Breeding Strategies for Sunflower (Helianthus annuus L.) Genetic Improvement

  • Saeed Rauf


Sunflower is well known as an important oilseed crop and also consumed roasted, as a confectionary and bird feed. The plant has been subjected to the improvement by plant breeders resulting in the yellow revolution in many countries. Russian plant breeders have improved the oil content of sunflower seed that converted this crop from a roadside plant to a world famous oilseed crop. The cultivated germplasm retains 50% of genetic diversity present in crop wild relatives. This may be threatened due to worldwide hybrid cultivation which shares common parentage and a source of cytoplasmic male sterility. Therefore, there is a need to use the available genetic diversity within cultivated and wild germplasm to develop pre-breeding lines and elite breeding material with good combining quality. Sunflower breeding involves development of breeding lines suitable for hybrid breeding, diseases, abiotic stress and herbicide resistance. These objectives are fulfilled by recurrent selection for population improvement. Wide crosses were made to transfer cytoplasmic male sterility, diseases, abiotic and Orobanche resistance. Moreover, induced mutations were used to create new genetic variability for diseases and herbicide resistance and reduction of plant height. Marker-assisted selection has been validated for rust resistance, downy mildew resistance, and oleic acid content and fertility restorer genes. Transgenic sunflower development could be used to enhance oil content and quality. Sunflower breeding will be greatly facilitated by genomic tools such as CRISPR/Cas and whole genome association mapping.


Breeding objectives Crop wild relatives Combining ability Cytoplasmic male sterility Resistant genes Stability 


  1. Alix K, Gérard PR, Schwarzacher T, Heslop-Harrison JS (2017) Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants. Ann Bot 120(2):183–194CrossRefPubMedPubMedCentralGoogle Scholar
  2. Atlagić J, Terzić S (2015) The challenges of maintaining a collection of wild sunflower (Helianthus) species. Genet Resour Crop Evol 63:1–18Google Scholar
  3. Berrios EF, Gentzbittel L, Mokrani L et al (2000) Genetic control of early events in protoplast division and regeneration pathways in sunflower. Theor Appl Genet 101(4):606–612CrossRefGoogle Scholar
  4. Binsfeld PC, Wingender R, Schnabl H (2000) Characterization and molecular analysis of transgenic plants obtained by microprotoplast fusion in sunflower. Theor Appl Genet 101(8):1250–1258CrossRefGoogle Scholar
  5. Burke JM, Knapp SJ, Rieseberg LH (2005) Genetic consequences of selection during the evolution of cultivated sunflower. Genet 171:1933–1940CrossRefGoogle Scholar
  6. Cantamutto M, Poverene M (2007) Genetically modified sunflower release: opportunities and risks. Field Crops Res 101(2):133–144CrossRefGoogle Scholar
  7. Chepurnaya AL, Sherstyuk SV, Tikhomirov VT (2003) CMS-Rf system for sunflower breeding/sistemascms-rf para la mejoragenética de girasol/systèmescms-rf pour la culture du tournesol. Helia 26(38):59–66CrossRefGoogle Scholar
  8. Christov M (1990) A new source of cytoplasmic male sterility in sunflower. Helia 13(13):55–61Google Scholar
  9. Christov M (1994) Characterization of wild Helianthus species as sources of new features for sunflower breeding. In: Compositae: Biology & Utilization. Proceedings of the international Compositae conference, Kew, vol 2, pp 547–570Google Scholar
  10. Christov M (1999) Ways of production of new CMS sources in sunflower. Biotech Biotech Equip 13(1):25–32CrossRefGoogle Scholar
