CRISPR/Cas9: A New Genome Editing Tool to Accelerate Cotton (Gossypium spp.) Breeding

  • Muhammad N. SattarEmail author
  • Zafar Iqbal
  • Sarbesh Das Dangol
  • Allah Bakhsh


Cotton has a tremendous economic value worldwide due to its high-quality fiber, edible oil and protein contents. However, the intensifying scenario of human population expansion and global environmental changes demand a proportionate increase in cotton production. In the past, several successful attempts have been made by introgression of many quality- and yield-related traits into elite cotton cultivars through conventional breeding. However, those measures are time consuming due to the reliance on introgression of naturally-existing genetic variation through extensive backcrossing. Nonetheless, plant breeding can be accelerated through modern genome editing (GE) tools. Various GE techniques including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced palindromic repeats and CRISPR-associated proteins systems (CRISPR/Cas)-based approaches have been successfully employed for various crop plants. Among them, CRISPR/Cas-based approaches hold great GE potential due to their simplicity, competency and versatility. In cotton, this system can regulate the gene expression associated with quality traits, to circumscribe phytopathogens and/or to stack molecular traits at a desired locus. In gene stacking through site-specific endonucleases, the desired genes can be introduced in close proximity to a specific locus in the cotton genome with a low risk of segregation. However, such executions are tedious to achieve through classical breeding techniques. Moreover, through the CRISPR/Cas-based approaches, transgene-free cotton plants can easily be produced by selfing or backcrossing to meet the current genetically modified organisms (GMO) guidelines. In this chapter, we address the potential application of CRISPR/Cas-based approaches in available whole cotton genomes to sustain cotton productivity, and achieve genetic improvement, pathogen resistance and agronomic traits. Future prospects of GE applications in cotton breeding are also addressed.


Cotton CRISPR/Cas Genome editing Plant breeding Targeted mutations 



We thank TUBITAK 2215 for providing a fully-funded PhD scholarship to Sarbesh Das Dangol.


  1. Abudayyeh OO, Gootenberg JS, Essletzbichler P et al (2017) RNA targeting with CRISPR-Cas13. Nature 550:280–284CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andres RJ, Bowman DT, Kaur B, Kuraparthy V (2014) Mapping and genomic targeting of the major leaf shape gene (L) in Upland cotton (Gossypium hirsutum L). Theor Appl Genet 127:167–177CrossRefPubMedPubMedCentralGoogle Scholar
  3. Arzani A, Ashraf M (2016) Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Crit Rev Plant Sci 35:146–189CrossRefGoogle Scholar
  4. Ashraf J, Zou D, Qang Q et al (2018) Recent insights into cotton functional genomics: progress and future perspectives. Plant Biotechnol J 16:699–713CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bai WQ, Xiao YH, Zhao J et al (2014) Gibberellin overproduction promotes sucrose synthase expression and secondary cell wall deposition in cotton fibers. PLoS One 9:e96537CrossRefPubMedPubMedCentralGoogle Scholar
  6. Begemann MB, Gray BN, January E et al (2017) Precise insertion and guided editing of higher plant genomes using Cpf1 CRISPR nucleases. Sci Rep 7:11606CrossRefPubMedPubMedCentralGoogle Scholar
  7. Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9:39–47CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52Google Scholar
  9. Butler NM, Baltes NJ, Voytas DF, Douches DS (2016) Geminivirus-mediated genome editing in potato (Solanum tuberosum L) using sequence-specific nucleases. Front Plant Sci 7:1045CrossRefPubMedPubMedCentralGoogle Scholar
  10. Callaway E (2018) CRISPR plants now subject to tough GM laws in European Union. Nature 560:16CrossRefPubMedPubMedCentralGoogle Scholar
  11. Canas LA, Beltran JP (2018) Model legumes: functional genomics tools in Medicago truncatula. Methods Mol Biol 1822:11–37CrossRefPubMedPubMedCentralGoogle Scholar
  12. Char SN, Neelakandan A, Nahampun H et al (2017) An Agrobacterium-delivered CRISPR/cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol J 15:257–268CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chen ZW, Caoa JF, Zhanga XF et al (2015) Cotton genome: challenge into the polyploidy. Sci Bull 62:1622–1623CrossRefGoogle Scholar
  14. Chen X, Lu X, Shu N et al (2017) Targeted mutagenesis in cotton (Gossypium hirsutum L) using the CRISPR/Cas9 system. Sci Rep 7:44304CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cheng H, Lu C, Yu JZ et al (2016) Fine mapping and candidate gene analysis of the dominant glandless gene Gl2 e in cotton (Gossypium spp). Theor Appl Genet 129:1347–1355CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cox DBT, Gootenberg JS, Abudayyeh OO et al (2017) RNA editing with CRISPR-Cas13. Science 358:1019–1027CrossRefPubMedPubMedCentralGoogle Scholar
