Jute (Corchorus spp.) Breeding

  • Liwu ZhangEmail author
  • Aminu Kurawa Ibrahim
  • Sylvain Niyitanga
  • Liemei Zhang
  • Jianmin Qi


Jute (Corchorus spp.) has more than 100 species, but only white jute (C. capsularis) and dark jute (C. olitorius) are commercially cultivated diploid (2n = 2x = 14) crops traditionally used to make coarse cloth, burlap, rope and paper. Jute is one of the world’s important sources of natural fiber, but a distant second to cotton. This chapter focuses on the achievements in jute breeding, which include germplasm biodiversity and utilization, breeding methods, genetics of important agronomic traits, genomics and cultivation. Besides conventional breeding methods, the biotechnologies of tissue culture, transgenic technology and molecular marker-assisted selection have made great contributions to jute breeding. The whole genome sequencing for C. olitorius (∼361 Mb) and C. capsularis (∼336 Mb) has advanced jute improvement into the genomic era to become part of genomics-based crop research. The development of the germplasm variome, breeding genomics and cultivation genomics will lead to revolutions in jute improvement. However, jute cultivation has declined significantly with the development and use of synthetic fibers over the past few decades. Future prospects and priorities in jute breeding, such as fiber quality, genetic improvement and mechanization of production, are proposed. Emphases were given to the combination of biotechnology, genomics, germplasm innovation and mechanization of production.