  11. Christov M, Kiryakov I, Shindrova P et al (2004) Evaluation of new interspecific and intergeneric sunflower hybrids for resistance to Sclerotinia sclerotiorum. In: Proceedings of the 16th international sunflower conference, Fargo, North Dakota, USA, International sunflower association, Paris, France, II, pp 693–698Google Scholar
  12. Cvejić S, Jocić S, Prodanović S et al (2011) Creating new genetic variability in sunflower using induced mutations. Helia 34(55):47–54CrossRefGoogle Scholar
  13. Dagustu N, Sincik M, Bayram G, Bayraktaroglu M (2010) Regeneration of fertile plants from sunflower (Helianthus annuus L.) immature embryo. Helia 33(52):95–102CrossRefGoogle Scholar
  14. De Labrouhe DT, Bordat A, Tourvieille J et al (2010) Impact of major gene resistance management for sunflower on fitness of Plasmopara halstedii (downy mildew) populations. OCL 17(1):56–64CrossRefGoogle Scholar
  15. De Oliveira MF, TulmannNeto A, Leite RM et al (2004) Mutation breeding in sunflower for resistance to Alternaria leaf spot. Helia 27(41):41–50CrossRefGoogle Scholar
  16. Dimitrijević A, Horn R (2018) Sunflower hybrid breeding: from markers to genomic selection. Front Plant Sci 8:2238CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dimitrijević A, Imerovski I, Miladinović D et al (2017) Oleic acid variation and marker-assisted detection of Pervenets mutation in high- and low-oleic sunflower cross. Crop Breed Appl Biotech 17(3):235–241CrossRefGoogle Scholar
  18. Dudhe M, Sujatha M (2016) Four decades of sunflower genetic resources activities in India. In: Proceedings of the 19th international sunflower conference, Edirne, Turkey. International Sunflower Association, Paris, FranceGoogle Scholar
  19. Dussle CM, Hahn V, Knapp SJ, Bauer E (2004) PlArg from Helianthus argophyllus is unlinked to other known downy mildew resistance genes in sunflower. Theor Appl Genet 109(5):1083–1086CrossRefGoogle Scholar
  20. Encheva J, Shindrova P, Encheva V, Valkova D (2012) Mutant sunflower line R 12003, produced through in vitro mutagenesis. Helia 35(56):19–30CrossRefGoogle Scholar
  21. Faure N, Serieys H, Kaan F, Berville A (2002) Partial hybridization in crosses between cultivated sunflower and the perennial Helianthus mollis: effect of in vitro culture compared to natural crosses. Plant Cell Rep 20(10):943–947CrossRefGoogle Scholar
  22. FAO (2013) Food and agriculture statistics, Data retrieved 2018. Food and Agriculture Organization of the United Nations, Roma.
  23. FAO (2014) Food and agriculture statistics, Data retrieved 2018. Food and Agriculture Organization of the United Nations, Roma.
  24. FAO (2016) Food and agriculture statistics, Data retrieved 2018, 2019. Food and Agriculture Organization of the United Nations, Roma.
  25. Feng J, Liu Z, Cai X et al (2009) Transferring Sclerotiniaresistance genes from wild Helianthus into cultivated sunflower. In: Proceedings of the 31st sunflower research workshop, National Sunflower Association, January 13–14, 2009, Fargo, ND http://www.sunflowernsacom/research/research-workshop/documents/Feng_Genes_09pdf
  26. Fernández-Cuesta A, Jan CC, Fernández-Martínez JM, Velasco L (2014) Variability for seed phytosterols in sunflower germplasm. Crop Sci 54:190–197CrossRefGoogle Scholar
  27. Fernández-Martínez J, Jimenez A, Dominguez J et al (1989) Genetic analysis of the high oleic acid content in cultivated sunflower (Helianthus annuus L). Euphytica 41:39–51CrossRefGoogle Scholar
