Fire Regimes in Dryland Landscapes

  • Christelle HélyEmail author
  • Samuel Alleaume
  • Christiane Wilkinson Runyan


Dryland regions are climatically defined as having low annual precipitation and dry season periods that can span over several months and take place once or twice a year. Dryland ecosystems (e.g., grasslands, savannas, or dry forests) that experience recurrent fires often exhibit fire-adapted (or “pyrophytic”) vegetation (Trabaud 1981; Scholes 1997; van Wilgen and Scholes 1997; Mistry 1998; Roques et al. 2001; Nicholas et al. 2011; Blackhall et al. 2017; Linder et al. 2017). Fire affects ecosystem dynamics in terms of species selection, regeneration, structure, nutrient cycling, and mortality. While this chapter is devoted to fire regimes, we will also summarize ecological impacts and feedbacks of fire on the environment and in particular on plant communities. Other impacts, such as the effects of fires on soil moisture dynamics, infiltration, and runoff production, are discussed in Chap.  2, while the effects on soil nutrient cycling and soil gas emissions are briefly analyzed in Chaps.  11 and  13. Additional discussion on the role of fire dynamics on different biomes, e.g., grasslands, shrublands, dry forests, and savannas, can be found in Chaps.  16 and  17, while the effects of fire on land–atmosphere interactions are discussed more in detail in Chap.  7.


  1. Agee JK (1997) The severe weather wildfire - too hot to handle? Northwest Sci 71:153–156Google Scholar
  2. Alcasena FJ, Salis M, Ager AA, Arca B, Molina D, Spano D (2015) Assessing landscape scale wildfire exposure for highly valued resources in a mediterranean area. Environ Manag 55:1200–1216CrossRefGoogle Scholar
  3. Alcasena FJ, Ager AA, Salis M, Day MA, Vega-Garcia C (2018) Optimizing prescribed fire allocation for managing fire risk in central Catalonia. Sci Total Environ 621:872–885PubMedCrossRefPubMedCentralGoogle Scholar
  4. Aleman J, Blarquez O, Bentaleb I, Bonté P, Brossier B, Carcaillet C, Gond V, Gourlet-Fleury S, Kpolita A, Lefèvre I, Oslisly R, Power MJ, Yongo O, Bremond L, Favier C (2013) Tracking land-cover changes with sedimentary charcoal in the Afrotropics. The Holocene 23:1853–1862CrossRefGoogle Scholar
  5. Alexander ME (1982) Calculating and interpreting forest fire intensities. Can J Bot 60:349–357CrossRefGoogle Scholar
  6. Alleaume S, Hély C, Le Roux J, Korontzi S, Swap RJ, Shugart HH, Justice CO (2005) Using MODIS to evaluate heterogeneity of biomass burning in southern African savannahs: a case study in Etosha. Int J Remote Sens 26:4219–4237CrossRefGoogle Scholar
  7. Alvarez-Diaz M, Gonzales-Gomez M, Otero-Giraldez MS (2015) Detecting the socioeconomic driving forces of the fire catastrophe in NW Spain. Eur J For Res 134:1087–1094CrossRefGoogle Scholar
  8. Anderies JM, Janssen MA, Walker B (2002) Grazing management, resilience, and the dynamics of a fire-driven rangeland system. Ecosystems 5:23–44CrossRefGoogle Scholar
  9. Andrews PL (2009) BehavePlus fire modeling system, version 5.0: Variables. USDA, Forestry Service, Rocky Mountain Research Station, Fort CollinsCrossRefGoogle Scholar
  10. Archibald S, Scholes RJ, Roy DP, Roberts G, Boschetti L (2010) Southern African fire regimes as revealed by remote sensing. Int J Wildland Fire 19:861–878CrossRefGoogle Scholar
  11. Archibald S, Staver AC, Levin SA (2011) Evolution of human-driven fire regimes in Africa. Proc Natl Acad Sci U S A 109:847–852PubMedPubMedCentralCrossRefGoogle Scholar
  12. Arino O, Casadio S, Serpe D (2012) Global night-time fire season timing and fire count trends using the ATSR instrument series. Remote Sens Environ 116:226–238CrossRefGoogle Scholar
  13. Arno SF, Sneck KM (1977) A method for determining fire history in coniferous forests on the mountain west. USDA Forest Service, Ogden, UtahGoogle Scholar
  14. Balch JK, Nepstad DC, Curran LM (2009) Pattern and process: fire-initiated grass invasion at Amazon transitional forest edges. In: Cochrane MA (ed) Fire ecology of tropical ecosystems. Springer, Heidelberg, pp 481–502CrossRefGoogle Scholar
  15. Barbosa PM, Stroppiana D, Grégoire JM, Pereira JMC (1999) An assessment of vegetation fire in Africa (1981–1991): burned areas, burned biomass, and atmospheric emissions. Glob Biogeochem Cycles 13:933–950CrossRefGoogle Scholar
  16. Batista EKL, Russell-Smith J, França H, Figueira JEC (2018) An evaluation of contemporary savanna fire regimes in the Canastra National Park, Brazil: outcomes of fire suppression policies. J Environ Manag 205:40–49CrossRefGoogle Scholar
  17. Belhadj-Khedher C, Koutsias N, Karamitsou A, El-Melki T, Ouelhazi B, Hamdi A, Nouri H, Mouillot F (2018) A revised historical fire regime analysis in Tunisia (1985–2010) from a critical analysis of the national fire database and remote sensing. Forests 9:59. CrossRefGoogle Scholar
