille, A. Sacuto, L.M. Mercandalli, F. Mayca, J. Alloys Compd. 195, 675 (1993)Google Scholar
  63. 63.
    A.P. Shapovalov, Y.M. Boguslavskij, A.I. Ruban, G.G. Gridneva, V.S. Melnikov, N.P. Pshentsova, Supercond. Sci. Technol. 5, 283 (1992)Google Scholar
  64. 64.
    J.D. Jorgensen, M.A. Beno, D.G. Hinks, L. Soderholm, K.J. Volin, R.L. Hitterman, J.D. Grace, I.K. Schuller, C.U. Segre, K. Zhang, M.S. Kleefisch, Phys. Rev. B 36, 3608 (1987)Google Scholar
  65. 65.
    J.D. Jorgensen, H. Shaked, D.G. Hinks, B. Dabrowski, B.W. Veal, A.P. Paulikas, L.J. Nowicki, G.W. Crabtree, W.K. Kwok, L.H. Nunez, H. Claus, Phys. C Supercond. 578, 153–155 (1988)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Bernat Mundet
    • 1
  • Roger Guzmán
    • 1
  • Elena Bartolomé
    • 2
  • Andrew R. Lupini
    • 3
    • 4
  • Steven Hartman
    • 5
  • Rohan Mishra
    • 5
    • 6
  • Jaume Gázquez
    • 1
  1. 1.Department of SuperconductivityInstitut de Ciéncia de Materials de Barcelona (ICMAB-CSIC)BarcelonaSpain
  2. 2.Escola Universitària Salesiana de Sarrià (EUSS)BarcelonaSpain
  3. 3.Institute for Functional Imaging of Materials Oak Ridge National LaboratoryOak RidgeUSA
  4. 4.Materials Sciences and Technology Division Oak Ridge National LaboratoryOak RidgeUSA
  5. 5.Institute of Materials Science and Engineering, Washington University in St. LouisSt. LouisUSA
  6. 6.Department of Mechanical Engineering and Materials ScienceWashington University in St. LouisSt. LouisUSA

Personalised recommendations