Bast fiber Biotechnology Corchorus Cultivation Genetics Genomics Germplasm 


  1. Acquaah G (2012) Principles of plant genetics and breeding. Wiley-Blackwell, OxfordCrossRefGoogle Scholar
  2. Arangzeb S, Khatun A (1980) A short note on interspecific hybridization between C. trilocularis and C. capsularis. Bangladesh J Jute Fiber Res 5:85–89Google Scholar
  3. Basu A, Ghosh M, Meyer R et al (2004) Analysis of genetic diversity in cultivated jute determined by means of SSR markers and AFLP profiling. Crop Sci 44:678–685CrossRefGoogle Scholar
  4. Benor S, Blattner FR, Demissew S, Hammer K (2010) Collection and ethnobotanical investigation of Corchorus species in Ethiopia: potential leafy vegetables for dry regions. Genet Resour Crop Evol 57:293–306CrossRefGoogle Scholar
  5. Benor S, Demissew S, Hammer K, Blattner FR (2012) Genetic diversity and relationships in Corchorus olitorius (Malvaceae) inferred from molecular and morphological data. Genet Resour Crop Evol 59:1125–1146CrossRefGoogle Scholar
  6. Bhaduri PN, Bairagi P (1968) Interspecific hybridization in jute (Corchorus capsularis x C. olitorius). Sci Cult 34:355–357Google Scholar
  7. Chen T, Qi J, Tao A et al (2011) A karyological study of two cultivated species and their wild species and three wild relatives of Corchorus. J Plant Genet Resour 12:619–624Google Scholar
  8. Datta RM, Dana SK, Banerjee SN (1960) Investigations on the interspecific hybridization between the autotetra-ploids of the cultivated jute species (Corchorus olitorius Linn., C. capsularis Linn.) and on the failure of viable seed formation in them. Genet Iber 12:139–172Google Scholar
  9. Ghosh BL, Dutta AK (1980) The enzymatic softening and upgrading of lignocellulosic fibres part I: the softening and cleaning of low-grade mesta and jute. J Text Inst 71:108–116CrossRefGoogle Scholar
  10. Ghosh N, Sen S (1971) Inheritance of X-ray induced leaf and stem mutations in jute (Corchorus olitorius Linn.). Z Pflanzenzucht 17(1):75–91Google Scholar
  11. Haque S, Begum S, Sarker RH, Khan H (2007) Determining genetic diversity of some jute varieties and accessions using RAPD markers. Plant Tissue Cult Biotechnol 17:183–191CrossRefGoogle Scholar
  12. Haseena K, Jesmin A, Islam MS et al (2008) Microsatellite markers for determining genetic identities and genetic diversity among jute cultivars. Aust J Crop Sci 1:97–107Google Scholar
  13. Heywood VH, Brummitt RK, Culham A, Seberg O (2007) Flowering plant families of the world. Firefly Books, BuffaloGoogle Scholar
  14. Hossain MB, Haque S, Khan H (2002) DNA fingerprinting of jute germplasm by RAPD. BMB Rep 35:414–419CrossRefGoogle Scholar
  15. Islam AS (1964) A rare hybrid combination through application of hormone and embryo culture. Nature 201:320CrossRefGoogle Scholar
  16. Islam AS, Rashid A (1960) First successful hybrid between the two jute-yielding species, Corchorus olitorius L. (tossa) × C. capsularis L. (white). Nature 185:258–259CrossRefGoogle Scholar
  17. Islam MM (2013) Biochemistry, medicinal and food values of jute (Corchorus capsularis L. and C. olitorius L.) leaf: a review. Int J Enhanc Res Sci Tech Eng 2:135–144Google Scholar
  18. Islam AS, Jahan B, Chowdhury MKU (1981) Attempt to produce polyploidy from a spontaneous amphidiploid of the jute hybrid, C. olitorius × C. depressus. Bangladesh J Bot 10:63–68Google Scholar
  19. Islam AS, Shah N, Haque M (1973) Origin of spontaneous amphidiploid in the F3 progeny of the cross, Corchorus olitorius × C. depressus. Bangladesh J Bot 2:41–50Google Scholar
  20. Islam AS, Taliaferro JM, Lee CT et al (2005) Preliminary progress in jute (Corchorus species) genome analysis. Plant Tissue Cult Biotechnol 15:145–156Google Scholar
  21. Islam MS, Saito JA, Emdad EM et al (2017) Comparative genomics of two jute species and insight into fibre biogenesis. Nat Plants 3:784. Scholar
  22. Khan MSY, Bano S, Javed K, Mueed MA (2006) A comprehensive review on the chemistry and pharmacology of Corchorus species—a source of cardiac glycosides, triterpenoids, ionones, flavonoids, coumarins, steroids and some other compoundsGoogle Scholar
  23. Khatun A (1993) The genetic manipulation of jute (Corchorus) species. Ph.D. Thesis. Dept. of Life Sci. University of Nottingham, UK, pp 44–81Google Scholar
  24. Khatun A, Saha CK, Naher Z et al (2003) Plant regeneration from the cotyledons of tossa jute (Corchorus olitorius L.). Biotech 2:206–213CrossRefGoogle Scholar
  25. Kundu BC (1956) Jute – world’s foremost bast fiber. I. Botany, agronomy, diseases and pests. Econ Bot 10:103–133CrossRefGoogle Scholar
  26. Liu HK, Yang C, Wei ZM (2004) Efficient Agrobacterium tumefaciens-mediated transformation of soybeans using an embryonic tip regeneration system. Planta 219:1042–1049CrossRefGoogle Scholar
  27. Lu HR, Zheng YY, Zhu XY, Wang YJ (1980) Genetic studies of seven economic traits in jute. China’s Fiber Crops 1:6–8Google Scholar
  28. Mahapatra AK, Saha A (2008) In: Karmakar PG, Hazra SK, Ramasubramanian T, Mandal RK, Sinha MK, Sen HS (eds) Genetics resources of jute and allied fiber crops. (in) jute and allied Fiber updates: production and technology. CRIJAF, Barrack Pore, Kolkata, pp 18–37Google Scholar
  29. Maity S, Datta AK (2008) Cytomorphological studies in F 1 hybrids (Corchorus capsularis L. and Corchorus trilocularis L.) of jute (Tiliaceae). Comp Cytogenet 2:143–149Google Scholar
  30. Mia MM, Shaikh AQ (1967) Gamma radiation and interspecific hybridization in jute (Corchorus capsularis L. and C. olitorius L.). Euphytica 16:61–68CrossRefGoogle Scholar
  31. Mir JI, Karmakar PG, Chattopadhyay S et al (2008a) SSR and RAPID profile based grouping of selected jute germplasm with respect to fiber fineness traits. J Plant Biochem Biotechnol 17:29–35CrossRefGoogle Scholar
