Sugarcane (Saccharum spp.): Breeding and Genomics

  • Shriram J. Mirajkar
  • Rachayya M. Devarumath
  • Ashok A. Nikam
  • Kapil V. Sushir
  • Harinath Babu
  • Penna SuprasannaEmail author


Sugarcane (Saccharum spp.) is cultivated and credited worldwide for its ability to synthesize and store exceptionally high concentration of sucrose. Since prehistoric times sugarcane cultivation has undergone many transformations into present-day noble cane. Initially, selection of desirable clones and interspecific hybrids brought many agronomically-useful traits into the cultivated species. Wild related species played a major role as the donor for most of the desirable traits through gene introgression. Pre-breeding strategies and intergeneric hybridization have played a crucial role in development of noble high-yielding canes. Cultivated sugarcane has been further enriched with other valuable traits such as high fiber, high fermentable sugar and biotic and abiotic stress tolerance. Despite its genomic complexity, crossability barriers within the genus, long breeding and selection cycles, etc., remarkable progress has been achieved to develop a wide range of cultivars, hybrids and mutants suitable for different agroclimatic conditions. Germplasm collections, preservation and their utilization for development of an ideotype bearing desirable traits has become a research priority. For this purpose, molecular-marker tools are acting as potential drivers during pre-breeding and selection of desirable progenies. Supplementary tools such as in vitro culture, isolation of somaclones, induced mutagenesis and transgenics have played an essential role in the generation of novel genetic variability. In recent decades much emphasis has been given to enrich sugarcane breeding strategies; however, future avenues need to be focused on the utilization of inexhaustible and wealthy sugarcane genomic resources and advancements made through biotechnological interventions.


Saccharum Genetic Ideotype breeding Mutagenesis Interspecific hybrids Somaclonal variation Synteny Transgenics 


  1. Alexander AG (1985) The energy cane alternative. Elsevier, Amsterdam, pp 437–477Google Scholar
  2. Al-Janabi SM, Honeycutt RJ, McClelland M, Sobral BW (1993) A genetic linkage map of Saccharum spontaneum L. ‘SES 208’. Genetics 134(4):1249–1260PubMedPubMedCentralGoogle Scholar
  3. Allsopp PG, Manners JM (1997) Novel approaches for managing pests and diseases in sugarcane. In: Keating BA, Wilson JR (eds) Intensive sugarcane production: meeting the challenge beyond 2000. CAB International, Wallingford, pp 173–188Google Scholar
  4. Amalraj AV, Balasundaram N (2006a) On the taxonomy of the members of ‘Saccharum complex’. Genet Resour Crop Evol 53:35–41CrossRefGoogle Scholar
  5. Amalraj AV, Balasundaram N (2006b) Status of sugar-cane genetic resources in India. PGR Newsl 148:26–31Google Scholar
  6. Amalraj VA, Rakkiyappan R, Neelmathi D et al (2008) Wild cane as renewable source for fuel and fibre in the paper industry. Curr Sci 95(11):1599–1602Google Scholar
  7. Amalraj VA, Chinnaraj S, Subramannian S et al (2012) Wild cane for paper and bioenergy. Sugarcane Breeding Institute, CoimbatoreGoogle Scholar
  8. Andru S, Pan YB, Thongthawee S et al (2011) Genetic analysis of the sugarcane (Saccharum spp.) cultivar ‘LCP 85-384’. I. Linkage mapping using AFLP, SSR, and TRAP markers. Theor Appl Genet 123(1):77–93CrossRefGoogle Scholar
  9. Arceneaux A (1965) Cultivated sugarcane of the world and their botanical derivation. In: Proceedins of the ISSCT XII, pp 844–854Google Scholar
  10. Arencibia A, Vazquez RI, Prieto D et al (1997) Transgenic sugarcane plants resistant to stem borer attack. Mol Breed 3:247–255CrossRefGoogle Scholar
  11. Arencibia AD, Carmona ER, Tellez P et al (1998) An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens. Transgenic Res 7:213–222CrossRefGoogle Scholar
  12. Arencibia A, Carmona E, Cornide MT et al (1999) Somaclonal variation in insect resistant transgenic sugarcane (Saccharum hybrid) plants produced by cell electroporation. Transgenic Res 8:349–360CrossRefGoogle Scholar
  13. Arencibia AD, Carmona E, Cornide MT et al (2000) Transgenic sugarcane (Saccharum spp). In: Bajaj SS (ed) Biotechnology in agriculture and forestry 46. Transgenic crops 1. Springer, Heidelberg, pp 188–206Google Scholar
  14. Arro JA (2005) Genetic diversity among sugarcane clones using target region amplification polymorphism (TRAP) markers and pedigree relationships. Master’s thesis, Louisiana State University, Baton RougeGoogle Scholar
  15. Artschwager E, Brandes EW (1958) Sugarcane (Saccharum officinarum L.): origin, classification, characteristics, and descriptions of representative clones. USDA Agric Handbook 122, US Gov Print Office, Washington DCGoogle Scholar
  16. Babu CN, Ethirajan AS (1962) A note on use of S. spontaneum L. in sugarcane breeding. Proc ISSCT 11:464–469Google Scholar
  17. Balakrishnan R, Nair NV, Sreenivasan TV (2000) A method for establishing a core collection of Saccharum officinarum L. germplasm based on quantitative-morphological data. Genet Resour Crop Evol 47:1–9CrossRefGoogle Scholar