  18. Bessie WC, Johnson EA (1995) The relative importance of fuels and weather on fire behavior in subalpine forest. Ecology 76:747–762CrossRefGoogle Scholar
  19. Bhattachan A, Tatlhego M, Dintwe K, Caylor KK, O’Donnell FC, Okin GS, Perrot DO, Ringrose S, D’Odorico P (2012) Evaluating ecohydrological theories of woody root distribution in the Kalahari. PLoS One 7:e33996PubMedPubMedCentralCrossRefGoogle Scholar
  20. Blackhall M, Raffaele E, Paritsis J, Tiribelli F, Morales JM, Kitzberger T, Gowda JH, Veblen TT (2017) Effects of biological legacies and herbivory on fuels and flammability traits: a long-term experimental study of alternative stable states. J Ecol 105:1309–1322CrossRefGoogle Scholar
  21. Boone Kauffman J, Cummings DL, Ward DE (1994) Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian cerrado. J Ecol 82:519–531CrossRefGoogle Scholar
  22. Booysen P d V, Tainton NM (eds) (1984) Ecological effects of fire in South African ecosystems. Springer, BerlinGoogle Scholar
  23. Bowman DMJS, Panton WJ (1993) Factors that control monsoon-rainforest seedling establishment and growth north Australian Eucalyptus savanna. J Ecol 80:297–304CrossRefGoogle Scholar
  24. Brewer S, Cheddadi R, de Beaulieu JL, Reille M, contributors D (2002) The spread of deciduous Quercus throughout Europe since the lasi glacial period. For Ecol Manag 156:27–48CrossRefGoogle Scholar
  25. Briggs JM, Knapp AK (2001) Determinants of C3 forb growth and production in a C4 dominated grassland. Plant Ecol 152:93–100CrossRefGoogle Scholar
  26. Brown AA, Davis KP (1973) Forest fire: control and use. McGraw-Hill, New YorkGoogle Scholar
  27. Brown JK, Oberheu RD, Johnston CM (1982) Handbook for inventoring surface fuels and biomass in the interior West. General Technical Report INT-129, US Forest ServiceGoogle Scholar
  28. Burgan RE, Rothermel RC. (1984) BEHAVE: fire behavior prediction and fuel modeling system—FUEL subsystem. General technical report INT-167, U.S. Department of agriculture, Forest service, Ogden, UT. Intermountain forest and range experiment stationGoogle Scholar
  29. Carcaillet C, Barakat HN, Panaiotis C, Loisel R (1997) Fire and late-Holocene expansion of Quercus ilex and Pinus pinaster on Corsica. J Veg Sci 8:85–94CrossRefGoogle Scholar
  30. Carrion JS, Munuera M, Navarro C, Burjachs F, Dupré M, Walker MJ (1999) The palaeooceological potential of pollen records in caves: the case of Mediterranean Spain. Quat Sci Rev 18:1061–1073CrossRefGoogle Scholar
  31. Cavelier J, Aide TM, Santos C, Eusse AM, Dupuy JM (1998) The savannization of moist forests in the Sierra Nevada de Santa Marta, Colombia. J Biogeogr 25:901–912CrossRefGoogle Scholar
  32. Chuvieco E, Martin MP, Palacios A (2002) Assessment of different spectral indices in the red-near-infrared-spectral domain for burned land discrimination. Int J Remote Sens 23:5103–5110CrossRefGoogle Scholar
  33. Cochrane MA (2009) Fire, land use, land cover dynamics, and climate change in the Brazilian Amazon. In: Cochrane MA (ed) Tropical fire ecology: climate change, land use and ecosystem dynamics. Springer Praxis, Heidelberg, Germany, pp 389–426CrossRefGoogle Scholar
  34. Cochrane MA, Schulze MD (1998) Forest fires in the Brazilian Amazon. Conserv Biol 12:948–950CrossRefGoogle Scholar
  35. Cochrane M, Schulze MD (1999) Fire as a recurrent event in tropical forests of the eastern Amazon: effects on forest structure, biomass, and species composition. Biotropica 31:2–16Google Scholar
  36. Cochrane MA, Alencar A, Schulze MD, Sousa CMJ, Nepstad DC, Lefebvre P, Davidson EA (1999) Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science 284:1832–1835PubMedCrossRefGoogle Scholar
  37. Coutihno LM (1990) Fire in the ecology of the Brazilian cerrado. In: Goldammer JG (ed) Fire in the tropical biota: ecosystem processes and global challenges. Springer, Berlin, pp 82–105CrossRefGoogle Scholar
  38. Curt T, Borgniet L, Bouillon C (2013) Wildfire frequency varies with the size and shape of fuel types in southeastern France: implications for environmental management. J Environ Manag 117:150–161CrossRefGoogle Scholar
  39. D’Odorico P, Laio F, Ridolfi L (2006) A probabilistic analysis of fire-induced tree-grass coexistence in savannas. Am Nat 167:79–87CrossRefGoogle Scholar
  40. D’Odorico P, Okin GS, Bestelmeyer BT (2012) A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands. Ecohydrology 5:520–530CrossRefGoogle Scholar
  41. De las Heras J, Martinez-Sanchez JJ, Gonzales-Ochoa AI, Ferrandis P, Herranz JM (2002) Establishment of Pinus halepensis Mill. saplings following fire: effects of competition with shrub species. Acta Oecol 23:91–97CrossRefGoogle Scholar