  28. Fernández-Martínez JM, Mancha M, Osorio J, Garcés R (1997) Sunflower mutant containing high levels of palmitic acid in high oleic background. Euphytica 97(1):113–116CrossRefGoogle Scholar
  29. Fernández-Martínez J, Melero-Vara J, Muñoz-Ruz J et al (2000a) Selection of wild and cultivated sunflower for resistance to a new broomrape race that overcomes resistance of the gene. Crop Sci 40(2):550–555CrossRefGoogle Scholar
  30. Fernández-Martínez J, Melero-Vara J, Muñoz-Ruz J et al (2000b) Selection of wild and cultivated sunflower for resistance to a new broomrape race that overcomes resistance of the Or5 gene. Crop Sci 40(2):550–555CrossRefGoogle Scholar
  31. Fernández-Martínez JM, Pérez-Vich B, Velasco L, Domínguez J (2007) Breeding for specialty oil types in sunflower. Helia 30:75–84CrossRefGoogle Scholar
  32. Fernández-Moya V, Martínez-Force E, Garcés R (2005) Oils from improved high stearic acid sunflower seeds. J Agr Food Chem 53:5326–5330CrossRefGoogle Scholar
  33. Fu X, Qi L, Hulke B et al (2017) Somatic embryogenesis from corolla tubes of interspecific amphiploids between cultivated sunflower (Helianthus annuus L.) and its wild species. Helia 40(66):1–19CrossRefGoogle Scholar
  34. Gao W, Rao VR, Zhou M (2001) Plant genetic resources conservation and use in China. In: Proceedings of the national workshop on conservation and utilization of plant genetic resources, Beijing China, 25–27 October, pp 157–163Google Scholar
  35. García-Moreno MJ, Vera-Ruiz EM, Fernández-Martínez JM et al (2006) Genetic and molecular analysis of high gamma-tocopherol content in sunflower. Crop Sci 46:2015–2021CrossRefGoogle Scholar
  36. Gavrilova VA, Rozhkova VT, Anisimova IN (2014) Sunflower genetic collection at the Vavilov Institute of Plant Industry. Helia 37:1–16CrossRefGoogle Scholar
  37. Greenleaf SS, Kremen C (2006) Wild bees enhance honeybees’ pollination of hybrid sunflower. Proc Nat Acad Sci 103(37):13890–13895Google Scholar
  38. Gross BL, Schwarzbach AE, Rieseberg LH (2003) Origin (s) of the diploid hybrid species Helianthus deserticola (Asteraceae). Am J Bot 90(12):1708–1719CrossRefGoogle Scholar
  39. Gutierrez A, Carrera A, Basualdo J et al (2010) Gene flow between cultivated sunflower and Helianthus petiolaris (Asteraceae). Euphytica 172(1):67–76CrossRefGoogle Scholar
  40. Hallahan D, Keiper-Hrynko N (2007) U.S. Patent Application No. 11/734,501Google Scholar
  41. Havekes FWJ, Miller JF, Jan CC (1991) Diversity among sources of cytoplasmic male sterility in sunflower (Helianthus annuus L). Euphytica 55(2):125–129CrossRefGoogle Scholar
  42. Hladni N, Zorić M, Terzić S et al (2018) Comparison of methods for the estimation of best parent heterosis among lines developed from interspecific sunflower germplasm. Euphytica 214(7):108. Scholar
  43. Höniges A, Wegmann K, Ardelean A (2008) Orobanche resistance in sunflower. Helia 31:1–12CrossRefGoogle Scholar
  44. Horn R (2002) Molecular diversity of male sterility inducing and male-fertile cytoplasms in the genus Helianthus. Theor Appl Genet 104(4):562–570CrossRefGoogle Scholar
  45. Horn R, Reddemann A, Drumeva M (2016) Comparison of cytoplasmic male sterility based on PET1 and PET2 cytoplasm in sunflower (Helianthus annuus L). In: proc 19th international sunflower conference, 2016, pp 620–629Google Scholar
  46. Hussain MM, Rauf S, Riaz MA et al (2016) Determination of drought tolerance related traits in Helianthus argophyllus, Helianthus annuus and their hybrids. Breed Sci J 67(3):257–267CrossRefGoogle Scholar
  47. Hussain MM, Kausar M, Rauf S et al (2018) Selection for some functional markers for adaptability of Helianthus argophyllus × Helianthus annuus derived population under abiotic stress conditions. Helia 41(68):83–108CrossRefGoogle Scholar