  18. Balsalobre TWA, da Guilherme SP, Margarido GRA et al (2017) GBS-based single dosage markers for linkage and QTL mapping allow gene mining for yield-related traits in sugarcane. BMC Genomics 18:72CrossRefPubMedPubMedCentralGoogle Scholar
  19. Baltes NJ, Voytas DF (2015) Enabling plant synthetic biology through genome engineering. Trends Biotechnol 33:120–131CrossRefGoogle Scholar
  20. Banasiak M, Snyman SJ (2017) Exploring in vitro germplasm conservation options for sugarcane (Saccharum spp. hybrids) in South Africa. In Vitro Cell Dev Biol-Plant 53:402–409CrossRefGoogle Scholar
  21. Barocci S, Re L, Capotani C et al (1999) Effects of some extracts on the acetyl-choline release at the mouse neuromuscular joint. Pharmacol Res 39:239–245CrossRefPubMedGoogle Scholar
  22. Berding N, Hogarth M, Cox M (2004) Plant improvement of sugarcane. In: Glyn J (ed) Sugarcane. Blackwell Science Publication, Oxford, pp 20–53CrossRefGoogle Scholar
  23. Besse P, Tylor G, Carroll B et al (1998) Assessing genetic diversity in a sugarcane germplasm collection using an automated AFLP analysis. Genetics 104(2):143–153Google Scholar
  24. Bor NL (1960) The grasses of Burma, Ceylon, India and Pakistan. Pergamon Press, LondonGoogle Scholar
  25. Bower R, Birch RG (1992) Transgenic sugarcane plants via microprojectile bombardment. Plant J 2:409–416CrossRefGoogle Scholar
  26. Bower R, Elliott AR, Potier BAM, Birch RG (1996) High-efficiency, microprojectile-mediated cotransformation of sugarcane, using visible or selectable markers. Mol Breed 2:239–249CrossRefGoogle Scholar
  27. Brekhman II, Nestetenko IF, Khasina EI, Zorikov PS (1978) Effect of yellow cane sugar on the performance and the degree of stress manifestations in animal. Vopr Pitan 6:69–70Google Scholar
  28. Brisibe EA, Miyake H, Taniguchi T, Maeda E (1994) Regulation of somatic embryogenesis in long-term callus cultures of sugarcane (Saccharum officinarum L.). New Phytol 126:301–307CrossRefGoogle Scholar
  29. Brumbley SM, Purnell MP, Petrasovits LA et al (2004) Development of sugarcane as a biofactory for biopolymers. Plant & animal genomes XII conference, San Diego, CA, 10–14 January 2004Google Scholar
  30. Burnquist WL, Sorrells ME, Tanksley S (1992) Characterization of genetic variability in Saccharum germplasm by means of restriction fragment length polymorphism (RFLP) analysis. Proc Int Soc Sugarcane Technol 21:355–365Google Scholar
  31. Butterfield MK, Irvine JE, Garza MV, Mirkov TE (2002) Inheritance and segregation of virus and herbicide resistance transgenes in sugarcane. Theor Appl Genet 104(5):797–803CrossRefPubMedPubMedCentralGoogle Scholar
  32. Cao P, Jung KH, Ronald PC (2010) A survey of databases for analysis of plant cell wall-related enzymes. BioEnergy Res 3:108–114CrossRefGoogle Scholar
  33. Carmona ER, Rodriguez M, Borroto J, Arencibia AD (2000) Somaclonal variation in transgenic sugarcane plants: practical considerations. In: Arencibia AD (ed) Plant genetic engineering: towards the third millennium. Elsevier Science, Amsterdam, pp 62–67Google Scholar
  34. Cesnik R, Miocque J (2004) Melhoramento da cana-de-açúcar. Brasília EmbrapaGoogle Scholar
  35. Chakravarthi M (2016) Genome editing in sugarcane: challenges ahead. Front Plant Sci 7:1542Google Scholar
  36. Chandran K (2010) In vitro multiplication and conservation of Saccharum germplasm. Ind J Plant Genet Resour 23:65–68Google Scholar
  37. Chang D, Yang FY, Yan JJ et al (2012) SRAP analysis of genetic diversity of nine native populations of wild sugarcane, Saccharum spontaneum from Sichuan, China. Genet Mol Res 11:1245–1253CrossRefPubMedPubMedCentralGoogle Scholar
  38. Cordeiro GM, Casu R, McIntyre SL et al (2001) Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to Erianthus and sorghum. Plant Sci 160:1115–1123CrossRefPubMedPubMedCentralGoogle Scholar
  39. Cordeiro GM, Eliott F, McIntyre CJ et al (2006) Characterization of single nucleotide polymorphism in sugarcane ESTs. Theor Appl Genet 113(2):331–343CrossRefPubMedPubMedCentralGoogle Scholar
  40. D’Hont A, Glaszmann JC (2001) Sugarcane genome analysis with molecular markers, a first decade of research. Proc Int Soc Sugarcane Technol 24:556–559Google Scholar
  41. D’Hont A, Rao PS, Feldmann P et al (1995) Identification and characterization of sugarcane intergeneric hybrids, Saccharum officinarum x Erianthus arundinaceus, with molecular markers and DNA in situ hybridization. Theor Appl Genet 91:320–326CrossRefGoogle Scholar
  42. D’Hont A, Grivet L, Feldmann P et al (1996) Characterisation of the double structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol Gen Genet 250:405–413CrossRefPubMedPubMedCentralGoogle Scholar
  43. Da Silva JAG, Honeycutt RJ, Burnquist W et al (1995) Saccharum spontaneum L. ‘SES 208’ genetic linkage map combining RFLP and PCR-based markers. Mol Breed 1:165–179CrossRefGoogle Scholar
  44. Dal-Bianco M, Carneiro MS, Hotta CR et al (2012) Sugarcane improvement: how far can we go? Curr Opin Biotechnol 23:265–270CrossRefGoogle Scholar
  45. Dalvi SG, Vasekar VC, Yadav A et al (2012) Screening of promising sugarcane somaclones for agronomic traits and smut resistance using PCR amplification of inter transcribed region (ITS) of Sporisorium scitaminae. Sugar Technol 14(1):68–75CrossRefGoogle Scholar