  42. de Oliveira MT, Damasceno-Junior GA, Pott A, Paranhos Filho AC, Suarez YR, Parolin P (2014) Regeneration of riparian forests of the Brazilian Pantanal under flood and fire influence. For Ecol Manag 331:256–263CrossRefGoogle Scholar
  43. Desjardins T, Carneiro Filho A, Mariotti A, Chauvel A, Girardin C (1996) Changes of the forest-savanna boundary in Brazilian Amazonia during the Holocene revealed by stable isotope ratios of soil organic carbon. Oecologia 108:749–756PubMedCrossRefGoogle Scholar
  44. du Toit JT, Rogers KH, Biggs HC (2003) The Kruger experience: ecology and management of savanna heterogeneity. Island Press, Washington DCGoogle Scholar
  45. Duane A, Piqué M, Castellnou M, Brotons L (2015) Predictive modelling of fire occurrences from different fire spread patterns in Mediterranean landscapes. Int J Wildland Fire 24:407–418CrossRefGoogle Scholar
  46. Dublin HT, Sinclair ARE, McGlade J (1990) Elephants and fire as causes of multiple stable states in the Serengeti-Mara woodlands. J Anim Ecol 59:1147–1164CrossRefGoogle Scholar
  47. Durigan G, Ratter JA (2016) The need for a consistent fire policy for Cerrado conservation. J Appl Ecol 53:11–15CrossRefGoogle Scholar
  48. Dwyer E, Pinnock S, Gregoire JM, Pereira JMC (2000) Global spatial and temporal distribution of vegetation fire as determined from satellite observations. Int J Remote Sens 21:1289–1302CrossRefGoogle Scholar
  49. Ellery WN, Ellery K, McCarthy TS, Cairncross B, Oelofse R (1989) A peat fire in the Okavango Delta, Botswana, and its importance as an ecosystem process. Afr J Ecol 27:7–21CrossRefGoogle Scholar
  50. Figueiral I, Terral JF (2002) Late Quaternary refugia of mediterranean taxa in the Portuguese Estremadura: charcoal based paleovegetation and climatic reconstruction. Quat Sci Rev 21:549–558CrossRefGoogle Scholar
  51. Fréjaville T, Curt T (2015) Spatiotemporal patterns of changes in fire regime and climate: defining the pyroclimates of south-eastern France (Mediterranean Basin). Clim Chang 129:239–251CrossRefGoogle Scholar
  52. Frost PGH (1984) The responses and survival of organisms in fire-prone environments. In: Booysen PDV, Tainton NM (eds) Ecological effects of fire in South African ecosystems. Springer, Berlin, Germany, pp 274–309Google Scholar
  53. Frost PGH, Menaut JC, Walker B, Medina E, Solbrig OT, Swift M (1985) Responses of savannas to stress and disturbance. In: The International Union of biological Sciences, Harare, EthiopiaGoogle Scholar
  54. Fuentes L, Duguy B, Nadal-Sala D (2018) Short-term effects of spring prescribed burning on the understory vegetation of a Pinus halepensis forest in Northeastern Spain. Sci Total Environ 610–611:720–731PubMedCrossRefPubMedCentralGoogle Scholar
  55. Giglio L (2013) MODIS collection 5 active fire product user’s guide version 2.5. University of Maryland, Department of Geographical Sciences, Maryland, USAGoogle Scholar
  56. Giglio L, Kendall JD, Justice CO (1999) Evaluation of global® re detection algorithms using simulated AVHRR infrared data. Int J Remote Sens 20:1947–1985CrossRefGoogle Scholar
  57. Giglio L, Descloitres J, Justice CO, Kaufman YJ (2003) An enhanced contextual fire detection algorithm for MODIS. Remote Sens Environ 87:273–282CrossRefGoogle Scholar
  58. Giglio L, Schroeder W, Justice CO (2016) The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens Environ 178:31–41PubMedPubMedCentralCrossRefGoogle Scholar
  59. Gomes L, Miranda HS, da Cunha Bustamante MM (2018) How can we advance the knowledge on the behavior and effects of fire in the Cerrado biome? For Ecol Manag 417:281–290CrossRefGoogle Scholar
  60. Gonzalez JR, Pukkala T (2007) Characterization of forest fires in Catalonia (northeast Spain). Eur J For Res 126:421–429CrossRefGoogle Scholar
  61. Granger JE (1984) Fire in forest. In: Booysen PDV, Tainton NM (eds) Ecological effects of fire in South African ecosystems. Springer, Berlin, Germany, pp 179–197Google Scholar
  62. Gutsell SL, Johnson EA (1996) How fire scars are formed: coupling a disturbance process to its ecological effect. Can J For Res 26:166–174CrossRefGoogle Scholar
  63. Guttman NB (1999) Accepting the standardized precipitation index: a calculation algorithm. J Am Water Resour Assoc 35:311–322CrossRefGoogle Scholar
  64. Hardesty J, Myers R, Fulks W (2005) Fire, ecosystems, and people: a preliminary assessment of fire as a global conservation issue. The George Wright Forum 22:78–87Google Scholar
  65. Heinl M, Neuenschwander A, Sliva J, Vanderpost C (2006) Interactions between fire and flooding in a southern African floodplain system (Okavango Delta, Botswana). Landsc Ecol 21:699–709CrossRefGoogle Scholar
  66. Heinl M, Frost PGH, Vanderpost C, Sliva J (2007) Fire activity on drylands and floodplains in the southern Okavango Delta, Botswana. J Arid Environ 68:77–87CrossRefGoogle Scholar