  17. Davison J, Ammann K (2017) New GMO regulations for old: determining a new future for EU crop biotechnology. GM Crops Food 8:13–34CrossRefPubMedPubMedCentralGoogle Scholar
  18. Demicri Y, Zhang B, Unver T (2018) CRISPR/Cas9: an RNA-guided highly precise synthetic tool for plant genome editing. J Cell Physiol 233:1844–1859CrossRefGoogle Scholar
  19. Deng SS, Wei T, Tan KL et al (2016) Phytosterol content and the campesterol: sitosterol ratio influence cotton fiber development: role of phytosterols in cell elongation. Sci China Life Sci 59:183–193CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ding Y, Li H, Chen LL, Xie K (2016) Recent advances in genome editing using CRISPR/Cas9. Front Plant Sci 7:703PubMedPubMedCentralGoogle Scholar
  21. Fang L, Wang Q, Hu Y et al (2017) Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nat Genet 49:1089–1098CrossRefPubMedPubMedCentralGoogle Scholar
  22. Feng Z, Mao Y, Xu N et al (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci USA 111:4632–4637CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gao W, Long L, Tian X et al (2017) Genome editing in cotton with the CRISPR/Cas9 system. Front Plant Sci 8:1364CrossRefPubMedPubMedCentralGoogle Scholar
  24. He Y, Zhu M, Wang L et al (2018) Programmed self-elimination of the CRISPR/Cas9 construct greatly accelerates the isolation of edited and transgene-free rice plants. Mol Plant.
  25. Hua Y, Wang C, Huang J, Wang K (2017) A simple and efficient method for CRISPR/Cas9-induced mutant screening. J Genet Genomics 44:207–213CrossRefPubMedPubMedCentralGoogle Scholar
  26. Iqbal Z, Sattar MN, Shafiq M (2016) CRISPR/Cas9: a tool to circumscribe cotton leaf curl disease. Front Plant Sci 7:475CrossRefPubMedPubMedCentralGoogle Scholar
  27. Khan NU, Hassan G, Marwat KB et al (2009) Genetic variability and heritability in upland cotton. Pak J Bot 41:1695–1705Google Scholar
  28. Khatodia S, Bhatotia K, Passricha N et al (2016) The CRISPR/Cas genome-editing tool: application in improvement of crops. Front Plant Sci 7:506CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kim H, Kim ST, Ryu J et al (2017) CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat Commun 8:14406CrossRefPubMedPubMedCentralGoogle Scholar
  30. Klein M, Eslami-Mossallam B, Arroyo DG, Depken M (2018) Hybridization kinetics explains CRISPR-Cas off-targeting rules. Cell Rep 22:1413–1423CrossRefPubMedPubMedCentralGoogle Scholar
  31. Laskar RA, Khan S (2017) Assessment on induced genetic variability and divergence in the mutagenized lentil populations of microsperma and macrosperma cultivars developed using physical and chemical mutagenesis. PLoS One 12:e0184598CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lei Y, Lu L, Liu H-Y et al (2014) CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol Plant 7:1494–1496CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lei C, Li S-Y, Liu J-K et al (2017) The CCTL (Cpf1-assisted Cutting and Taq DNA ligase-assisted ligation) method for efficient editing of large DNA constructs in vitro. Nucleic Acids Res 45:e74CrossRefPubMedPubMedCentralGoogle Scholar
  34. Li F, Fan G, Wang K et al (2014) Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46:567–572CrossRefGoogle Scholar
  35. Li F, Fan G, Lu C et al (2015) Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol 33:524–530CrossRefPubMedPubMedCentralGoogle Scholar
  36. Li X, Jin X, Wang H et al (2016) Structure, evolution, and comparative genomics of tetraploid cotton based on a high-density genetic linkage map. DNA Res 23:283–293CrossRefPubMedPubMedCentralGoogle Scholar
  37. Li R, Li R, Li X et al (2017a) Multiplexed CRISPR/Cas9-mediated metabolic engineering of γ-aminobutyric acid levels in Solanum lycopersicum. Plant Biotechnol J 16:415–427CrossRefPubMedPubMedCentralGoogle Scholar
  38. Li C, Unver T, Zhang B (2017b) A high-efficiency CRISPR/Cas9 system for targeted mutagenesis in cotton (Gossypium hirsutum L.). Sci Rep 7:43902CrossRefPubMedPubMedCentralGoogle Scholar
  39. Liu Z, Liu Y, Liu F et al (2018) Genome-wide survey and comparative analysis of long terminal repeat (ltr) retrotransposon families in four Gossypium species. Sci Rep 8:9399CrossRefPubMedPubMedCentralGoogle Scholar
  40. Ma X, Zhang Q, Zhu Q et al (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8:1274–1284CrossRefPubMedPubMedCentralGoogle Scholar
  41. Ma X, Zhu Q, Chen Y, Liu YG (2016) CRISPR/Cas9 platforms for genome editing in plants: developments and applications. Mol Plant 9:961–974CrossRefGoogle Scholar