  46. Daniels J, Daniels CA (1975) Geographical, historical and cultural aspects of the origin of the Indian Chinese sugarcanes S. barberi and S. sinense. Int Soc Sugarcane Technol Sugarcane Breed Newsl 36:4–23Google Scholar
  47. Daniels J, Roach BT (1987) Taxonomy and evolution. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 7–84CrossRefGoogle Scholar
  48. Daniels J, Smith P, Paton N, Williams CA (1975) The origin of the genus Saccharum. Sugarcane Breed Newsl 36:24–39Google Scholar
  49. de Souza AP, Grandis A, Leite DCC, Buckeridge MS (2014) Sugarcane as a bioenergy source: history, performance, and perspectives for second-generation bioethanol. Bioenergy Res 7:24–35CrossRefGoogle Scholar
  50. Devarumath RM, Kalwade SB, Kawar PG, Sushir KV (2012) Assessment of genetic diversity in sugarcane germplasm using ISSR and SSR markers. Sugar Technol 14(4):334–344CrossRefGoogle Scholar
  51. Devarumath RM, Kalwade SB, Bundock P, Eliott FG, Henry R (2013a) Independent target region amplification polymorphism (TRAP) and single nucleotide polymorphism (SNP) marker utility in genetic evaluation of sugarcane genotypes. Plant Breed 132:736–747CrossRefGoogle Scholar
  52. Devarumath RM, Kalwade SB, Kulkarni PA et al (2013b) Integrating OMICS approaches in sugarcane improvement. In: Debmalya B (ed) OMICS applications in crop science. CRC Press, New York, pp 191–250CrossRefGoogle Scholar
  53. Dillon SL, Shapter FM, Robert HJ et al (2007) Domestication to crop improvement: genetic resources for sorghum and Saccharum (Andropogoneae). Ann Bot 5:975–989CrossRefGoogle Scholar
  54. El-Abasy M, Motobu M, Na K et al (2003) Protective effects of sugar cane extracts (SCE) on Eimeria tenella infection in chickens. J Vet Med Sci 65:865–871CrossRefPubMedPubMedCentralGoogle Scholar
  55. Elliott AR, Cambell JA, Bretell RIS, Grof CPL (1998) Agrobacterium mediated transformation of sugarcane using GFP as screenable marker. Aust J Plant Physiol 25:739–743Google Scholar
  56. Enriquez GA, Trujillo LE, Menendez C et al (2000) Sugarcane (Saccharum hybrid) genetic transformation mediated by Agrobacterium tumefaciens: production of transgenic plants expressing proteins with agronomic and industrial value. In: Arencibia AD (ed) Plant genetic engineering: towards the third millennium. Elsevier Science, Amsterdam, pp 76–81Google Scholar
  57. Enriquez-Obregon GA, Vazquez-Padron RI, Prieto-Samsonov DL et al (1998) Herbicide resistant sugarcane plants by Agrobacterium-mediated transformation. Planta 206:20–27CrossRefGoogle Scholar
  58. Falco MC, Tulmann NA, Ulian EC (2000) Transformation and expression of a gene for herbicide resistance in Brazilian sugarcane. Plant Cell Rep 19:1188–1194CrossRefPubMedPubMedCentralGoogle Scholar
  59. FAOSTAT (2013). Accessed 30 Nov 2014
  60. Ferreira THS, Tsunada MS, Bassi D et al (2017) Sugarcane water stress tolerance mechanisms and its implications on developing biotechnology solutions. Front Plant Sci 8:1077CrossRefPubMedPubMedCentralGoogle Scholar
  61. Fitch MM, Moore PH (1990) Comparison of 2,4-D and picloram for selection of long-term totipotent green callus cultures of sugarcane. Plant Cell Tissue Organ Cult 20:157–163Google Scholar
  62. Frankel OH (1989) Principles and strategies of evaluation. In: Brown ADH, Frankel OH, Marshall DR, Williams JT (eds) The use of plant genetic resources. Cambridge University Press, Cambridge, pp 245–260Google Scholar
  63. Gallo-Meagher M, Irvine JE (1996) Herbicide resistant sugarcane containing the bar gene. Crop Sci 36:1367–1374CrossRefGoogle Scholar
  64. Gilbert RA, Gallo-Meagher M, Comstock JG et al (2005) Agronomic evaluation of sugarcane lines transformed for resistance to sugarcane mosaic virus strain E. Crop Sci 45:2060–2067CrossRefGoogle Scholar
  65. Glaszmann JC, Rott P, Engelmann F (1996) Role of in vitro maintenance of sugarcane for germplasm conservation and exchange. In: Croft BJ, Piggin CM, Wallis ES, Hogarth OM (eds) Sugarcane germplasm conservation and exchange. ACIAR proceedings 67, pp 67–70Google Scholar
  66. Govindaraj P, Sindhu R, Balamurugan A, Appunu C (2011) Molecular diversity in sugarcane hybrids (Saccharum spp. complex) grown in peninsular and east coast zones of tropical India. Sugar Technol 13(3):206–213CrossRefGoogle Scholar
  67. Grivet L, Arruda P (2002) Sugarcane genomics: depicting the complex genome of an important tropical crop. Curr Opin Plant Biol 2:122–127CrossRefGoogle Scholar
  68. Grivet L, D’Hont A, Dufour P et al (1994) Comparative genome mapping of sugar cane with other species within the Andropogoneae tribe. Heredity 73:500–508CrossRefGoogle Scholar
  69. Grivet L, D’Hont A, Roques D et al (1996) RFLP mapping in cultivated sugarcane (Saccharum spp.): genome organization in a highly polyploid and interspecific hybrid. Genetics 142:987–1000PubMedPubMedCentralGoogle Scholar
  70. Groenewald JH, Botha FC (2001) Manipulating sucrose metabolism with a single enzyme: pyrophosphate-dependent phosphofructokinase (PFP). Proc S Afr Sugar Technol Assoc 75:101–103Google Scholar
  71. Guiderdoni E, Merot B, Klsomtramage PF et al (1995) Somatic embryogenesis in sugarcane. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Springer, Berlin, pp 92–113Google Scholar
