Genetics and Breeding of Tropical Acacias for Forest Products: Acacia mangium, A. auriculiformis and A. crassicarpa

  • Arif NirsatmantoEmail author
  • Sri Sunarti


Industrial forest plantations are playing an important role in the forestry sector for both economic and environmental reasons. Some fast- growing species of tropical acacias, such as Acacia mangium, A. auriculiformis, A. crassicarpa and Acacia hybrids are among the most dominant trees in forest industrial plantations in Southeast Asia countries: Indonesia, Malaysia, Vietnam, Thailand and Papua New Guinea. These trees are mainly planted to supply raw materials for pulp and paper, sawn lumber, the plywood industry and wood energy. Improvement through optimizing of silvicultural practices, exploring genetics and breeding of acacias has been gradually taking place. Although progress is still slow, as compared to agricultural crops, due to the age at rotation, larger tree size and extensive site management, some achievements in genetics and breeding of acacias have provided a significant benefit and impact in the operational scale of forest industries. Genetic diversity of acacias is low and most breeding is practiced conventionally under a recurrent selection strategy practiced successively from the first generation to advanced generation breeding cycles. Recently, breeding of acacias is also being developed through hybridization, application of biotechnology and molecular breeding.


Conventional breeding Tree improvement Molecular breeding hybridization Biotechnology Forest industry 


  1. Agrawal RL (1998) Fundamental of plant breeding and hybrid seed production. Science Publisher, Inc, EnfieldGoogle Scholar
  2. Ahmad DH (1990) Vegetative propagation of Acacia mangium by stem cutting: the effect of seedling age and phyllode number on rooting. J Trop For Sci 2(4):274–279Google Scholar
  3. Ahmad DH (1991) Micropropagation of Acacia mangium from aseptically germinated seedlings. J Trop For Sci 3(3):204–208Google Scholar
  4. Alaklabi A (2015) Phylogenetic study of Acacia species using the molecular marker. Am J Plant Sci 6:3139–3143. Scholar
  5. Andrade G, Shah R, Johansson S et al (2011) Somatic embryogenesis as a tool for forest tree improvement: a case-study in Eucalyptus globulus. BMC Proc 5(Suppl 7):P128. Scholar
  6. Anonymous (1982) The genus Acacia in Australia. Australian Acacias leaflet, revised 1982. CSIRO, CanberraGoogle Scholar
  7. Asif MJ, Zaki MA, Norwati M, Wickneswari R (2017) Detecting mislabeling and identifying unique progeny in Acacia mapping population using SNP markers. J For Res 28(6):1119–1127CrossRefGoogle Scholar
  8. Asif MJ, Ong SS, Wickneswari R (2018) Characterization of mean stem density, fibre length and lignin from two Acacia species and their hybrid. J For Res 29(2):549–555CrossRefGoogle Scholar
  9. Balocchi C, Bridgwater F, Zobel B, Jahromi S (1993) Age trends in genetic parameters for tree height in a nonselected population of loblolly pine. For Sci 39:231–235Google Scholar
  10. Barnes RD (1984) A multiple population breeding strategy for Zimbabwe. In: Barnes RD, Gibson GL (eds) Provenance and genetic improvement strategies in tropical forest trees. Proceedings of the IUFRO conference, Mutare, Zimbabwe 1984, pp 619–632Google Scholar
  11. Baurens FC, Nicolleau J, Legavre T et al (2004) Genomic DNA methylation of juvenile and mature Acacia mangium micropropagated in vitro with reference to leaf morphology as a phase of change marker. Tree Physiol 24:401–407CrossRefPubMedGoogle Scholar
  12. Beadle CL, Barry KM, Hardiyanto EB et al (2007) Effect of pruning Acacia mangium on growth, form and heart rot. For Ecol Manag 238(1–3):261–267. Scholar
  13. Booth TH, Jovanovic T, Harwood CE (2014) Planting domains of key species in a changing climatic environment. In: Sustaining the future of acacia plantation forestry international conference, IUFRO working party 2.08.07: genetics and silviculture of acacias, Hue, Vietnam, 18–21 March 2014, Compendium of abstractsGoogle Scholar