  48. Imerovski I, Dimitrijevic A, Miladinovic D et al (2013) Identification of PCR markers linked to different or genes in sunflower. Plant Breed 132(1):115–120CrossRefGoogle Scholar
  49. Jan CC, Chandler JM (1985) Transfer of powdery mildew resistance from Helianthus debilis Nutt. To cultivated sunflower 1. Crop Sci 25(4):664–666CrossRefGoogle Scholar
  50. Jan CC, Liu Z, Seiler GJ et al (2014) Broomrape (Orobanche cumana Wallr.) resistance breeding utilizing wild Helianthus species. Helia 37(61):141–150CrossRefGoogle Scholar
  51. Jiuhuan F, Liu Z, Seiler GJ, Jan CC (2015) Registration of cytoplasmic male–sterile oilseed sunflower genetic stocks, CMS GIG2 and CMS GIG2–RV, and fertility restoration lines, RF GIG2–MAX 1631 and RF GIG2–MAX 1631–RV. J Plant Reg 9:125–127CrossRefGoogle Scholar
  52. Jonic S, Skoric D, Lecic N, Molnar I (2000) Development of inbred lines of sunflower with various oil qualities. Actes Proceedings of the 15th international sunflower conference, Toulouse, France, pp 12–15Google Scholar
  53. Jovanka A (2004) Roles of interspecific hybridization and cytogenetic studies in sunflower breeding. Helia 27(41):1–24CrossRefGoogle Scholar
  54. Kalyar T, Rauf S, Teixeira da Silva JA, Iqbal Z (2013a) Variation in leaf orientation and its related traits in sunflower (Helianthus annuus L.) breeding population under high temperature. Field Crop Res 150:91–98CrossRefGoogle Scholar
  55. Kalyar T, Rauf S, Teixeira da Silva JA, Iqbal Z (2013b) Utilization of leaf temperature for selection of leaf gas exchange traits for the induction of heat resistance in sunflower (Helianthus annuus L.). Photosynthesis 51(3):419–428CrossRefGoogle Scholar
  56. Kalyar T, Rauf S, Teixeira da Silva JA (2014) Handling sunflower (Helianthus annuus L) populations under heat stress. Arch Agron Soil Sci 60:655–672CrossRefGoogle Scholar
  57. Kantar MB, Betts K, Michno JM et al (2014) Evaluating an interspecific Helianthus annuus× Helianthus tuberosus population for use in a perennial sunflower breeding program. Field Crops Res 155:254–264CrossRefGoogle Scholar
  58. Kantar MB, Sosa CC, Khoury CK, Castañeda-Álvarez NP, Achicanoy HA, Bernau V, Rieseberg LH (2015) Ecogeography and utility to plant breeding of the crop wild relatives of sunflower (Helianthus annuus L.). Front Plant Sci 6:841CrossRefPubMedPubMedCentralGoogle Scholar
  59. Khalil F, Rauf S, Monneveux P et al (2016) Genetic analysis of proline concentration under osmotic stress in sunflower (Helianthus annuus L.). Breed Sci J 66:463–470CrossRefGoogle Scholar
  60. Khan M, Rauf S, Munir H et al (2017) Evaluation of sunflower (Helianthus annuus L.) single cross hybrids under heat stress condition. Arch Agron Soil Sci 63(4):525–535CrossRefGoogle Scholar
  61. Khan H, Safdar A, Ijaz A et al (2018) Agronomic and qualitative evaluation of different local sunflower hybrids. Pak J Agric Res 31(1):69–78Google Scholar
  62. Kinman ML (1970) New developments in the USDA and state experiment station sunflower breeding programs. In: Proceedings of the 4th international sunflower conference Memphis, TN, USA, pp 181–183Google Scholar
  63. Knittel N, Gruber V, Hahne G, Lénée P (1994) Transformation of sunflower (Helianthus annuus L.): a reliable protocol. Plant Cell Rep 14(2–3):81–86PubMedGoogle Scholar
  64. Krasnyanski S, Menczel L (1995) Production of fertile somatic hybrid plants of sunflower and Helianthus giganteus L. by protoplast fusion. Plant Cell Rep 14(4):232–235CrossRefGoogle Scholar