  72. Gurushidze M, Hensel G, Hiekel S et al (2014) True-breeding targeted gene knock-out in barley using designer TALE-nuclease in haploid cells. PLoS One 9:1–9CrossRefGoogle Scholar
  73. Hackel E (1883) Gramineae IV. Andropogoneae, Tristegineae. In: von Martius CFP (ed) Flora Brasil 2(3):245–326Google Scholar
  74. Hapase RS, Sushir KV, Hapase PR et al (2010) Studies on variation in interspecific hybrids of Saccharum. Sugar Technol 12(2):155–159CrossRefGoogle Scholar
  75. Hattori T, Morita S (2010) Energy crops for sustainable bioethanol production: which, where and how? Plant Prod Sci 13:221–234CrossRefGoogle Scholar
  76. Hawkes JG (1977) The importance of wild germplasm in plant breeding. Euphytica 26:615–621CrossRefGoogle Scholar
  77. Heinz DJ (1988) Sugarcane improvement through breeding. Development in crop science, II. Elsevier Scientific Publishing Co, AmsterdamGoogle Scholar
  78. Heinz DJ, Mee GWP (1969) Plant differentiation from callus tissue of Saccharum species. Crop Sci 9:346–348CrossRefGoogle Scholar
  79. Heinz DJ, Krishnamurthi M, Nickell LG, Maretzki A (1977) Cell, tissue and organ culture in sugarcane improvement. In: Reinert J, Bajaj YPS (eds) Applied and fundamental aspects of plant cell, tissue and organ culture. Springer, Berlin, pp 3–17Google Scholar
  80. Hitchcock AS (1951) Manual of the grasses of the United States, 2nd rev edn. USDA, Miscellaneous Publication 200, Washington DCGoogle Scholar
  81. Ho WJ, Vasil IK (1983) Somatic embryogenesis in sugarcane (Saccharum officinarum L.): growth and plant regeneration from embryogenic cell suspension cultures. Ann Bot 51:719–726CrossRefGoogle Scholar
  82. Hoarau JY, Offmann B, D’Hont A et al (2001) Genetic dissection of a modern sugarcane cultivar (Saccharum spp.) 1. Genome mapping with AFLP markers. Theor Appl Genet 103:84–97CrossRefGoogle Scholar
  83. Hodkinson TR, Chase MW, Lledo MD et al (2002) Polygenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. J Plant Res 115:381–392CrossRefGoogle Scholar
  84. Ingelbrecht IL, Irvine JE, Mirkov TE (1999) Post transcriptional gene silencing in transgenic sugarcane. Dissection of homology-dependent virus resistance in a monocot that has a complex polyploid genome. Plant Physiol 119:1187–1197CrossRefPubMedPubMedCentralGoogle Scholar
  85. Irvine JE, Benda GTA (1987) Transmission of sugarcane diseases in plants derived by rapid regeneration from diseased leaf tissue. Sugarcane 6:14–16Google Scholar
  86. Irvine JE, Mirkov TE (1997) The development of genetic transformation of sugarcane in Texas. Sugar J 60:25–29Google Scholar
  87. Jakob K, Zhou F, Paterson AH (2009) Genetic improvement of C4 grasses as cellulosic biofuel feedstocks. In Vitro Cell Dev Biol-Plant 45:291–305CrossRefGoogle Scholar
  88. Jankiammal EK (1938) A Saccharum-Zea cross. Nature 142:618–619Google Scholar
  89. Jankiammal EK (1941) Intergeneric hybrids of Saccharum. J Genet 41:217–253CrossRefGoogle Scholar
  90. Jankiammal EK, Singh TSN (1936) Preliminary note on a new Saccharum x Sorghum hybrid. Indian J Agric Sci 6(5):1105–1106Google Scholar
  91. Jayabose C, Arumuganathan T, Amalraj VA et al (2017) Compressive force profile of high biomass Erianthus clones. Sugar Technol 19(4):341–346CrossRefGoogle Scholar
  92. Joyce PA, McQualter RB, Handley JA et al (1998) Transgenic sugarcane resistant to sugarcane mosaic virus. Proc Aust Soc Sugarcane Technol 20:204–210Google Scholar
  93. Jung JH, Altpeter F (2016) TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploid sugarcane improves cell wall composition for production of bioethanol. Plant Mol Biol 92:131–142CrossRefPubMedPubMedCentralGoogle Scholar
  94. Kadam US, Ghosh SB, De S et al (2008) Antioxidant activity in sugarcane juice and its protective role against radiation induced DNA damage. Food Chem 106:1154–1160CrossRefGoogle Scholar
  95. Kadam US, Shelake RM, Chavhan RL, Suprasanna P (2018) Concerns regarding ‘off-target’ activity of genome editing endonucleases. Plant Physiol Biochem 131:22–30. Scholar
  96. Kalwade SB, Devarumath RM (2014) Single strand conformation polymorphism of genomic and EST-SSRs marker and its utility in genetic evaluation of sugarcane. Physiol Mol Biol Plants 20(3):313–321CrossRefPubMedPubMedCentralGoogle Scholar
  97. Kandasami PA (1964) Studies on intergeneric hybrids of Saccharum spontaneum L. Proc All India Conf Sugarcane Res Dev Workers 5:407–411Google Scholar
  98. Kandel R, Yang X, Song J, Wang J (2018) Potentials, challenges, and genetic and genomic resources for sugarcane biomass improvement. Front Plant Sci 9:151CrossRefPubMedPubMedCentralGoogle Scholar
  99. Kannan B, Jung JH, Moxley GW et al (2018) TALEN-mediated targeted mutagenesis of more than 100 COMT copies/alleles in highly polyploid sugarcane improves saccharification efficiency without compromising biomass yield. Plant Biotechnol J 16(4):856–866CrossRefPubMedGoogle Scholar
  100. Kumar V, Jain M (2015) The CRISPR-Cas system for plant genome editing: advances and opportunities. J Exp Bot 66:47–57CrossRefPubMedGoogle Scholar