  14. Borralho NMG, Dutkowski GW (1996) A ‘rolling–front’ strategy for breeding trees. In: Dieters MJ, Matheson AC, Nikles DG et al (eds) Tree improvement for sustainable tropical forestry. Proceeding of the QFRI-IUFRO conference, Caloundra, Australia, pp 317–322Google Scholar
  15. Brain P, Maslin BR (1996) A serological investigation of the classification of Acacia subg. Phyllodineae (Leguminosae: Mimosoideae). Biochem Syst Ecol 24:379–392CrossRefGoogle Scholar
  16. Brawner J, Japarudin Y, Lapammu M et al (2015) Evaluating the inheritance of Ceratocystis acaciivora symptom expression in a diverse Acacia mangium breeding population. South For J For Sci 77:83–90CrossRefGoogle Scholar
  17. Burdon RD (1994) The place of biotechnology in forest tree breeding. Forest genetic resources no. 22. FAO, RomeGoogle Scholar
  18. Butcher PA, Moran GF, Perkins HD (1998) RFLP diversity in the nuclear genome of Acacia mangium. Heredity 81:205–213CrossRefGoogle Scholar
  19. Chaudary RC (1984) Introduction to plant breeding. Oxford & IBH Publishing Co, New DelhiGoogle Scholar
  20. Cotteril PP, Dean CA (1988) Change in the genetic control of growth of radiate pine to 16 years and efficiencies of early selection. Silvae Genet 38:138–146Google Scholar
  21. Darus HA (1991) Micropropagation technique for Acacia mangium × Acacia auriculiformis. In: Carron LT, Aken KM (eds) Breeding technologies for tropical acacias. Proceeding internal workshop in Tawau, Sabah, Malaysia, 1–4 July 1991, pp 119–121Google Scholar
  22. Falconer DS (1981) Introduction to quantitative genetics, 2nd edn. Longman House, LondonGoogle Scholar
  23. Galiana A, Chaumont J, Diem HG, Dommergues YR (1990) Nitrogen-fixing potential of Acacia mangium and Acacia auriculiformis seedlings inoculated with Bradyrhizobium and Rhizobium spp. Biol Fertil Soils 9(3):261–267. Scholar
  24. Galiana A, Goh D, Chevallier MH et al (2003) Micropropagation of A. mangium × A. auriculiformis hybrids in Sabah. Boit For Trop 275(1):77–82Google Scholar
  25. Gan E, Sim BL (1991) Nursery identification of hybrid seedlings in open plots. In: Carron LT, Aken KM (eds) Breeding technologies for tropical acacias, ACIAR proceeding, Canberra 1991, pp 76–87Google Scholar
  26. Griffin AR, Vuong TD, Harbard JL et al (2010) Improving controlled pollination methodology for breeding Acacia mangium Willd. New For 40:131–142CrossRefGoogle Scholar
  27. Griffin AR, Nambiar EKS, Harwood CE, Lee SS (2015a) Sustaining the future of Acacia plantation forestry – a synopsis. South For 77:v–viii. Scholar
  28. Griffin AR, Nghiem QC, Harbard JL et al (2015b) Breeding polyploid varieties of tropical acacias: progress and prospects. South For 77:41–50CrossRefGoogle Scholar
  29. Gunn BV, Midgley SJ (1991) Exploring and accessing the genetic resources of four selected tropical acacias. In: Turnbull JW (ed) Advances in tropical Acacia research. ACIAR proceedings no. 35, pp 57–63Google Scholar
  30. Hai PH, Harwood C, Kha LD et al (2008) Genetic gain from breeding Acacia auriculiformis in Vietnam. J Trop For Sci 20:313–327Google Scholar
  31. Hardiyanto EB (2004) Silvikultur dan Pemuliaan Acacia mangium. In: Hardiyanto EB, Arisman H (eds) Pembangunan hutan tanaman Acacia mangium: pengalaman di PT. Musi Hutan Persada. Polydoor, Yogyakarta, pp 207–281Google Scholar
  32. Hardiyanto EB (2014) Challenges for Acacia breeders. In: ‘Sustaining the future of Acacia plantation forestry’ international conference, IUFRO working party 2.08.07: genetics and silviculture of Acacias, Hue, Vietnam, 18–21 March 2014, Compendium of abstractsGoogle Scholar
  33. Hardiyanto EB, Nambiar EKS (2014) Productivity of successive rotations of Acacia mangium plantations in Sumatra, Indonesia: impacts of harvest and inter-rotation site management. New For 45(4):557–575. Scholar
  34. Harrier LA, Whitty PW, Sutherland JM, Sprent JI (1997) Phenetic investigation of non-nodulating African species of Acacia (Leguminosae) using morphological and molecular markers. Plant Syst Evol 205:27–51CrossRefGoogle Scholar