  42. Mahas A, Neal SC, Mahfouz MM (2018) Harnessing CRISPR/Cas systems for programmable transcriptional and post-transcriptional regulation. Biotechnol Adv 36:295–310CrossRefPubMedPubMedCentralGoogle Scholar
  43. Maleia MP, Raimundo A, Moiana LD et al (2017) Stability and adaptability of cotton (Gossypium hirsutum L.) genotypes based on AMMI analysis. Aust J Crop Sci 11:367–372CrossRefGoogle Scholar
  44. Mikami M, Toki S, Endo M (2016) Precision targeted mutagenesis via Cas9 paired nickases in rice. Plant Cell Physiol 57:1058–1068CrossRefPubMedPubMedCentralGoogle Scholar
  45. Nekrasov V, Wang C, Win J et al (2017) Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci Rep 7:482CrossRefPubMedPubMedCentralGoogle Scholar
  46. Osabe K, Clement JD, Bedon F et al (2014) Genetic and DNA methylation changes in cotton (Gossypium) genotypes and tissues. PLoS One 9:e86049CrossRefPubMedPubMedCentralGoogle Scholar
  47. Perez-Pinera P, Kocak DD, Vockley CM et al (2013) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 10:973–976CrossRefPubMedPubMedCentralGoogle Scholar
  48. Qi LS, Larson MH, Gilbert LA et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183CrossRefPubMedPubMedCentralGoogle Scholar
  49. Riaz M, Naveed M, Farooq A et al (2013) AMMI analysis for stability, adaptability and GE interaction studies in cotton (Gossypium hirsutum L.). J Anim Plant Sci 23:865–871Google Scholar
  50. Ricroch A, Clairand P, Harwood W (2017) Use of CRISPR systems in plant genome editing: toward new opportunities in agriculture. Emerg Top Life Sci 1:169–182CrossRefGoogle Scholar
  51. Said JI, Song M, Wang H et al (2015) A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G hirsutum x G barbadense populations. Mol Genet Genomics 290:1003–1025CrossRefPubMedPubMedCentralGoogle Scholar
  52. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467CrossRefGoogle Scholar
  53. Sattar MN, Kvarnheden A, Saeed M, Briddon RW (2013) Cotton leaf curl disease - an emerging threat to cotton production worldwide. J Gen Virol 94:695–710CrossRefPubMedPubMedCentralGoogle Scholar
  54. Sattar MN, Iqbal Z, Tahir MN, Ullah S (2017) The prediction of a new CLCuD epidemic in the old world. Front Microbiol 8:631CrossRefPubMedPubMedCentralGoogle Scholar
  55. Shan CM, Shangguan XX, Zhao B et al (2014) Control of cotton fibre elongation by a homeodomain transcription factor GhHOX3. Nat Commun 5:5519CrossRefPubMedPubMedCentralGoogle Scholar
  56. Song Q, Zhang T, Stelly DM, Chen ZJ (2017) Epigenomic and functional analyses reveal roles of epialleles in the loss of photoperiod sensitivity during domestication of allotetraploid cottons. Genome Biol 18:99CrossRefPubMedPubMedCentralGoogle Scholar
  57. Steinert J, Schiml S, Fauser F (2015) Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus. Plant J 84:1295–1305CrossRefPubMedPubMedCentralGoogle Scholar
  58. Stokstad E (2018) European court ruling raises hurdles for CRISPR crops. Science. Accessed 25 July 2018
  59. Tang X, Liu G, Zhou J et al (2018) A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 nucleases in rice. Genome Biol 19:84Google Scholar
  60. Thiyagu K, Nadarajan N, Rajarathinam S et al (2010) Association and path analysis for seed cotton yield improvement in interspecific crosses of cotton (Gossypium spp). Electron J Plant Breed 1:1001–1005Google Scholar
  61. Tian X, Ruan J, Huang J et al (2016) Gossypol: phytoalexin of cotton. Sci China Life Sci 59:122–129CrossRefPubMedPubMedCentralGoogle Scholar
  62. Tonk FA, Istipliler D, Tosun M et al (2018) Correlation and path Analysis in yield and quality traits in F3 and F4 generation of Carmen x Devetüyü-176. J Anim Plant Sci 28:107–112Google Scholar
  63. Wang K, Wang Z, Li F et al (2012) The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44:1098–1103CrossRefPubMedPubMedCentralGoogle Scholar
  64. Wang K, Huang G, Zhu YX (2016a) Transposable elements play an important role during cotton genome evolution and fiber cell development. Sci China Life Sci 59:112–121CrossRefPubMedPubMedCentralGoogle Scholar
  65. Wang F, Wang C, Liu P et al (2016b) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One 11:e0154027CrossRefPubMedPubMedCentralGoogle Scholar
  66. Wang M, Mao Y, Lu Y et al (2017a) Multiplex gene editing in rice using the CRISPR-Cpf1 system. Mol Plant 10:1011–1013CrossRefPubMedPubMedCentralGoogle Scholar
  67. Wang Y, Meng Z, Liang C et al (2017b) Increased lateral root formation by CRISPR/Cas9-mediated editing of arginase genes in cotton. Sci China Life Sci 60:524–527CrossRefPubMedPubMedCentralGoogle Scholar
  68. Wang M, Mao Y, Lu Y et al (2018a) Multiplex gene editing in rice with simplified CRISPR-Cpf1 and CRISPR-Cas9 systems. J Integr Plant Biol.