  65. Kulkarni VV, Shankergoud I, Govindappa MR (2015) Identification of sunflower powdery mildew resistant sources under artificial screening. SABRAO J Breed Genet 47(4):502–509Google Scholar
  66. Kumar AP, Boualem A, Bhattacharya A et al (2013) SMART–sunflower mutant population and reverse genetic tool for crop improvement. BMC Plant Biol 13(1):38CrossRefPubMedPubMedCentralGoogle Scholar
  67. Lai Z, Nakazato T, Salmaso M et al (2005) Extensive chromosomal repatterning and the evolution of sterility barriers in hybrid sunflower species. Genet 171(1):291–303CrossRefGoogle Scholar
  68. Leclercq P (1969) Cytoplasmic male sterility in sunflower. Ann Amelior Plant 19:99–106Google Scholar
  69. León AJ, Lee M, Andrade FH (2001) Quantitative trait loci for growing degree days to flowering and photoperiod response in sunflower (Helianthus annuus L.). Theor Appl Genet 102(4):497–503CrossRefGoogle Scholar
  70. León AJ, Zambelli AD, Reid RJ et al (2013a) Nucleotide sequences mutated by insertion that encode a truncated oleate desaturase protein, proteins, methods and uses. WIPO patent WO/2013/004281, Jan 10, 2013Google Scholar
  71. León AJ, Zambelli AD, Reid RJ et al (2013b) Isolated mutated nucleotide sequences that encode a modified oleatedestaurase sunflower protein, modified protein, methods and uses. WIPO Patent WO/2013/004280, Jan 10, 2013Google Scholar
  72. Liu Z, Cai X, Seiler GJ et al (2010) Transferring sclerotinia resistance genes from wild Helianthus species into cultivated sunflower. In: 32nd sunflower research workshop, Fargo, pp 1–5Google Scholar
  73. Liu Z, Wang D, Feng J et al (2013) Diversifying sunflower germplasm by integration and mapping of a novel male fertility restoration gene. Genet 193(3):727–737CrossRefGoogle Scholar
  74. Louarn J, Boniface MC, Pouilly N et al (2016) Sunflower resistance to broomrape (Orobanche cumana) is controlled by specific QTLs for different parasitism stages. Front Plant Sci 7:590CrossRefPubMedPubMedCentralGoogle Scholar
  75. Ma GJ, Seiler GJ, Markell SG et al (2016) Registration of two double rust resistant germplasms, HA-R12 and HA-R13 for confection sunflower. J Plant Reg 10(1):69–74CrossRefGoogle Scholar
  76. Maheshwari S, Barbash DA (2011) The genetics of hybrid incompatibilities. Ann Rev Genet 45:331–355CrossRefGoogle Scholar
  77. Mandel JR, Dechaine JM, Marek LF, Burke JM (2011) Genetic diversity and population structure in cultivated sunflower and a comparison to its wild progenitor, Helianthus annuus L. Theor Appl Genet 123(5):693–704Google Scholar
  78. Marinković R, Miller JF (1995) A new cytoplasmic male sterility source from wild Helianthus annuus. Euphytica 82(1):39–42CrossRefGoogle Scholar
  79. Martín-Sanz A, Malek J, Fernández-Martínez JM et al (2016). Increased virulence in sunflower broomrape (Orobanche Cumana Wallr.) populations from southern Spain is associated with greater genetic diversity. Front Plant Sci 7:589Google Scholar
  80. Merah O, Langlade N, Alignan M et al (2012) Genetic analysis of phytosterol content in sunflower seeds. Theor Appl Genet 125:1589–1601CrossRefGoogle Scholar
  81. Mestries E, Gillot L, Penaud A, Cetio M (2004) Sunflower downy mildew resistance gene pyramiding, alternation and mixture: first results comparing the effects of different varietal structures on changes in the pathogen. In: Proceedings of the 16th international sunflower conference, Fargo, ND, USA, 29 September, pp 111–116Google Scholar