  35. Harwood CE, Nambiar EKS (2013) Sustainable plantation forestry in South East Asia. Client report EP14685 to Australian Centre for International Agricultural Research. Sustainable Agriculture Flagship and CSIRO Ecosystem Sciences, Canberra, AustraliaGoogle Scholar
  36. Harwood CE, Nambiar EKS (2014) Productivity of acacia and eucalypt plantations in Southeast Asia. 2. Trends and variations. Int For Rev 16:249–260Google Scholar
  37. Harwood CE, Hardiyanto EB, Wong CY (2015) Genetic improvement of tropical acacias: achievements and challenges. South For 77:11–18. Scholar
  38. Hazubska-Przybył T, Bojarczu K (2016) Tree somatic embryogenesis in science and forestry. Dendrobiology 76:105–116CrossRefGoogle Scholar
  39. Huong VD, Nambiar EKS, Quang LT et al (2015) Improving productivity and sustainability of successive rotations of Acacia auriculiformis plantations in South Vietnam. South For 77:51–58CrossRefGoogle Scholar
  40. Ibrahim Z (1993) Reproductive biology. In: Awang K, Taylor D (eds) Acacia mangium growing and utilization. Winrock International and the Food and Agriculture Organization of the United Nations, Bangkok, pp 21–34Google Scholar
  41. Ibrahim Z, Awang K (1991) Flowering and fruiting phenology of Acacia mangium and Acacia auriculiformis in Peninsular Malaysia. In: Carron LT, Aken KM (eds) Breeding technologies for tropical acacias. Australian Centre for International Agricultural Research, Canberra, pp 45–48Google Scholar
  42. Jahan MS, Sabina R, Rubaiyat A (2008) Alkaline pulping and bleaching of Acacia auriculiformis grown in Bangladesh. Turk J Agric Forum 32(4):339–347Google Scholar
  43. Kalita RM, Rahman M, Borogayary et al (2016) Carbon storage potential of Acacia plantation: a viable option for climate change mitigation. In: Proceedings international conference on climate change mitigation and technologies for adaptation, 20–21 June 2016, Meghalaya, India, pp 115–118Google Scholar
  44. Kha LD (2001) Studies on the use of natural hybrids between Acacia mangium and Acacia auriculiformis in Vietnam. Agriculture Publishing House, HanoiGoogle Scholar
  45. Kurinobu S, Rimbawanto A (2002) Genetic improvement of plantation species in Indonesia–summary of project achievement (JICA forest tree improvement phase II). In: Rimbawanto A, Susanto M (eds) Proceedings of international conference on advances in genetic improvement of tropical tree species, 1–3 October 2002, Yogyakarta, Indonesia. Centre for Forest Biotechnology and Tree Improvement, Yogyakarta, pp 158–163Google Scholar
  46. Laksmi MN, Gopakumar S (2009) Morphological keys for four Australian Acacia species grown in Kerala, India. J Trop Agric 47(1–2):62–66Google Scholar
  47. Lambeth CC (1980) Juvenile–mature correlations in Pinaceae and implications for early selection. For Sci 26:571–580Google Scholar
  48. Lambeth CC, van Buijtenen JP, McCollourgh RB, Duke SD (1983) Early selection is effective in 20–year–old genetic tests of loblolly pine. Silvae Genet 32:210–215Google Scholar
  49. Le DK, Ha HT (2016) Research and development of acacia hybrids for commercial planting in Vietnam. Life Sci Agric 1(1):36–42Google Scholar
  50. Libby WJ, Ahuja MR (1993) The genetics of clones. In: Ahuja MR, Libby WJ (eds) Clonal forestry I. Springer, Berlin/HeidelbergGoogle Scholar
  51. Lindgren D (1993) The population biology of clonal deplyment. In: Ahuja MR, Libby WJ (eds) Clonal forestry I. Springer, New York, pp 34–49CrossRefGoogle Scholar
  52. Luangviriyasaeng V (2007) Current situation and potential of Acacia plantation for pulp industry. NFT News 10(1):1–5Google Scholar
  53. Mackey M (1996) Acacia mangium: an important multipurposes species tree for the tropic lowlands. FACT Sheet 96–03Google Scholar
  54. McKeand S (1988) Optimum age for family selection for growth in genetic test of loblolly pine. For Sci 34:400–411Google Scholar
  55. McKeand SE, Beineke WF (1980) Sublining for half–sib breeding populations of forest trees. Silvae Genet 29:14–17Google Scholar
  56. Monteuuis O (2004) In vitro micro propagation and rooting of microshoots from juvenile and mature origins. In Vitro Cell Dev Biol 40(1):102–107CrossRefGoogle Scholar