  32. Mir RR, Rustgi S, Sharma S et al (2008b) A preliminary genetic analysis of fiber traits and the use of new genomic SSRs for genetic diversity in jute. Euphytica 161:413–427CrossRefGoogle Scholar
  33. Mir RR, Banerjee S, Das M et al (2009) Development and characterization of large-scale simple sequence repeats in jute. Crop Sci 49:1687–1694CrossRefGoogle Scholar
  34. Naher Z, Khatun A, Alim SMA, Siddique AB (2003) Cotyledons of Corchorus capsularis L. Biotech 2:44–51CrossRefGoogle Scholar
  35. Nyadanu D, Lowor ST (2015) Promoting competitiveness of neglected and underutilized crop species: comparative analysis of nutritional composition of indigenous and exotic leafy and fruit vegetables in Ghana. Genet Resour Crop Evol 62:131–140CrossRefGoogle Scholar
  36. Olawuyi PO, Falusi OA, Oluwajobi AO et al (2014) Chromosome studies in jute plant (Corchorus olitorius). European J Biotechnol Biosci 2(1):01–03Google Scholar
  37. Palit P, Sasmal BC, Bhattacharryya AC (1996) Germplasm diversity and estimate of genetic advance of four morpho-physiological traits in a world collection of jute. Euphytica 90:49–58Google Scholar
  38. Palve SM, Sinha MK, Chattopahdyay S (2004) In: Karmakar PG, Hazra SK (eds) Genetic variability for fiber strength and fitness in wild relatives of genus Corchorus. Proceedings of national seminar on diversified uses of jute and allied fiber crops, Kolkata, pp 18–37Google Scholar
  39. Patel GI, Datta RM (1960) Interspecific hybridization between Corchorus olitorius Linn. and C. capsularis Linn. and the cytogenetical basis of incompatibility between them. Euphytica 9:89–110Google Scholar
  40. Qi JM, Lu HR, Zheng YY, Wang YJ (1991) Genetic relationship analysis of quantitative traits in jute. Acta Agron Sin 17(2):145–150Google Scholar
  41. Raut RN, Naik G (1983) Inter-specific hybridization in cultivated jute. Proceedings of FAO Expert Consultation on Jute and Kenaf improvement, pp 1–11Google Scholar
  42. Roy A, Bandyopadhyay A, Mahapatra AK et al (2006) Evaluation of genetic diversity in jute (Corchorus species) using STMS, ISSR and RAPD markers. Plant Breed 125:292–297CrossRefGoogle Scholar
  43. Saha P, Datta K, Majumder S et al (2014) Agrobacterium mediated genetic transformation of commercial jute cultivar Corchorus capsularis cv. JRC 321 using shoot tip explants. Plant Cell Tissue Organ Cult 118:313–326CrossRefGoogle Scholar
  44. Saha D, Rana RS, Chakraborty S et al (2017) Development of a set of SSR markers for genetic polymorphism detection and interspecific hybrid jute breeding. Crop J 5:416–429CrossRefGoogle Scholar
  45. Samira R, Moosa MM, Alam MM et al (2010) ‘In silico’ analysis of jute SSR library and experimental verification of assembly. Plant Omics 3:57Google Scholar
  46. Sarkar D, Satya P, Mandal NA et al (2016) Jute genomics: emerging resources and tools for molecular breeding. In: Ramawat KG, Ahuja MR (eds) Fiber plants – biology, biotechnology and applications. Springer International Publishing AG, Cham, pp 155–200CrossRefGoogle Scholar
  47. Sengupta G, Palit P (2004) Characterization of a lignified secondary phloem fiber-deficient mutant of jute (Corchorus capsularis). Ann Bot 93:211–220CrossRefPubMedPubMedCentralGoogle Scholar
  48. Shafrin F, Das SS, Sanan-Mishra N, Khan H (2015) Artificial miRNA-mediated down-regulation of two monolignoid biosynthetic genes (C3H and F5H) cause reduction in lignin content in jute. Plant Mol Biol 89:511–527CrossRefGoogle Scholar
  49. Srinath KV, Kundu BC (1952) Cytological studies of pollen-tube growth in reciprocal crosses between Corchorus capsularis Linn. and Chorchorus olitorius Linn. Cytologia 17:219–223CrossRefGoogle Scholar
  50. Swaminathan MS, Iyer RD (1961) Skewed recombination in a rare interspecific jute hybrid. Nature 192:893CrossRefGoogle Scholar
  51. Thakare RG, Joshua DC, Rao NS (1973) Induced viable mutations in Corchorus Olitorius L. Indian J Genet Plant Breed 33:204–228Google Scholar
  52. Wazni MW, Islam AS, Taliaferro JM et al (2007) Novel ESTs from a jute (Corchorus olitorius L.) cDNA library. Plant Tissue Cult Biotechnol 17:173–182CrossRefGoogle Scholar
  53. Xiong HP (2008) Breeding sciences of bast and leaf fiber crops. Chinese Agricultural Science and Technology Press, Beijing, pp 319–341Google Scholar
  54. Zeghichi S, Kallithraka S, Simopoulos AP (2003) Nutritional composition of molokhia (Corchorus olitorius) and stamnagathi (Cichorium spinosum). In: Plants in human health and nutrition policy. Karger Publishers, Basil, pp 1–21CrossRefGoogle Scholar
  55. Zhang L, Cai R, Yuan M et al (2015a) Genetic diversity and DNA fingerprinting in jute (Corchorus spp.) based on SSR markers. Crop J 3:416–422CrossRefGoogle Scholar
  56. Zhang J, Chen C, Luo X et al (2015b) Analysis of the coefficient of parentage among major jute cultivars in China. Sci Agri Sinica 48:4008–4020Google Scholar
  57. Zhang L, Ming R, Zhang J et al (2015c) De novo transcriptome sequence and identification of major bast-related genes involved in cellulose biosynthesis in jute (Corchorus capsularis L.). BMC Genomics 16(1):1–13CrossRefGoogle Scholar
  58. Zhang G, Zhang Y, Xu J et al (2015d) An efficient regeneration system and optimization of the transformation from the cotyledonary node of jute (Corchorus capsularis L.). J Nat Fibers 12:303–310CrossRefGoogle Scholar
  59. Zhang L, Gao Z, Wan X et al (2017) Development of novel small InDel markers in jute (Corchorus spp.). Trop Plant Biol 10(4):169–176CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Liwu Zhang
    • 1
    Email author
  • Aminu Kurawa Ibrahim
    • 1
  • Sylvain Niyitanga
    • 1
  • Liemei Zhang
    • 1
  • Jianmin Qi
    • 1
  1. 1.Bast Fiber Biology Center, College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina

Personalised recommendations