  82. Mezzarobba A, Jonard R (1986) Effect of the developmental stage and pretreatments on in vitro development of anthers isolated from cultivated sunflowers (H. annuus L.). Compt Rend AcadSci III Sciences de la Vie 303:181–186Google Scholar
  83. Miller JF (1996) Inheritance of restoration of Helianthus petiolaris sp fallax (PEF1) cytoplasmic male sterility. Crop Sci 36:83–86CrossRefGoogle Scholar
  84. Mirzahosein-Tabrizi M (2017) Identification of downy mildew resistance loci in sunflower germplasm. Notulae Scient Biolog 9(4):515–519CrossRefGoogle Scholar
  85. Mokrani L, Gentzbittel L, Azanza F et al (2002) Mapping and analysis of quantitative trait loci for grain oil content and agronomic traits using AFLP and SSR in sunflower (Helianthus annuus L). Theor Appl Genet 106:149–156CrossRefGoogle Scholar
  86. Mulpuri S, Liu Z, Feng J, GulyaTJ Jan CC (2009) Inheritance and molecular mapping of a downy mildew resistance gene, Pl (13) in cultivated sunflower (Helianthus annuus L). Theor Appl Genet 119(5):795–803Google Scholar
  87. Murphy DJ (1990) Storage lipid bodies in plants and other organisms. Prog Lipid Res 29:299–324PubMedGoogle Scholar
  88. Nagarathna TK, Shadakshari YG, Ramanappa TM (2011) Molecular analysis of sunflower (Helianthus annuus L.) genotypes for high oleic acid using microsatellite markers. Helia 34(55):63–68Google Scholar
  89. Paniego N, Bazzalo ME, Bulos M et al (2012) Genomics, mapping and marker assisted selection strategies for disease resistance. In: Proceedings of the 18th international sunflower conference, Mar del Plata, Argentina, pp 44–50Google Scholar
  90. Perez-Vich B, Munoz-Ruz J, Fernandez-Martinez JM (2004) Developing midstearic acid sunflower lines from a high stearic acid mutant. Crop Sci 44:70–75CrossRefGoogle Scholar
  91. Petcu E, Pâcureanu JM (2011) Developing drought and broomrape resistant sunflower germplasm utilizing wild Helianthus species. Helia 34(54):1–8CrossRefGoogle Scholar
  92. Pereira ML, Trapani N, Sadras VO (2000) Genetic improvement of sunflower in Argentina between 1930 and 1995. Part III Dry matter partitioning and grain composition Field Crops Res 67(3):215–221Google Scholar
  93. Pfenning M, Palfay G, Guillet T (2008) The CLEARFIELD® technology a new broad-spectrum post-emergence weed control system for European sunflower growers. J Plant Dis Prot 21:649–654Google Scholar
  94. Prabakaran AJ, Sujatha M (2004) Interspecific hybrid of Helianthus annuus × H. simulans: characterization and utilization in improvement of cultivated sunflower (H. annuus L.). Euphytica 135(3):275–282CrossRefGoogle Scholar
  95. Presotto A, Ureta MS, Cantamutto M, Poverene M (2012) Effects of gene flow from IMI resistant sunflower crop to wild Helianthus annuus populations. Agric Ecosys Environ 146(1):153–161CrossRefGoogle Scholar
  96. Qi L, Gulya T, Seiler GJ et al (2011) Identification of resistance to new virulent races of rust in sunflowers and validation of DNA markers in the gene pool. Phytopathology 101(2):241–249CrossRefGoogle Scholar
  97. Radonic LM, Zimmermann JM, Zavallo D et al (2008) Introduction of antifungal genes in sunflower via agrobacterium. Electron J Biotechnol 11(5):8–9CrossRefGoogle Scholar
  98. Rauf S (2008) Breeding sunflower (Helianthus annuus L) for drought tolerance. Commun Biomet Crop Sci 3(1):29–44Google Scholar
  99. Rauf S, Sadaqat HA (2008) Identification of physiological traits and genotypes combined to high achene yield. Aust J Crop Sci 1(1):23–30Google Scholar
  100. Rauf S, Sadaqat HA, Khan IA (2008) Effect of moisture regimes on combining ability variations of seedling traits in sunflower (Helianthus annuus L.). Canad J Pl Sci 88(2):323–329CrossRefGoogle Scholar