  57. Monteuuis O, Vallauri D, Poupard C, Chauviere M (1995) Rooting Acacia mangium cuttings of different physiological age with reference to leaf morphology as a phase change marker. Silvae Genet 44(2–3):150–154Google Scholar
  58. Moran GF, Muona O, Bell JC (1988) Acacia mangium: a tropical forest tree of the coastal lowlands with low genetic diversity. Evolution 43:231–235Google Scholar
  59. Moran GF, Muona O, Bell JC (1989) Breeding systems and genetic diversity in Acacia auriculiformis and A. crassicarpa. Biotropica 21:250–256CrossRefGoogle Scholar
  60. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  61. Murphy DJ, Miller JT, Bayer RJ, Ladiges PY (2003) Molecular phylogeny of Acacia subgenus Phyllodineae (Mimosoideae: Leguminosae) based on DNA sequences of the internal transcribed spacer region. Aust Syst Bot 16:19–26CrossRefGoogle Scholar
  62. Namkoong G, Conkle M (1976) Time trends in genetic control of height growth in ponderosa pine. For Sci 22:2–12Google Scholar
  63. Namkoong G, Kang HC, Brouard JS (1988) Tree breeding: principles and strategies. Springer, New YorkCrossRefGoogle Scholar
  64. Nghiem QC (2012) Effect of ploidy level on the reproductive biology tropical Acacia species. Dissertation, University of Tasmania, AustraliaGoogle Scholar
  65. Nikles DG (1989) Developing genetically improved eucalyptus in South East China: backrground information and appropriate strategies. 4th technical exchange seminar of China–Australia afforestation project, People’s Republic of ChinaGoogle Scholar
  66. Nirsatmanto A, Kurinobu S, Shiraishi S (2012) Evaluation for the efficiency of early selection in Acacia mangium seedling seed orchards based on age trends in genetic parameter. Indones J For Res 9(1):16–24. Scholar
  67. Nirsatmanto A, Setyaji T, Wahyuningtyas RS (2014) Realized genetic gain and seed source x interaction on stand volume productivity of Acacia mangium. Indones J For Res 1(1):21–32.–32CrossRefGoogle Scholar
  68. Nirsatmanto A, Setyaji T, Sunarti S, Kartikaningtyas D (2015) Genetic gain and projected increase in stand volume from two cycles breeding program of Acacia mangium. Indones J For Res 2(2):71–79.–79CrossRefGoogle Scholar
  69. Opick H, Rofle S (2006) The physiology of flowering plants. Cambridge University Press, CambridgeGoogle Scholar
  70. Otsamo AO, Nikles DG, Vuokko RHO (1996) Species and provenance variation of candidate acacias for afforestation of Imperata cylindrica grasslands in South Kalimantan, Indonesia. In: Dieters MJ, Matheson AC, Nikles DG et al (eds) Tree improvement for sustainable tropical forestry. Queensland Forestry Research Institute, Gympie, pp 46–50Google Scholar
  71. Pallardy SG (2008) Physiology of woody plants. Elsevier, AmsterdamGoogle Scholar
  72. Pawson SM, Brin A, Brokerhoff G et al (2013) Plantation forests, climate change and biodiversity. Biodivers Conserv 22:1203–1227CrossRefGoogle Scholar
  73. Pinyopusarerk K, Liang SB, Gunn BV (1993) Taxonomy, distribution, biology, and use as an exotic. In: Awang K, Taylor D (eds) Acacia mangium growing and utilization, MPTS monograph series no. 3, Winrock International & FAO, Bangkok, Thailand, pp 1–18Google Scholar
  74. Rufelds CW (1988) Acacia mangium, Acacia auriculiformis and hybrid A. mangium × A. auriculiformis seedling morphology study. FRC Publication No 41. Forest Research Center Publication, Sandakan, MalaysiaGoogle Scholar
  75. Sedgley M, Harbard J, Smith RM et al (1992) Reproductive biology and interspecific hybridization of Acacia mangium Willd. and A. auriculiformis A. Cunn. Ex. Benth (Leguminosae: Mimosoideae). Aust J Bot 40:37–48CrossRefGoogle Scholar
  76. Siregar STH, Hardiyanto EB, Gales K (1999) Acacia mangium plantations in PT Musi Hutan Persada, South Sumatera. In: Nambiar EKS, Cossalter C, Tiarks A (eds) Site management and productivity in tropical plantation forests. Proceedings of workshop proceedings, 16–20 February 1998, Pietermaritzburg, South Africa. Center for International Forestry Research (CIFOR), Bogor, Indonesia, pp 39–44Google Scholar