  101. Ladizinsky G (1989) Origin and domestication of the Southwest Asian grain legumes. In: Harris DR, Hillman GC (eds) Foraging and farming: the evolution of plant exploitation. Unwin Hyman Ltd, London, pp 374–388Google Scholar
  102. Lakshmanan P (2006) Somatic embryogenesis in sugarcane- an addendum: sugarcane biotechnology: challenges and opportunities. In Vitro Cell Dev Biol Plant 42:202–205CrossRefGoogle Scholar
  103. Lakshmanan P, Geijskes RJ, Aitken KS et al (2005) Sugarcane biotechnology: the challenges and opportunities. In Vitro Cell Dev Biol Plant 41:345–363CrossRefGoogle Scholar
  104. Larkin PJ, Scowcroft WR (1981) Somaclonal variation- a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214CrossRefPubMedGoogle Scholar
  105. Larkin PJ, Scowcroft WR (1983) Somaclonal variation and eye spot toxin tolerance in sugarcane. Plant Cell Tissue Organ Cult 2:111–121CrossRefGoogle Scholar
  106. Leal MR, Maribona RH, Ruiz A et al (1996) Somaclonal variation as a source of resistance to eye spot disease of sugarcane. Plant Breed 115:37–42CrossRefGoogle Scholar
  107. Ledon N, Casaco A, Rodríguez V et al (2003) Anti-inflammatory and analgesic effects of a mixture of fatty acids isolated and purified from sugarcane wax oil. Planta Med 69:367–369CrossRefPubMedGoogle Scholar
  108. Lee TSG (1987) Micropropagation of sugarcane (Saccharum spp.). Plant Cell Tissue Organ Cult 10:47–55CrossRefGoogle Scholar
  109. Leibbrandt NB, Snyman SJ (2001) Initial field testing of transgenic glufosinate ammonium resistant sugarcane. Proc S Afr Sugar Technol Assoc 75:108–111Google Scholar
  110. Leibbrandta NB, Snyman SJ (2003) Stability of gene expression and agronomic performance of a transgenic herbicide-resistant sugarcane line in South Africa. Crop Sci 43:671–677CrossRefGoogle Scholar
  111. Leitch U, Bennet MD (1997) Polyploidy in angiosperms. Trends Plant Sci 2:470–476CrossRefGoogle Scholar
  112. Li HW, Loh CS, Lee CL (1948) Hybrids between Saccharum officinarum, Miscanthus japonicas and S spontaneum. Bot Bull Acad Sin (Taipei) 2:147–160Google Scholar
  113. Li T, Liu B, Spalding MH et al (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392CrossRefPubMedPubMedCentralGoogle Scholar
  114. Liu MC (1993) Factors affecting induction, somatic embryogenesis and plant regeneration of callus from cultured immature inflorescences of sugarcane. J Plant Physiol 141:714–720CrossRefGoogle Scholar
  115. Lo DY, Chen TH, Chien MS et al (2005) Effects of sugar cane extract on the modulation of immunity in pigs. J Vet Med Sci 67(6):591–597CrossRefGoogle Scholar
  116. Ma H, Albert HH, Moore PH (2000) Metabolic engineering of invertase activities in different subcellular compartments affects sucrose accumulation in sugarcane cells. Aust J Plant Physiol 27:1021–1030Google Scholar
  117. Manickavasagam M, Ganapathi A, Anbazhagan VR et al (2004) Agrobacterium mediated genetic transformation and development of herbicide resistant sugarcane (Saccharum species hybrids) using axillary buds. Plant Cell Rep 23:134–143CrossRefGoogle Scholar
  118. Mao Y, Zhang H, Xu N et al (2013) Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol Plant 6:2008–2011CrossRefPubMedPubMedCentralGoogle Scholar
  119. Martínez-Montero ME, Martínez J, Engelmann F (2008) Cryopreservation of sugarcane somatic embryos. CryoLetters 29(3):229–242PubMedGoogle Scholar
  120. Matsuoka S, Kennedy AJ, dos Santos EGD et al (2014) Energy cane: its concept, development, characteristics, and prospects. Adv Bot 2014:1–13,. Article ID 597275. Scholar
  121. McIntyre CL, Casu RE, Drenth J et al (2005) Resistance gene analogues in sugarcane and sorghum and their association with quantitative trait loci for rust resistance. Genome 48(3):391–400CrossRefGoogle Scholar
  122. McQualter RB, Dale JL, Harding RH et al (2004) Production and evaluation of transgenic sugarcane containing a Fiji disease virus (FDV) genome segment S9-derived synthetic resistance gene. Aust J Agric Res 55:139–145CrossRefGoogle Scholar
  123. Ming R, Del Monte TA, Hernandez E et al (2002) Comparative analysis of QTLs affecting plant height and flowering among closely-related diploid and polyploid genomes. Genome 45(5):794–803CrossRefGoogle Scholar
  124. Ming R, Moore PH, Wu KK et al (2010) Sugarcane improvement through breeding and biotechnology. In: Janick J (ed) Plant breeding reviews. Wiley, Oxford, pp 15–118CrossRefGoogle Scholar
  125. Mirajkar SJ, Rai AN, Vaidya ER et al (2017) TRAP and SRAP molecular marker based profiling of radiation induced mutants of Sugarcane (Saccharum officinarum L.). Plant Genet 9:64–70CrossRefGoogle Scholar
  126. Mirajkar SJ, Vaidya ER, Suprasanna P (2018) Field assessment of morpho-agronomic and biochemical attributes of promising sugarcane mutants derived through in vitro gamma irradiation. In: DAE-BRNS life sciences symposium 2018 on Frontiers in sustainable agriculture 26th–28th April 2018 BARC, MumbaiGoogle Scholar
  127. Molina V, Arruzazabala ML, Carbajal D et al (2000) Antiplatelet and antithrombotic effect of D-003. Pharmacol Res 42:137–143CrossRefGoogle Scholar
  128. Moore PH (2009) Sugarcane biology, yield, and potential for improvement. In: Proceedings of the workshop BIOEN on sugarcane improvement, San Pablo, CA.