  101. Rauf S, Sadaqat HA, Khan IA, Ahmed R (2009) Genetic analysis of leaf hydraulics in sunflower (Helianthus annuusL) under drought stress. Plant Soil Environ 55(2):62–69CrossRefGoogle Scholar
  102. Rauf S, Al-Khayri JM, Zaharieva M et al (2016) Breeding strategies to enhance drought tolerance in crops. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Advances in plant breeding strategies: agronomic, abiotic and biotic stress traits. Springer, Dordrecht, pp 397–445CrossRefGoogle Scholar
  103. Rauf S, Jamil N, Tariq SA et al (2017) Progress in modification of sunflower oil to expand its industrial value. J Sci Food Agric 97:1997–2006CrossRefGoogle Scholar
  104. Roche J, Alignan M, Bouniols A et al (2010) Sterol content in sunflower seeds (Helianthus annuus L.) as affected by genotypes and environmental conditions. Food Chemist 121:990–995CrossRefGoogle Scholar
  105. Rondanini D, Savin R, Hall AJ (2003) Dynamics of fruit growth and oil quality of sunflower (Helianthus annuus L) exposed to brief intervals of high temperature during grain filling. Field Crops Res 83(1):79–90CrossRefGoogle Scholar
  106. Rosenthal DM, Schwarzbach AE, Donovan LA et al (2002) Phenotypic differentiation between three ancient hybrid taxa and their parental species. Int J Plant Sci 163(3):387–398CrossRefGoogle Scholar
  107. Sabetta W, Alba V, Blanco A, Montemurro C (2011) sunTILL: a TILLING resource for gene function analysis in sunflower. Plant Methods 7(1):20CrossRefPubMedPubMedCentralGoogle Scholar
  108. Scelonge C, Wang L, Bidney D et al (2000) Transgenic Sclerotinia resistance in sunflower (Helianthus annuus L.). In: Proceedings of 15th international sunflower conference. Toulouse, France, 12–15 June, pp 1–5Google Scholar
  109. Seiler GJ (1992) Utilization of wild sunflower species for the improvement of cultivated sunflower. Field Crops Res 30(3):195–230CrossRefGoogle Scholar
  110. Seiler GJ (2007a) The potential of wild sunflower species for industrial uses. Helia 30(46):175–198CrossRefGoogle Scholar
  111. Seiler GJ (2007b) Wild annual Helianthus anomalus and H deserticola for improving oil content and quality in sunflower. Indust Crops Prod 25(1):95–100CrossRefGoogle Scholar
  112. Seiler GJ (2010) Utilization of wild Helianthus species in breeding for disease resistance. In: Proceedings of the International Sunflower Association (ISA) symposium sunflower breeding on resistance to diseases, 2010, pp 36–50Google Scholar
  113. Seiler GJ, Jan CC (2014) Wild sunflower species as a genetic resource for resistance to sunflower broomrape (Oroban checumana Wallr). Helia 37(61):129–139CrossRefGoogle Scholar
  114. Seiler G, Marek LF (2011) Germplasm resources for increasing the genetic diversity of global cultivated sunflower. Helia 34(55):1–20CrossRefGoogle Scholar
  115. Shehbaz M, Rauf S, Al-Sadi AM et al (2018) Introgression and inheritance of charcoal rot (Macrophomina phaseolina) resistance from silver sunflower (Helianthus argophyllus Torr. & A. Gray) into cultivated sunflower (Helianthus annuus L.). Aust Plant Path 47(4):413–420CrossRefGoogle Scholar
  116. Škorić D, Jocić S, Sakač Z, Lečić N (2008) Genetic possibilities for altering sunflower oil quality to obtain novel oils. Canad J Physiol Pharm 86(4):215–221CrossRefGoogle Scholar
  117. Smith BD (2006) Eastern North America as an independent center of plant domestication. Proc Nat Acad Sci 103(33):12223–12228CrossRefGoogle Scholar
  118. Smith SA, King RE, Min DB (2007) Oxidative and thermal stabilities of genetically modified high oleic sunflower oil. Food Chemist 102(4):1208–1213CrossRefGoogle Scholar
  119. Soldatov KI (1976) Chemical mutagenesis in sunflower breeding. In: Proceedings of the 7th international sunflower conference. International Sunflower Association, Vlaardingen, pp 352–357Google Scholar
  120. Sujatha M, Prabakaran AJ (2001) High frequency embryogenesis in immature zygotic embryos of sunflower. Plant Cell Tissue Org Cult 65(1):23–29CrossRefGoogle Scholar
  121. Sujatha M, Prabakaran AJ, Dwivedi SL, Chandra S (2008) Cytomorphological and molecular diversity in backcross-derived inbred lines of sunflower (Helianthus annuus L). Genome 51(4):282–293CrossRefGoogle Scholar
  122. Tahara M (1915) Cytological investigation on the root tips of Helianthus annuus. Bot Magaz Tokyo 29:1–5CrossRefGoogle Scholar
  123. Taski-Ajdukovic K, Vasic D, Nagl N (2006) Regeneration of interspecific somatic hybrids between Helianthus annuus L. and Helianthus maximiliani (Schrader) via protoplast electrofusion. Plant Cell Rep 25(7):698–704CrossRefGoogle Scholar
  124. Tilak IS, Kisan B, Goud IS et al (2018) Biochemical and molecular characterization of parents and its crosses for high oleic acid content in sunflower (Helianthus annuus L). Int J Curr Microbiol App Sci 7(4):2000–2020CrossRefGoogle Scholar
  125. Turkec A, Goksoy AT (2006) Identification of inbred lines with superior combining ability for hybrid sunflower (Helianthus annuus) production in Turkey. New Zealand J Crop Hort Sci 34(1):7–10CrossRefGoogle Scholar
  126. Vanzela AL, Ruas CF, Oliveira MF, Ruas PM (2002) Characterization of diploid, tetraploid and hexaploid Helianthus species by chromosome banding and FISH with 45S rDNA probe. Genetics 114(2):105–111Google Scholar
  127. Vasko V, Kyrychenko V (2016) Variability of valuable economic traits in M1 and M2 sunflower generations influenced by dimethyl sulfate and γ–rays. Žemėsūkiomokslai 23(4):142–159Google Scholar
  128. Vera-Ruiz EM, Velasco L, Leon AJ, Fernandez-Martnez JM, PerezVich B (2006) Molecular tagging and genetic mapping of the Thp1 gene controlling betatocopherol accumulation in sunflower. Mol Breed 17:291–296CrossRefGoogle Scholar
  129. Velasco L, Fernández-Martínez JM (2003) Identification and genetic characterization of new sources of beta- and gamma-tocopherol in sunflower germplasm. Helia 26:17–23CrossRefGoogle Scholar
  130. Velasco L, Domínguez J, Fernández-Martínez JM (2004) Registration of T589 and T2100 sunflower germplasms with modified tocopherol profiles. Crop Sci 44:361–362CrossRefGoogle Scholar
  131. Velasco L, Fernández-Cuesta Á, Fernández-Martínez JM (2014) New sunflower seeds with high contents of phytosterols. OCL 21:D604CrossRefGoogle Scholar
  132. Vlahakis C, Hazebroek J (2000) Phytosterol accumulation in canola, sunflower, and soybean oils:effects of genetics, planting location, and temperature. J Am Oil Chem Soc 77:49–53CrossRefGoogle Scholar
  133. Vranceanu VA, Stoenescu FM (1969) Pollen fertility restorer gene from cultivated sunflower (Helianthus annuus L). Euphytica 20(4):536–541Google Scholar
  134. Warburton ML, Rauf S, Marek L et al (2017) The use of crop wild relatives for crop improvement. Crop Sci 57:1–14CrossRefGoogle Scholar
  135. Weston B, McNevin G, Carlson D (2012) Clearfield® plus technology in sunflowers. In: Proceedings of the XVIII Sunflower Conference, Mar del Plata-Balcarce, Argentina, pp 149–154Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Saeed Rauf
    • 1
  1. 1.Department of Plant Breeding and Genetics, College of AgricultureUniversity of SargodhaSargodhaPakistan

Personalised recommendations