  77. Sunarti S, Na’iem M, Hardiyanto EB, Indrioko S (2013) Breeding strategy of Acacia hybrid (A. mangium × A. auriculiformis) to increase forest plantation productivity in Indonesia. J Trop For Manag 19(2):128–137Google Scholar
  78. Suryantini R, Wulandari R (2018) Diversity of Ganoderma pathogen in Pontianak, West Kalimantan: characteristics, virulence and ability to infect Acacia mangium seedling. Biodiversitas 19(2):465–471CrossRefGoogle Scholar
  79. Tarigan M, Roux J, van Wyk M et al (2011) A new wilt and die-back disease of Acacia mangium associated with Ceratocystis manginecans and C. acaciivora sp nov. in Indonesia. S Afr J Bot 77:292–304CrossRefGoogle Scholar
  80. Tenorio C, Moya R, Quesada-Pineda HJ (2012) Kiln drying of Acacia mangium wood: colour, shrinkage, warp, split and check in dried lumber. J Trop For Sci 24(1):125–139Google Scholar
  81. Thomson LAJ (1994) Acacia aulacocarpa, A. cincinnata, A. crassicarpa and A. wetarensis: an annotated bibliography. CSIRO Division of Forestry, CanberraGoogle Scholar
  82. Tropenbos, APRIL & Ministry of Forestry (2010) HCVA assessment report of the Kampar Peninsula Riau. Presented in three volumes: Book I – Data Dan Informasi Dasar Penilaian Menyeluruh Nilai Konservasi Tinggi Semenanjung Kampar; Book II – Pengelolaan Kolaboratif Semenanjung Kampar; Book III – Penilaian Menyeluruh Nilai Konservasi Tinggi PT, RAPP Ring Semenanjung KamparGoogle Scholar
  83. Turnbull JW, Midgley SJ, Cossalter C (1997) Tropical acacias planted in Asia: an overview of recent developments in acacias planting. In: Turnbull JW, Crompton HR, Pinyopusarerk K (eds) Recent developments in acacia planting, ACIAR proceedings no. 82, Canberra, pp 14–28Google Scholar
  84. van Buijtenen JP, Lowe WJ (1979) The use of breeding groups in advanced–generation breeding. In: Proceeding 15th southern forest tree improvement conference, Starkville, Miss, pp 59–65Google Scholar
  85. Wang BSP (1991) Evaluating, interpreting and reporting seedling test result. In: Standard germination test. Training course proceeding. ASEAN-Canada Forest Tree Seed Centre, ThailandGoogle Scholar
  86. Wang X, Cui K (2000) The effects of age and multiploidy on fiber characteristics in Acacia mangium. Sci Silvae Sin 36:125–130Google Scholar
  87. Werren M (1991) Plantation development of Acacia mangium in Sumatra. In: Turnbull JW (ed) Advances in tropical acacia research. ACIAR proceeding no. 35, pp 107–109Google Scholar
  88. White TL, Adams WT, Neale DB (2007) Forest genetics. CAB International, CambridgeCrossRefGoogle Scholar
  89. Wickneswari R, Norwati M (1993) Genetic diversity of natural-populations of Acacia auriculiformis. Aust J Bot 41:65–77. Scholar
  90. Widyatmoko AYPBC, Watanabe A, Shiraishi S (2010) Study on genetic variation and relationships among four acacia species using RAPD and SSCP marker. Indones J For Res 7(2):125–143. Scholar
  91. Wong CY, Yuliarto M (2014) Deployment of acacias in short rotation pulpwood plantation. In: Acacia 2014 sustaining the future of Acacia plantation forestry international conference, IUFRO working party 2.08.07: genetics and silviculture of Acacias, Hue, Vietnam, 18–21 March 2014, Compendium of abstractsGoogle Scholar
  92. Wright JW (1976) Introduction to forest genetics. Academic, New YorkGoogle Scholar
  93. Wu T, Fang G, Liang L et al (2018) Analysis of mixed pulping raw materials of Eucalyptus globulus and Acacia mangium by near infrared spectroscopy technique combined with LASSO algorithm. Bioresources 13(1):1348–1359CrossRefGoogle Scholar
  94. Yamamoto K, Sulaiman O, Kitingan C et al (2003) Moisture distribution in stems of Acacia mangium, A. auriculiformis and hybrid Acacia trees. Jpn Agric Res Q 37:207–212CrossRefGoogle Scholar
  95. Yang M, Xie X, He X, Zhang F (2006) Plant regeneration from phyllode explants of Acacia crassicarpa via organogenesis. Plant Cell Tissue Organ Cult 85:241–245CrossRefGoogle Scholar
  96. Zobel B, Talbert J (1984) Applied forest tree improvement. Wiley, New YorkGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Center for Forest Biotechnology and Tree ImprovementYogyakartaIndonesia

Personalised recommendations