  69. Wang P, Zhang J, Sun L et al (2018b) High efficient multi sites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system. Plant Biotechnol J 16:137–150CrossRefPubMedPubMedCentralGoogle Scholar
  70. Wendel JF (1989) New world tetraploid cottons contain old world cytoplasm. Proc Natl Acad Sci U S A 86:4132–4136CrossRefPubMedPubMedCentralGoogle Scholar
  71. Wendel JF (2015) The wondrous cycles of polyploidy in plants. Am J Bot 102:1753–1756CrossRefPubMedPubMedCentralGoogle Scholar
  72. Wu Z, Yang Y, Huang G (2017) Cotton functional genomics reveals global insight into genome evolution and fiber development. J Genet Genomics 44:511–518CrossRefPubMedPubMedCentralGoogle Scholar
  73. Xie K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant 6:1975–1983CrossRefPubMedPubMedCentralGoogle Scholar
  74. Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA 112:3570–3575CrossRefPubMedPubMedCentralGoogle Scholar
  75. Xu P, Gao J, Cao Z et al (2017a) Fine mapping and candidate gene analysis of qFL-chr1, a fiber length QTL in cotton. Theor Appl Genet 130:1309–1319CrossRefPubMedPubMedCentralGoogle Scholar
  76. Xu R, Qin R, Li H et al (2017b) Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnol J 15:713–717CrossRefPubMedPubMedCentralGoogle Scholar
  77. Yang H, Wu J, Tang T et al (2017) CRISPR/Cas9-mediated genome editing efficiently creates specific mutations at multiple loci using one sgRNA in Brassica napus. Sci Rep 7:7489CrossRefPubMedPubMedCentralGoogle Scholar
  78. Yu LH, Wu SJ, Peng YS et al (2016) Arabidopsis EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field. Plant Biotechnol J 14:72–84CrossRefGoogle Scholar
  79. Zaidi SS, Mukhtar MS, Mansoor S (2018) Genome editing: targeting susceptibility genes for plant disease resistance. Trends Biotechnol.
  80. Zhang J (2015) Transgenic cotton breeding. In: David DF, Richard GP (eds) Cotton, 2nd edn. American Society of Agronomy, Madison, pp 229–254Google Scholar
  81. Zhang TZ, Hu Y, Jiang WK et al (2015) Sequencing of allotetraploid cotton (Gossypium hirsutum L acc TM-1) provides a resource for fiber improvement. Nat Biotechnol 33:531–537CrossRefPubMedPubMedCentralGoogle Scholar
  82. Zhang Y, Liang Z, Zong Y et al (2016a) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:12617CrossRefPubMedPubMedCentralGoogle Scholar
  83. Zhang F, Zhu G, Du L et al (2016b) Genetic regulation of salt stress tolerance revealed by RNA-Seq in cotton diploid wild species, Gossypium davidsonii. Sci Rep 6:20582CrossRefPubMedPubMedCentralGoogle Scholar
  84. Zhang K, Raboanatahiry N, Zhu B, Li M (2017) Progress in genome editing technology and its application in plants. Front Plant Sci 8:177PubMedPubMedCentralGoogle Scholar
  85. Zhang Q, Xing H-L, Wang Z-P et al (2018) Potential high-frequency off-target mutagenesis induced by CRISPR/Cas9 in Arabidopsis and its prevention. Plant Mol Biol 96:445–456CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Muhammad N. Sattar
    • 1
    Email author
  • Zafar Iqbal
    • 2
  • Sarbesh Das Dangol
    • 3
  • Allah Bakhsh
    • 3
  1. 1.College of Agriculture and Food ScienceKing Faisal UniversityAl-AhsaKingdom of Saudi Arabia
  2. 2.Central LaboratoriesKing Faisal UniversityAl-AhsaKingdom of Saudi Arabia
  3. 3.Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and TechnologiesNigde Omer Halisdemir UniversityNigdeTurkey

Personalised recommendations