  129. Moore PH, Botha FC (2014) Sugarcane: physiology, biochemistry, and functional biology. Wiley-Blackwell, AmesGoogle Scholar
  130. Mudge J, Andersen WR, Kehrer RL, Fairbanks DJ (1996) A RAPD genetic map of Saccharum officinarum. Crop Sci 36:1362–1366CrossRefGoogle Scholar
  131. Mukherjee SK (1957) Origin and distribution of Saccharum. Bot Gaz 119:55–61CrossRefGoogle Scholar
  132. Mutant Variety Database (2018) Officially released mutant varieties, FAO-IAEA database
  133. Nair NV (2008) Sugarcane Breeding Institute, Coimbatore: a perspective. Sugar Technol 10:285–292CrossRefGoogle Scholar
  134. Nair NV (2011) Sugarcane development programmes in India: an overview. Sugar Technol 13(4):275–280CrossRefGoogle Scholar
  135. Nair N, Nair S, Sreenivasan T, Mohan M (1999) Analysis of genetic diversity and phylogeny in Saccharum and related genera using RAPD markers. Genet Resour Crop Evol 46:73–79CrossRefGoogle Scholar
  136. Nair NV, Selvi A, Srinivasan TV, Pushpalatha KN (2002) Molecular diversity in Indian sugarcane cultivars as revealed by randomly amplified DNA polymorphisms. Euphytica 127:219–225CrossRefGoogle Scholar
  137. Nair NV, Selvi A, Sreenivasan TV et al (2006) Characterization of intergeneric hybrids of Saccharum using molecular markers. Genet Resour Crop Evol 53(1):163–169CrossRefGoogle Scholar
  138. Nayak SN, Song J, Villa A et al (2014) Promoting utilization of Saccharum spp. genetic resources through genetic diversity analysis and core collection construction. PLoS One 9(10):e110856. Scholar
  139. Nickell LG (1964) Tissue and cell cultures of sugarcane: another research tool. Hawaii Plant Rec 57:223–229Google Scholar
  140. Nikam AA, Devarumath RM, Shitole MG et al (2014) Gamma radiation, in vitro selection for salt (NaCl) tolerance, and characterization of mutants in sugarcane (Saccharum officinarum L.). In Vitro Cell Dev Biol Plant 50(6):766–776CrossRefGoogle Scholar
  141. Nutt KA, Allsopp PG, McGhie TK et al (1999) Transgenic sugarcane with increased resistance to cane grubs. In: Proceedings of conference of the Australian Society of Sugar Cane Technologists, Townsville, Queensland, Australia, 27–30 April 1999, pp 171–176Google Scholar
  142. Ohara S, Terajima Y, Sugimoto SA et al (2005) Biomass ethanol production from sugarcane for energy with supporting current sugar production from. J Jpn Inst Energy 84(11):923–928CrossRefGoogle Scholar
  143. Oliveira KM, Pinto LR, Marconi TG et al (2007) Functional integrated genetic linkage map based on EST-markers for a sugarcane (Saccharum spp.) commercial cross. Mol Breed 20:189–208CrossRefGoogle Scholar
  144. Oropeza M, Guevara P, de Garcia E, Ramirez JL (1995) Identification of somaclonal variants of sugarcane (Saccharum spp.) resistant to sugarcane mosaic virus via RAPD markers. Plant Mol Biol Report 13:182–189CrossRefGoogle Scholar
  145. Pan YB, Cordeiro GM, Richard EP Jr, Henry RJ (2003) Molecular genotyping of sugarcane clones with microsatellite DNA markers. Maydica 48:319–329Google Scholar
  146. Parthasarathy N (1948) Origin of noble sugarcanes (Saccharum officinarum L.). Nature 161:608CrossRefPubMedPubMedCentralGoogle Scholar
  147. Patade VY, Suprasanna P (2008) Radiation induced in vitro mutagenesis for sugarcane improvement. Sugar Technol 10(1):14–19CrossRefGoogle Scholar
  148. Patade VY, Suprasanna P, Kulkarni UG, Bapat VA (2006) Selection for abiotic (salinity and drought) stress tolerance and molecular characterization of tolerant lines in sugarcane. BARC Newsl 273:244–257Google Scholar
  149. Pilger R (1940) Gramineae III: Unterfamilie Panicoideae. In: Engler A, Prantl K (eds) Die naturlichen Pflanzenfamilian, 2nd edn, Band 14e. Duncker and Humblot, BerlinGoogle Scholar
  150. Pinto LR, Oliveria KM, Ulian EC et al (2004) Survey in the sugarcane expressed sequence tag database (SUCEST) for simple sequence repeats genome. Genome 47:795–804CrossRefPubMedPubMedCentralGoogle Scholar
  151. Price S (1963) Cytogenetics of modern sugarcane. Econ Bot 17:97–106CrossRefGoogle Scholar
  152. Ram B, Sahi BK (2000) Database in sugarcane: performance of interspecific hybrids (ISH) clones under sub-tropical environment at Karnal, vol II, SBI, Regional Centre Karnal P10BGoogle Scholar
  153. Roach BT (1972) Nobilisation of sugarcane. Proc Int Soc Sugarcane Technol 14:206–216Google Scholar
  154. Roach BT (1977) Utilization of S. spontaneum in sugarcane breeding. Proc ISSCT 16:43–57Google Scholar
  155. Roach BT, Daniels J (1987) A review of the origin and improvement of sugarcane. In: Copersucar international sugarcane breeding workshop, vol 1, pp 1–31Google Scholar
  156. Santosa DA, Hendroko R, Farouk A, Greiner R (2004) A rapid and highly efficient method for transformation of sugarcane callus. Mol Biotechnol 28:113–119CrossRefPubMedPubMedCentralGoogle Scholar