  67. Hély C, Flannigan MD, Bergeron Y, McRae D (2001) Role of vegetation and weather on fire behavior in the Canadian mixedwood boreal forest using two fire behavior prediction systems. Can J For Res 31:430–441CrossRefGoogle Scholar
  68. Hély C, Alleaume S, Swap RJ, Shugart HH, Justice CO (2003a) SAFARI-2000 characterization of fuels, fire behavior, combustion completeness, and emissions from experimental burns in infertile grass savannas in western Zambia. J Arid Environ 54:381–394CrossRefGoogle Scholar
  69. Hély C, Dowty PR, Alleaume S, Caylor K, Korontzi S, Swap RJ, Shugart HH, Justice CO (2003b) Regional fuel load for two climatically contrasting years in southern Africa. J Geophys Res 108:8475Google Scholar
  70. Herrmann SM, Mohr KI (2011) A continental-scale classification of rainfall seasonality regimes in Africa based on gridded precipitation and land surface temperature products. J Appl Meteorol Climatol 50:2504–2513CrossRefGoogle Scholar
  71. Higgins SI, Bond WJ, Trollope WSW (2000) Fire, resprouting and variability: a recipe for grass-tree coexistence in savanna. J Ecol 88:213–229CrossRefGoogle Scholar
  72. Hoffmann WA (1996) The effects of fire and cover on seedling establishment in neotropical savanna. J Ecol 84:383–393CrossRefGoogle Scholar
  73. Hoffmann WA, Geiger EL, Gotsch SG, Rossatto DR, Silva LCR, Lau OL, Haridasam M, Franco AC (2012) Ecological thresholds at the savanna-forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes. Ecol Lett 15:759–768PubMedCrossRefPubMedCentralGoogle Scholar
  74. Holden ST (1993) Peasant household modelling: farming systems evolution and sustainability in northern Zambia. Agric Econ 9:241–267CrossRefGoogle Scholar
  75. Hudak AT, Wessman CA (2001) Textural analysis of high resolution imagery to quantify bush encroachment in Madikwe game reserve, South Africa, 1955–1996. Int J Remote Sens 22:2731–2740CrossRefGoogle Scholar
  76. Hulme M, Viner D (1998) A climate change scenario for the tropics. Clim Chang 39:145–176CrossRefGoogle Scholar
  77. Ichoku C, Giglio L, Wooster MJ, Remer LA (2008) Global characterization of biomass-burning patterns using satellite measurements of fire radiative energy. Remote Sens Environ 112:2950–2962CrossRefGoogle Scholar
  78. Johnson EA (1992) Fire and vegetation dynamics: studies from the North American boreal forest. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  79. Justice CO, Giglio L, Korontzi S, Owens J, Morisette JT, Roy DP, Descloitres J, Alleaume S, Petitcolin F, Kaufman YJ (2002) The MODIS fire products. Remote Sens Environ 83:244–262CrossRefGoogle Scholar
  80. Kaiser JW, Heil A, Andreae MO, Benedetti A, Chubarova N, Jones L, Morcrette J-J, Razinger M, Schultz MG, Suttie M, Van der Werf GR (2012) Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 9:527–554CrossRefGoogle Scholar
  81. Kauffman BJ, Sanford RL, Cummings DL, Salcedo IH, Sampaio EVSB (1993) Biomass and nutrient dynamics associated with slash fore in neotropical dry forests. Ecology 74:140–151CrossRefGoogle Scholar
  82. Keeley JE (2012) Fire in mediterranean climate ecosystems—a comparative overview. Isr J Ecol Evol 58:123–135Google Scholar
  83. Kellman M (1975) Evidence for Late Glacial Age fire in a tropical montane savanna. J Biogeogr 2:57–63CrossRefGoogle Scholar
  84. Kellman M, Meave J (1997) Fire in the tropical galerry forests of Belize. J Biogeogr 24:23–34CrossRefGoogle Scholar
  85. Kellman M, Tackaberry R (1993) Disturbance and tree species coexistence in tropical riparian forest fragments. Glob Ecol Biogeogr Lett 3:1–9CrossRefGoogle Scholar
  86. Kennedy PJ, Belward AS, Grégoire J-M (1994) An improved approach to fire monitoring in West Africa using AVHRR data. Int J Remote Sens 15:2235–2255CrossRefGoogle Scholar
  87. Key CH, Benson NC (2002) Measuring and remote sensing of burn severity. In: US Geological Survey Wildland Fire Workshop, Los Alamos, pp 02–11Google Scholar
  88. Lahaye S, Curt T, Fréjaville T, Sharples J, Paradis L, Hély C (2018a) What are the drivers of dangerous fires in Mediterranean France? Int J Wildland Fire 27(3). CrossRefGoogle Scholar
  89. Lahaye S, Sharples J, Matthews S, Heemstra S, Price O, Badlan R (2018b) How do weather and terrain contribute to firefighter entrapments in Australia? Int J Wildland Fire 27:85–98CrossRefGoogle Scholar
  90. Lecina-Diaz J, Alvarez A, Retana J (2014) Extreme fire severity patterns in topographic, convective and wind-driven historical wildfires of Mediterranean pine forests. PLoS One 9:e85127PubMedPubMedCentralCrossRefGoogle Scholar
  91. Ledru MP (2002) Late quaternary history and evolution of the Cerrado as revealed by palynological records. In: Oliveira PS, Marquis RJ (eds) The Cerrados of Brazil. Columbia University Press, New York, pp 33–50CrossRefGoogle Scholar