  157. Selman-Housein G, Lopez MA, Hernandez D et al (1999) Molecular cloning of cDNAs coding for three sugarcane enzymes involved in lignification. Plant Sci 143:163–171CrossRefGoogle Scholar
  158. Selvi A, Nair NV, Balasundaram N, Mohapatra T (2003) Evaluation of maize microsatellite markers for genetic diversity analysis and fingerprinting in sugarcane. Genome 46:394–403CrossRefPubMedPubMedCentralGoogle Scholar
  159. Selvi A, Nair NV, Noyer JL et al (2005) Genomic constitution and genetic relationship among the tropical and sub tropical Indian sugarcane cultivars revealed by AFLP. Crop Sci 45:1750–1757CrossRefGoogle Scholar
  160. Sengar RS, Sengar K, Garg SK (2011) Biotechnological approaches for high sugarcane yield. Plant Sci Feed 1(7):101–111Google Scholar
  161. Senthil Kumar S, Govindraj P, Appunu C (2015) Morphological and molecular characterization of high biomass IGH, ISH and Saccharum hybrids. Sugar Technol 17(3):243–251CrossRefGoogle Scholar
  162. Shadmehr A, Ramshini H, Zeinalabedini M et al (2017) Phenotypic variability assessment of sugarcane germplasm (Saccharum officinarum L.) and extraction of an applied mini-core collection. Agriculture 7(7):55CrossRefGoogle Scholar
  163. Shahi HN (2000) Sugarcane seed: production and certification. In: Shahi HN, Srivastava AK, Sinha OK (eds) 50 years of sugarcane research in India. Indian Institute of Sugarcane Research, Lucknow, pp 251–260Google Scholar
  164. Shrivastava S, Gupta P (2008) Inter simple sequence repeat profile as a genetic marker system in sugarcane. Sugar Technol 10(1):48–52CrossRefGoogle Scholar
  165. Shrivastava AK, Srivastava S (2012) Sugarcane physiological and molecular approaches for improving abiotic stress tolerance and sustaining crop productivity. In: Tuteja N, Gill SS, Tiburcio AF, Tuteja R (eds) Improving crop resistance to abiotic stress, vol 2. Wiley Blackwell, Weinheim, pp 885–992CrossRefGoogle Scholar
  166. Shrivastava AK, Srivastava S (2016) Diversity of the germplasm of Saccharum species and related genera available for use in directed breeding programmes for sugarcane improvement. Curr Sci 111(3):475–482CrossRefGoogle Scholar
  167. Singh RK, Srivastava S, Singh SP et al (2008) Identification of new microsatellite DNA markers for sugar and related traits in sugarcane. Sugar Technol 10(4):327–333CrossRefGoogle Scholar
  168. Singh RB, Singh B, Singh RK (2015) Development of microsatellites (SSRs) markers and evaluation of genetic variability within sugarcane commercial varieties (Saccharum spp. hybrids). Int J Adv Res 3(12):700–708Google Scholar
  169. Snyman SJ, Watt MP, Huckett BI, Botha FC (2000) Direct somatic embryogenesis for rapid, cost effective production of transgenic sugarcane (Saccharum spp. hybrids). Proc S Afr Sugar Technol Assoc 74:186–187Google Scholar
  170. Soloman S (2014) Sugarcane agriculture and sugar industry in India: at a glance. Sugar Technol 16(2):113–124CrossRefGoogle Scholar
  171. Somerville C, Youngs H, Taylor C et al (2010) Feedstocks for lignocellulosic biofuels. Science 329(5993):790–792CrossRefPubMedPubMedCentralGoogle Scholar
  172. Souza GM, Berges H, Bocs S et al (2011) The sugarcane genome challenge: strategies for sequencing a highly complex genome. Trop Plant Biol 4:145–156CrossRefGoogle Scholar
  173. Sreenivasan TV (2004) Improving indigenous sugarcane of India. Sugar Technol 6(3):107–111CrossRefGoogle Scholar
  174. Sreenivasan TV, Jalaja NC (1998) Induced mutations and somaclonal variation in sugarcane. In: Jain SM, Brar DS, Ahloowalia BS (eds) Somaclonal variation and induced mutations in crop breeding. Kluwer Academic, DordrechtGoogle Scholar
  175. Sreenivasan TV, Ahloowalia BS, Heinz DJ (1987) Cytogenetics. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 211–254CrossRefGoogle Scholar
  176. Srivastava HM, Srivastava S (2000) Sugarcane breeding and varietal improvement during last fifty years (1947-–97) in India. In: Shahi HN, Srivastava AK, Sinha OK (eds) 50 years of sugarcane research in India. ISSR, LucknowGoogle Scholar
  177. Srivastava HM, Srivasatva S, Kumar R, Misra GP (1999) Genetic divergence among interspecific hybrids of sugarcane. Sugar Technol 1:19–22CrossRefGoogle Scholar
  178. Stalker HT (1980) Utilization of wild species for crop improvement. Adv Agron 33:111–147CrossRefGoogle Scholar
  179. Stevenson GC (1965) Genetics and breeding of sugarcane. Longman, LondonGoogle Scholar
  180. Suman A, Kimbeng C, Edme S, Vermis J (2008) Sequence related amplified polymorphism (SRAP) markers for accessing genetic relationship and diversity in sugarcane germplasm collections. Plant Genet Resour 6:222–231CrossRefGoogle Scholar
  181. Suman A, Ali K, Arro J et al (2012) Molecular diversity among members of the Saccharum complex assessed using TRAP markers based on lignin-related genes. Bioenergy Res 5:197–205CrossRefGoogle Scholar