  92. Leys B, Carcaillet C, Dezileau L, Ali AA, Bradshaw RHW (2013) A comparison of charcoal measurements for reconstruction of Mediterranean paleo-fire frequency in the mountains of Corsica. Quat Res 79:337–349CrossRefGoogle Scholar
  93. Libonati R, DaCamara CC, Setzer AW, Morelli F, Melchiori AE (2015) An algorithm for burned area detection in the Brazilian Cerrado using 4 μm MODIS imagery. Remote Sens 7:15782–15803CrossRefGoogle Scholar
  94. Linder HP, Lehmann CER, Archibald S, Osborne CP, Richardson DM (2017) Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation. Biol Rev Camb Philos Soc 93(2):1125–1144. CrossRefPubMedPubMedCentralGoogle Scholar
  95. Lloret F, Mari G (2001) A comparison of the medieval and the current fire regimes in managed pine forests of Catalonia (NE Spain). For Ecol Manag 141:155–163CrossRefGoogle Scholar
  96. Loepfe L, Martinez-Vilalta J, Piñol J (2011) An integrative model of human-influenced fire regimes and landscape dynamics. Environ Model Softw 26:1028–1040CrossRefGoogle Scholar
  97. Loepfe L, Rodrigo A, Lloret F (2014) Two thresholds determine climatic control of forest fire size in Europe and northern Africa. Reg Environ Chang 14:1395–1404CrossRefGoogle Scholar
  98. Martell DL (2015) A review of recent forest and wildland fire management decision support systems research. Curr For Rep 1:128–137Google Scholar
  99. McCarthy TS, Ellery WN (1994) The effect of vegetation on soil and ground water chemistry and hydrology of islands in the seasonal swamps of the Okavango Fan, Botswana. J Hydrol 154:169–193CrossRefGoogle Scholar
  100. Meave J, Kellman M (1994) Maintenance of rain forest diversity in riparian forests of tropical savannas: implications for species conservation during Pleistocene drought. J Biogeogr 21:121–135CrossRefGoogle Scholar
  101. Miranda HS, Sato MN, Neto WN, Aires FS (2009) Fires in the cerrado, the Brazilian savanna. In: Tropical fire ecology. Springer, Berlin, Heidelberg, pp 427–450CrossRefGoogle Scholar
  102. Mistry J (1998) Corticolous lichens as potential bioindicators of fire history: a study in the cerrado of the Districto federal, central Brazil. J Biogeogr 25:409–441CrossRefGoogle Scholar
  103. Molina JR, Moreno R, Castillo M, Rodriguez y Silva F (2018) Economic susceptibility of fire-prone landscapes in natural protected areas of the southern Andean Range. Sci Total Environ 619-620:1557–1565PubMedCrossRefPubMedCentralGoogle Scholar
  104. Molina-Martinez JR, Machuca MH, Diaz RZ, y Silva FR, Gonzales-Caban A (2011) Economic losses to Iberian swine production from forest fires. For Pol Econ 13:614–621CrossRefGoogle Scholar
  105. Moreira AG (2000) Effects of fire protection on savanna structure in Central Brazil. J Biogeogr 27:1021–1029CrossRefGoogle Scholar
  106. Mouillot F, Rambal S, Joffre R (2002) Simulating climate change impacts on fire frequency and vegetation dynamics in a Mediterranean-type ecosystem. Glob Chang Biol 8:423–437CrossRefGoogle Scholar
  107. Mouillot F, Ratte J-P, Joffre R, Mouillot D, Rambal S (2005) Long-term forest dynamic after land abandonment in a fire prone Mediterranean landscape (central Corsica, France). Landsc Ecol 20:101–112CrossRefGoogle Scholar
  108. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefGoogle Scholar
  109. Nepstad D, Klink CA, Uhl C, Vieira IC, Lefebvre P, Pedlowski M, Matricardi E, Negreiros G, Brown IF, Amaral E, Homma A, Walker R (1997) Land-use in Amazonia and the Cerrado of Brazil. Ciencia e Cultura 49:73–86Google Scholar
  110. Nepstad D, Carvalho G, Barros AC, Alencar A, Capobianco JP, Bishop J, Moutinho P, Lefebvre P, Silva ULJ, Prins E (2001) Road paving, fire regime feedbacks, and the future of Amoazon forests. For Ecol Manag 154:395–407CrossRefGoogle Scholar
  111. Nicholas AMM, Franklin DC, Bowman DMJS (2011) Floristic uniformity across abrupt boundaries between Triodia hummock grassland and Acacia shrubland on an Australian desert sandplain. J Arid Environ 75:1090–1096CrossRefGoogle Scholar
  112. Odion D, Davis FW (2000) Fire, soil heating, and the formation of vegetation patterns in chaparral. Ecol Monogr 70:149–169CrossRefGoogle Scholar
  113. Pallozzi E, Lusini I, Cherubini L, Hajiaghayeva RA, Ciccioli P, Calfapietra C (2018) Differences between a deciduous and a conifer tree species in gaseous and particulate emissions from biomass burning. Environ Pollut 234:457–467PubMedCrossRefPubMedCentralGoogle Scholar
  114. Pereira JMC (1999) A comparative evaluation of NOAA/AVHRR vegetation indexes for burned surface detection and mapping. IEEE Trans Geosci Remote Sens 37:217–226CrossRefGoogle Scholar
  115. Pereira JMC, Mota B, Privette JL, Caylor KK, Silva JMN, Sa ACL, Ni-Meister W (2004) A simulation analysis of the detectability of understory burns in miombo woodlands. Remote Sens Environ 93:296–310CrossRefGoogle Scholar
  116. Pereira AA, Pereira JMC, Libonati R, Oom D, Setzer AW, Morelli F, Machado-Silva F, Tavares de Carvalho LM (2017) Burned area mapping in the Brazilian Savanna using a one-class support vector machine trained by active fires. Remote Sens 9:1161CrossRefGoogle Scholar
  117. Pineda N, Rigo T (2017) The rainfall factor in lightning-ignited wildfires in CataloniaNicolau. Agric For Meteorol 239:249–263CrossRefGoogle Scholar
  118. Pivello VR (2011) The use of fire in the cerrado and amazonian rainforests of Brazil: past and present. Fire Ecol 7:24–39CrossRefGoogle Scholar
  119. Pivello VR, Coutihno LM (1996) A qualitative successional model to assist in the management of Brazilian cerrados. For Ecol Manag 87:127–138CrossRefGoogle Scholar
  120. Quilès D, Rohr V, Joly K, Lhuillier S, Ogereau P, Martin A, Bazile F, Vernet JL (2002) Les feux préhistoriques holocènes en montagne sub-méditerranéenne: premiers résultats sur le Causse Méjean (Lozère, France). C R Palevol 1:59–65CrossRefGoogle Scholar
  121. Ramos-Neto MB, Pivello VR (2000) Lightning fires in a Brazilian savanna National Park: rethinking management strategies. Environ Manag 26:675–684CrossRefGoogle Scholar
  122. Ratajczak Z, Yu K, D’Odorico P (2017) The enemy of my enemy hypothesis: why coexisting with grasses may be an adaptive strategy for savanna trees. Ecosystems 20:1278–1295CrossRefGoogle Scholar
  123. Ratnam J, Bond WJ, Fensham RJ, Hoffmann WA, Archibald S, Lehmann CER, Anderson MT, Higgins SI, Sankaran M (2011) When is a ‘forest’ a savanna, and why does it matter? Glob Ecol Biogeogr 20:653–660CrossRefGoogle Scholar
  124. Rego F, Pereiras J, Trabaud L (1993) Modelling community dynamics of a Quercus coccifera L. garrigue in relation to fire using Markov chains. Ecol Model 66:251–260CrossRefGoogle Scholar
  125. Roques KG, O’Connor TG, Watkinson AR (2001) Dynamics of shrub encroachment in an African savanna: relative influences of fire, herbivory, rainfall and density dependence. J Appl Ecol 38:268–280CrossRefGoogle Scholar
  126. Rosell JA, Gleason S, Mendez-Alonzo R, Chang Y, Westoby M (2014) Bark functional ecology: evidence for tradeoffs, functional coordination, and environment producing bark diversity. New Phytol 201:786–497CrossRefGoogle Scholar
  127. Rothermel RC (1972) A mathematical model for predicting fire spread in wildland fuels. Research Paper, USDA Forest Service, Intermountain, Forest and Range Experiment Station, Ogden, Utah, USA, p 48Google Scholar
  128. Roy DP, Giglio L, Kendall JD, Justice CO (1999) Multi-temporal active-fire based burn scar detection algorithm. Int J Remote Sens 20:1031–1038CrossRefGoogle Scholar
  129. Roy DP, Lewis PE, Justice CO (2002) Burned area mapping using multi-temporal moderate spatial resolution data—a bi-directional reflectance model-based expectation approach. Remote Sens Environ 83:263–286CrossRefGoogle Scholar
  130. Roy DP, Jin Y, Lewis PE, Justice CO (2005) Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data. Remote Sens Environ 97:137–162CrossRefGoogle Scholar
  131. Roy DP, Boschetti L, Justice CO, Ju J (2008) The collection 5 MODIS burned area product—global evaluation by comparison with the MODIS active fire product. Remote Sens Environ 112:3690–3707CrossRefGoogle Scholar
  132. Runyan CW, D’Odorico P (2016) Global deforestation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  133. Saha MV, Scanlon TM, D’Odorico P (2016) Suppression of rainfall by fires in African drylands. Geophys Res Lett 43:8527–8533CrossRefGoogle Scholar
  134. Saha MV, D’Odorico P, Scanlon TM (2017) Albedo changes after fire as an explanation of fire-induced rainfall suppression. Geophys Res Lett 44:3916–3923CrossRefGoogle Scholar
  135. San Jose JJ, Farinas MR (1983) Changes in tree density and species composition in a protected Trachypogon savanna, Venezuela. Ecology 64:447–453CrossRefGoogle Scholar
  136. Sanaiotti TM, Magnusson WE (1995) Effects of annual fires and the production od fleshy fruits eaten by birds in a Brazilian Amazonian savanna. J Trop Ecol 11:53–65CrossRefGoogle Scholar
  137. Santos AJB, Silva GTDA, Miranda HS, Miranda AC, Lloyd J (2003) Effects of fire on surface carbon, energy and water vapor fluxes over campo sujo savanna in central Brazil. Funct Ecol 17:711–719CrossRefGoogle Scholar
  138. Sawadogo L, Nygard R, Pallo F (2002) Effects of livestock and prescribed fire on coppice growth after selective cutting of Sudanian savannah in Burkina Faso. Ann For Sci 59:185–195CrossRefGoogle Scholar
  139. Schaffhauser A, Curt T, Tatoni T (2011) Fire-vegetation interplay in a mosaic structure of Quercus suber woodlands and Mediterranean maquis under recurrent fires. For Ecol Manag 262:730–738CrossRefGoogle Scholar
  140. Schaffhauser A, Curt T, Véla E, Tatoni T (2012) Fire recurrence effects on the abundance of plants grouped by traits in Quercus suber L. woodlands and maquis. For Ecol Manag 282:157–166CrossRefGoogle Scholar
  141. Scholes RJ (1997) Savanna. In: Cowling RM, Richardson DM, Pierce SM (eds) Vegetation of southern Africa. Cambridge University Press, Cambridge, pp 258–277Google Scholar
  142. Scholes RJ, Walker BH (eds) (1993) An African Savanna: synthesis of the Nylsvley Study. Cambridge University Press, New YorkGoogle Scholar
  143. Schroeder W, Prins E, Giglio L, Csiszar I, Schmidt C, Morisette J, Morton DC (2008) Validation of GOES and MODIS active fire detection products using ASTER and ETM+ data. Remote Sens Environ 112:2711–2726CrossRefGoogle Scholar
  144. Schroeder W, Oliva P, Giglio L, Quayle B, Lorenz EN, Morelli F (2016) Active fire detection using Landsat-8/OLI data. Remote Sens Environ 185:210–220CrossRefGoogle Scholar
  145. Scott L (2002) Microscopic charcoal in sediments: quaternary fire history of the grassland and savanna regions in South Africa. J Quat Sci 17:77–86CrossRefGoogle Scholar
  146. Shackleton CM, Scholes RJ (2000) Impact of fire frequency on woody community structure and soil nutrients in the Kruger National Park. Koedoe 43:75–81CrossRefGoogle Scholar
  147. Shroeder MJ, Buck CC (1970) Fire weather: a guide for application of meteorological information to forest fire control operations. In: Agriculture Handbook 360. Boise, Idaho, USDA, Forest ServiceGoogle Scholar
  148. Siegfried WR (1981) The incidence of veld-fire in the Etosha national Park, 1970–1979. Modoqua 12:225–230Google Scholar
  149. Simon MF, Grether R, de Queiroz LP, Skema C, Pennington RT (2009) Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc Natl Acad Sci U S A 106:20359–20364PubMedPubMedCentralCrossRefGoogle Scholar
  150. Skowno AL, Bond WJ (2003) Bird community composition in an actively managed savanna reserve, importance of vegetation structure and vegetation composition. Biodivers Conserv 12:2279–2294CrossRefGoogle Scholar
  151. Sow M, Hély C, Mbow C, Sambou B (2012) Fuel and fire behavior analysis for early-season prescribed fire planning in soudanian and sahelian savannas. J Arid Environ 89:84–93CrossRefGoogle Scholar
  152. Sow M, Mbow C, Hély C, Fensholt R, Sambou B (2013) Estimation of herbaceous fuel moisture content using vegetation indices and land surface temperature from MODIS data. Remote Sens 5:2617–2638CrossRefGoogle Scholar
  153. Staver AC, Archibald S, Levin S (2011) The global extent and determinants of Savanna and forest as alternative biome states. Science 334:230–232PubMedCrossRefPubMedCentralGoogle Scholar
  154. Stott P (2000) Combustion in tropical biomass fires: a critical review. Prog Phys Geogr 24:355–377CrossRefGoogle Scholar
  155. Stroppiana D, Pinnock S, Grégoire J-M (2000) The global fire product: daily fire occurence from April 1992 to December 1993 derived from NOAA AVHRR data. Int J Remote Sens 21:1279–1288CrossRefGoogle Scholar
  156. Sudhakar Reddy C, Diwakar PG, Krishna Murthy YVN (2017) Sustainable biodiversity management in India: remote sensing perspective. Proc Natl Acad Sci India A Phys Sci 87:617–627CrossRefGoogle Scholar
  157. Syphard AD, Keeley JE (2016) Historical reconstructions of California wildfires vary by data source. Int J Wildland Fire 25:1221–1227CrossRefGoogle Scholar
  158. Thevenon F, Williamson D, Vincens A, Merdaci O, Buchet G, Taieb M (2003) A late-Holocene charcoal record from Lake Masoko, SW Tanzania: climatic and anthropologic implications. The Holocene 13:785–792CrossRefGoogle Scholar
  159. Trabaud L (1981) Man and fire: impacts on Mediterranean vegetation. In: Di Castri F, Goodall DW (eds) Mediterranean-type shrublands. Elsevier, Amsterdam, pp 479–521Google Scholar
  160. Trabaud LV (1989) Les effets du regime des feux: Exemples pris dans le bassin méditerranéen. CIHEAM - Options Méditerranéennes 3:89–94Google Scholar
  161. Trabaud LV, Galtié J-F (1996) Effects of fire frequency on plant communities and landscape pattren in the massif des Aspres (southern France). Landsc Ecol 11:215–224CrossRefGoogle Scholar
  162. Trabaud LV, Christensen NL, Gill AM (1993) Historical biogeography of fire in temperate and mediterranean ecosystems. In: Crutzen PJ, Goldammer JG (eds) Fire in the environment: the ecological, atmospheric, and climatic importance of vegetation fires. Wiley, Chichester, pp 277–295Google Scholar
  163. Trollope WSW (1984a) Fire behavior. In: Booysen P d V, Tainton NM (eds) Ecological effects of fire in South African Ecosystems. Springer, Berlin, Germany, pp 199–217CrossRefGoogle Scholar
  164. Trollope WSW (1984b) Fire in savanna. In: Booysen P d V, Tainton NM (eds) Ecological effects of fire in South African Ecosystems. Springer, Berlin, Germany, pp 149–175CrossRefGoogle Scholar
  165. Trollope WSW (1993) Fire regime of the Kruger national Park for the period 1980–1992. Koedoe 36:45–52CrossRefGoogle Scholar
  166. Trollope WSW, Everson CS (1999) Veld burning. In: Tainton NM (ed) Veld management in South Africa. University of Natal Press, Pietermaritzburg, pp 217–243Google Scholar
  167. Trollope WSW, Potgieter ALF (1985) Fire behaviour in the Kruger National Park. J Grassl Soc Sth Afr 2:17–22CrossRefGoogle Scholar
  168. Uhl C, Kauffman JB (1990) Deforestation, fire susceptibility, and potential tree responses to fire in the Eastern Amazon. Ecology 71:437–449CrossRefGoogle Scholar
  169. Umbanhowar CE, McGrath MJ (1998) Experimental production and analysis of microscopic charcoal from wood, leaves and grasses. The Holocene 8:341–346CrossRefGoogle Scholar
  170. van Wilgen BW, Scholes RJ (1997) The vegetation and fire regimes of southern hemisphere Africa. In: Van Wilgen BW, Andreae MO, Goldammer JG, Lindesay JA (eds) Fire in the southern African savannas: ecological and atmospheric perspectives. Witwatersrand University press, Johannesburg, pp 27–46Google Scholar
  171. van Wilgen BW, Everson CS, Trollope WSW (1990) Fire management in Southern Africa: some examples of current objectives, practices, and problems. In: Goldammer JG (ed) Fire in the tropical biota: ecosystem processes and global challenges. Springer, Berlin, Germany, pp 179–215CrossRefGoogle Scholar
  172. Van Wilgen BW, Trollope WSW, Biggs HC, Potgieter ALF, Brockett BH (2003) Fire as a driver of ecosystem variability. In: Du Toit JT, Rogers KH, Biggs HC (eds) The Kruger experience: ecology and management of savanna heterogeneity. Island Press, Washington DC, pp 149–170Google Scholar
  173. Verhegghen A, Eva H, Ceccherini G, Achard F, Gond V, Gourlet-Fleury S, Cerutti P (2016) The potential of Sentinel Satellites for Burnt Area Mapping and Monitoring in the Congo Basin Forests. Remote Sens 8:986CrossRefGoogle Scholar
  174. Vernet J-L (1997) L’Homme et la forêt méditerranéenne: de la Préhistoire à nos jours. éditions errance, ParisGoogle Scholar
  175. Vincens A, Ssemmanda I, Roux M, Jolly D (1997) Study of the modern pollen rain in western Uganda with a numerical approach. Rev Palaeobot Palynol 96:145–168CrossRefGoogle Scholar
  176. Vincens A, Williamson D, Thevenon F, Taieb M, Buchet G, Decobert M, Thouveny N (2003) Pollen-based vegetation changes in southern Tanzania during the last 4200 years: climate change and:or human impact. Palaeogeogr Palaeoclimatol Palaeoecol 198:321–334CrossRefGoogle Scholar
  177. Weaver JF, Purdom JF, Schneider TL (1995) Observing forest fires with the GOES-8, 3.9 μm imaging channel. Weather Forecast 10:803-808.CrossRefGoogle Scholar
  178. Whelan RJ (1995) The ecology of fire. Cambridge University Press, CambridgeGoogle Scholar
  179. Wick L, Lemcke G, Sturm M (2003) Evidence of Lateglacial and Holocene climatic change and human impact in eastern Anatolia: high-resolution pollen, charcoal, isotopic and geochemical records from the laminated sediments of Lake Van, Turkey. The Holocene 13:665–675CrossRefGoogle Scholar
  180. Willcox G (1999) Charcoal analysis and Holocene vegetaton history in southern Syria. Quat Sci Rev 18:711–716CrossRefGoogle Scholar
  181. Wooster MJ (2002) Small-scale experimental testing of fire radiative energy for quantifying mass combusted in natural vegetation fires. Geophys Res Lett 29:2027CrossRefGoogle Scholar
  182. Wooster MJ, Roberts G, Perry GLW, Kaufman YJ (2005) Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. J Geophys Res 110:D24311CrossRefGoogle Scholar
  183. Wu HB, Svoboda MD, Hayes MJ, Wilhite DA, Wen F (2007) Appropriate application of the Standardized Precipitation Index in arid locations and dry seasons. Int J Climatol 27:65–79CrossRefGoogle Scholar
  184. Xiao-rui T, Mcrae DJ, Li-fu S, Ming-yu W, Hong L (2005) Satellite remote-sensing technologies used in forest fire management. J For Res 16:73–78CrossRefGoogle Scholar
  185. Yu K, Saha MV, D’Odorico P (2017) The effects of interannual rainfall variability on tree–grass composition along Kalahari rainfall gradient. Ecosystems 20:975–988CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Christelle Hély
    • 1
    Email author
  • Samuel Alleaume
    • 2
  • Christiane Wilkinson Runyan
    • 3
  1. 1.Institut des Sciences de l’Evolution de Montpellier (ISEM), EPHE, PSL UniversityUniversité de Montpellier, CNRS, IRD, Place Eugène BataillonMontpellierFrance
  2. 2.Institut national de Recherche en Sciences et Technologies pour l’Environnement et l’AgricultureMaison de la TélédétectionMontpellier cedex 5France
  3. 3.Advanced Academic Programs, Zanvyl Krieger School of Arts and SciencesJohns Hopkins UniversityWashingtonUSA

Personalised recommendations