  182. Suprasanna P (2010) Biotechnological interventions in sugarcane improvement: strategies, methods and progress. BARC Newsl 316:47–53Google Scholar
  183. Suprasanna P, Bapat VA (2005) Integrated approaches of plant biotechnology for crop improvement. In: Applications of biotechnology in agriculture and food processing sectors in Konkan. Proceedings of national conference on Indian society environmental science technology, pp 26–38Google Scholar
  184. Suprasanna P, Rupali C, Desai NS, Bapat VA (2005) Regulation of somatic embryogenesis by using different plant growth regulators in sugarcane (Saccharum officinarum L.). Sugar Technol 7(4):123–128CrossRefGoogle Scholar
  185. Suprasanna P, Desai NS, Sapna G, Bapat VA (2006) Monitoring genetic fidelity in plants derived through direct somatic embryogenesis in sugarcane by RAPD analysis. J New Seeds 8(3):1–9CrossRefGoogle Scholar
  186. Suprasanna P, Patade VY, Desai NS et al (2011) Biotechnological developments in sugarcane improvement – an overview. Sugar Technol 13(4):322–335CrossRefGoogle Scholar
  187. Suprasanna P, Mirajkar SJ, Patade VY, Jain SM (2014) Induced mutagenesis for improving plant abiotic stress tolerance. In: Tomlekova NB, Kozgar MI, Wani MR (eds) Mutagenesis: exploring genetic diversity of crops. Wageningen Academic Publishers, Wageningen, pp 345–376CrossRefGoogle Scholar
  188. Suprasanna P, Mirajkar SJ, Bhagwat SG (2015) Induced mutations and crop improvement. In: Bahadur B, Venkat Rajam M, Sahijram L, Krishnamurthy KV (eds) Plant biology and biotechnology, vol I: plant diversity, organization, function and improvement. Springer, New Delhi, pp 593–617CrossRefGoogle Scholar
  189. Taylor PWJ, Dukic S (1993) Development of an in vitro culture technique for conservation of Saccharum spp. hybrid germplasm. Plant Cell Tissue Organ Cult 34:217–222CrossRefGoogle Scholar
  190. Tew TL, Cobil RM (2008) Genetic improvement of sugarcane (Saccharum spp.) as an energy crop. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer, New York, pp 249–272Google Scholar
  191. Thirugnanasambandam PP, Hoang NV, Henry RJ (2018) The challenge of analyzing the sugarcane genome. Front Plant Sci 9:616CrossRefPubMedPubMedCentralGoogle Scholar
  192. Vaidya ER, Mirajkar SJ, Suprasanna P, Khakare MS (2018) Wilt and red rot resistance in promising sugarcane mutants regenerated through in vitro mutagenesis. In: DAE-BRNS life sciences symposium 2018 on Frontiers in sustainable agriculture, 26–28 April 2018, BARC MumbaiGoogle Scholar
  193. van Der Weijde T, Alvim Kamei CL, Torres AF et al (2013) The potential of C4 grasses for cellulosic biofuel production. Front Plant Sci 4:107PubMedPubMedCentralGoogle Scholar
  194. Vickers JE, Grof CPL, Bonnett GD et al (2005) Over expression of polyphenol oxidase in transgenic sugarcane results in darker juice and raw sugar. Crop Sci 45:354–362CrossRefGoogle Scholar
  195. Walker DIT (1971) Utilization of noble and S. spontaneum germplasm in the West Indies. Proc ISSCT 14:224–232Google Scholar
  196. Wang ML, Goldstein C, Su W et al (2004) Production of biologically active GM-CSF in sugarcane: a secure biofactory. Transgenic Res 14:167–178CrossRefGoogle Scholar
  197. Wang J, Roe B, Macmil S, Yu Q et al (2010) Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes. BMC Genomics 11:261CrossRefPubMedPubMedCentralGoogle Scholar
  198. Weeks DP, Spalding MH, Yang B (2016) Use of designer nucleases for targeted gene and genome editing in plants. Plant Biotechnol J 14:483–495CrossRefGoogle Scholar
  199. Wei H, Wang M-L, Moore PH, Albert HH (2003) Comparative expression analysis of two sugarcane polyubiquitin promoters and flanking sequences in transgenic plants. J Plant Physiol 160:1241–1251CrossRefGoogle Scholar
  200. Yu F, Ping W, Xueting L et al (2018) Characterization of chromosome composition of sugarcane in nobilization by using genomic in situ hybridization. Mol Cytogenet 11:35CrossRefPubMedPubMedCentralGoogle Scholar
  201. Zhang L, Birch RG (1996) Biocontrol of sugarcane leaf scald disease by an isolate of Pantoea dispersa, which detoxifies albicidin phytotoxins. Lett Appl Microbiol 22:132–136CrossRefGoogle Scholar
  202. Zhang Y, Zhang F, Li X et al (2013) Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol 161:20–27CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shriram J. Mirajkar
    • 1
  • Rachayya M. Devarumath
    • 2
  • Ashok A. Nikam
    • 3
  • Kapil V. Sushir
    • 4
  • Harinath Babu
    • 2
  • Penna Suprasanna
    • 5
    Email author
  1. 1.Department of BiotechnologyDr. D. Y. Patil Arts, Commerce and Science College, PimpriPuneIndia
  2. 2.Molecular Biology and Genetic EngineeringVasantdada Sugar InstitutePuneIndia
  3. 3.Plant Tissue Culture LaboratoryVasantdada Sugar InstitutePuneIndia
  4. 4.Sugarcane Breeding SectionVasantdada Sugar InstitutePuneIndia
  5. 5.Nuclear Agriculture and Biotechnology DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations