Advertisement

Enrichment and Isolation of Aerobic and Anaerobic Methanotrophs

  • Sung-Keun RheeEmail author
  • Samuel Imisi Awala
  • Ngoc-Loi Nguyen
Chapter
Part of the Microbiology Monographs book series (MICROMONO, volume 32)

Abstract

Methanotrophs mediate methane oxidation to produce CO2 which is facilitated by methane monooxygenase. Owing to this unique nature, methanotrophs are required in many industrial processes and have environmental applications. For this purpose, diverse aerobic proteobacterial and verrucomicrobial methanotrophs with different traits have been isolated and characterized. Members of the “NC10” phylum of bacteria and Archaea are involved in methane oxidation in anoxic conditions. These methanotrophs have been isolated from various environments including extreme environments, and thus, have diverse physiological and biochemical properties as regards to the required optimum pH, oxygen, temperature, salinity, and electron acceptors. To obtain novel methanotrophs with high potential of application, new cultivation technologies have been developed with the aid of advanced methodologies for monitoring the identity and activity of methanotrophs. In this chapter, we summarize the factors to be considered in the cultivation of methanotrophs and technologies developed for enrichment and isolation of diverse aerobic and anaerobic methanotrophs from various environments.

Keyword

Methane Aerobic methanotrophs Anaerobic methanotrophs Cultivation Enrichment 

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grants (NRF-2015-R1A4A1041869; C1 Gas Refinery Program, NRF-2015-M3D3A1A01064881) which are funded by the Ministry of Science, ICT and Future Planning.

References

  1. Auman AJ, Speake CC, Lidstrom ME (2001) nifH sequences and nitrogen fixation in type I and type II methanotrophs. Appl Environ Microbiol 67(9):4009–4016CrossRefPubMedCentralGoogle Scholar
  2. Auman AJ, Stolyar S, Costello AM, Lidstrom ME (2000) Molecular characterization of methanotrophic isolates from freshwater lake sediment. Appl Environ Microbiol 66(12):5259–5266CrossRefPubMedCentralGoogle Scholar
  3. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43(2):260–296PubMedPubMedCentralGoogle Scholar
  4. Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325(5937):184–187.  https://doi.org/10.1126/science.1169984 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Behrens S, Lösekann T, Pett-Ridge J, Weber PK, Ng W-O, Stevenson BS, Hutcheon ID, Relman DA, Spormann AM (2008) Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence In situ hybridization (EL-FISH) and NanoSIMS. Appl Microbiol Biotechnol 74(10):3143–3150.  https://doi.org/10.1128/aem.00191-08 CrossRefGoogle Scholar
  6. Belova SE, Baani M, Suzina NE, Bodelier PLE, Liesack W, Dedysh SN (2011) Acetate utilization as a survival strategy of peat-inhabiting Methylocystis spp. Environ Microbiol Rep 3(1):36–46.  https://doi.org/10.1111/j.1758-2229.2010.00180.x CrossRefPubMedPubMedCentralGoogle Scholar
  7. Belova SE, Kulichevskaya IS, Bodelier PL, Dedysh SN (2013) Methylocystis bryophila sp. nov., a facultatively methanotrophic bacterium from acidic Sphagnum peat, and emended description of the genus Methylocystis (ex Whittenbury et al. 1970) Bowman et al. 1993. Int J Syst Evol Microbiol 63(Pt 3):1096–1104.  https://doi.org/10.1099/ijs.0.043505-0 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Blumenberg M, Seifert R, Nauhaus K, Pape T, Michaelis W (2005) In vitro study of lipid biosynthesis in an anaerobically methane-oxidizing microbial mat. Appl Environ Microbiol 71(8):4345–4351.  https://doi.org/10.1128/AEM.71.8.4345-4351.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bodrossy L, Holmes EM, Holmes AJ, Kovacs KL, Murrell JC (1997) Analysis of 16S rRNA and methane monooxygenase gene sequences reveals a novel group of thermotolerant and thermophilic methanotrophs, Methylocaldum gen. nov. Arch Microbiol 168(6):493–503CrossRefPubMedCentralGoogle Scholar
  10. Bodrossy L, Kovács KL, McDonald IR, Murrell JC (1999) A novel thermophilic methane-oxidising γ-Proteobacterium. FEMS Microbiol Lett 170(2):335–341.  https://doi.org/10.1111/j.1574-6968.1999.tb13392.x CrossRefGoogle Scholar
  11. Bodrossy L, Murrell JC, Dalton H, Kalman M, Puskas LG, Kovacs KL (1995) Heat-tolerant methanotrophic bacteria from the hot water effluent of a natural gas field. Appl Environ Microbiol 61(10):3549–3555PubMedPubMedCentralGoogle Scholar
  12. Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jorgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407(6804):623–626.  https://doi.org/10.1038/35036572 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bowman J (2006) The methanotrophs - The families Methylococcaceae and Methylocystaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes, Proteobacteria: alpha and beta subclasses, vol 5. Springer, New York, NY, pp 266–289.  https://doi.org/10.1007/0-387-30745-1_15 CrossRefGoogle Scholar
  14. Bowman JP, McCammon SA, Skerratt JH (1997) Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes. Microbiology 143(Pt 4):1451–1459.  https://doi.org/10.1099/00221287-143-4-1451 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bowman JP, Sly LI, Nichols PD, Hayward AC (1993) Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int J Syst Evol Microbiol 43(4):735–753.  https://doi.org/10.1099/00207713-43-4-735 CrossRefGoogle Scholar
  16. Bowman JP, Sly LI, Stackebrandt E (1995) The phylogenetic position of the family Methylococcaceae. Int J Syst Bacteriol 45(1):182–185.  https://doi.org/10.1099/00207713-45-1-182 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bussmann I, Rahalkar M, Schink B (2006) Cultivation of methanotrophic bacteria in opposing gradients of methane and oxygen. FEMS Microbiol Ecol 56(3):331–344.  https://doi.org/10.1111/j.1574-6941.2006.00076.x CrossRefPubMedPubMedCentralGoogle Scholar
  18. Carere CR, Hards K, Houghton KM, Power JF, McDonald B, Collet C, Gapes DJ, Sparling R, Boyd ES, Cook GM, Greening C, Stott MB (2017) Mixotrophy drives niche expansion of verrucomicrobial methanotrophs. ISME J 11(11):2599–2610.  https://doi.org/10.1038/ismej.2017.112 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cassarini C (2017) Anaerobic oxidation of methane coupled to the reduction of different sulfur compounds in bioreactors. Université Paris-Est, Taylor & FrancisGoogle Scholar
  20. Chen J, Zhou ZC, Gu JD (2014) Occurrence and diversity of nitrite-dependent anaerobic methane oxidation bacteria in the sediments of the South China Sea revealed by amplification of both 16S rRNA and pmoA genes. Appl Microbiol Biotechnol 98(12):5685–5696.  https://doi.org/10.1007/s00253-014-5733-4 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Chistoserdova L (2015) Methylotrophs in natural habitats: current insights through metagenomics. Appl Microbiol Biotechnol 99(14):5763–5779.  https://doi.org/10.1007/s00253-015-6713-z CrossRefPubMedPubMedCentralGoogle Scholar
  22. Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep 1(5):285–292.  https://doi.org/10.1111/j.1758-2229.2009.00038.x CrossRefPubMedPubMedCentralGoogle Scholar
  23. Cord-Ruwisch R (1985) A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4(1):33–36.  https://doi.org/10.1016/0167-7012(85)90005-3 CrossRefGoogle Scholar
  24. Costello AM, Lidstrom ME (1999) Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl Environ Microbiol 65(11):5066–5074PubMedPubMedCentralGoogle Scholar
  25. Cui M, Ma A, Qi H, Zhuang X, Zhuang G (2015) Anaerobic oxidation of methane: an “active” microbial process. Microbiology 4(1):1–11.  https://doi.org/10.1002/mbo3.232 CrossRefGoogle Scholar
  26. Danilova OV, Kulichevskaya IS, Rozova ON, Detkova EN, Bodelier PL, Trotsenko YA, Dedysh SN (2013) Methylomonas paludis sp. nov., the first acid-tolerant member of the genus Methylomonas, from an acidic wetland. Int J Syst Evol Microbiol 63(Pt 6):2282–2289.  https://doi.org/10.1099/ijs.0.045658-0 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Danilova OV, Suzina NE, Van De Kamp J, Svenning MM, Bodrossy L, Dedysh SN (2016) A new cell morphotype among methane oxidizers: a spiral-shaped obligately microaerophilic methanotroph from northern low-oxygen environments. ISME J 10(11):2734–2743.  https://doi.org/10.1038/ismej.2016.48 CrossRefPubMedPubMedCentralGoogle Scholar
  28. de Beer D, Sauter E, Niemann H, Kaul N, Foucher J-P, Witte U, Schlüter M, Boetius A (2006) In situ fluxes and zonation of microbial activity in surface sediments of the Håkon Mosby Mud Volcano. Limnol Oceanogr 51(3):1315–1331.  https://doi.org/10.4319/lo.2006.51.3.1315 CrossRefGoogle Scholar
  29. Dedysh SN, Belova SE, Bodelier PL, Smirnova KV, Khmelenina VN, Chidthaisong A, Trotsenko YA, Liesack W, Dunfield PF (2007) Methylocystis heyeri sp. nov., a novel type II methanotrophic bacterium possessing ‘signature’ fatty acids of type I methanotrophs. Int J Syst Evol Microbiol 57(Pt 3):472–479.  https://doi.org/10.1099/ijs.0.64623-0 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Dedysh SN, Berestovskaya YY, Vasylieva LV, Belova SE, Khmelenina VN, Suzina NE, Trotsenko YA, Liesack W, Zavarzin GA (2004) Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands. Int J Syst Evol Microbiol 54(Pt 1):151–156.  https://doi.org/10.1099/ijs.0.02805-0 CrossRefPubMedGoogle Scholar
  31. Dedysh SN, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Liesack W, Tiedje JM (2002) Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int J Syst Evol Microbiol 52(Pt 1):251–261.  https://doi.org/10.1099/00207713-52-1-251 CrossRefPubMedGoogle Scholar
  32. Dedysh SN, Liesack W, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Bares AM, Panikov NS, Tiedje JM (2000) Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50(Pt 3):955–969.  https://doi.org/10.1099/00207713-50-3-955 CrossRefPubMedGoogle Scholar
  33. Dedysh SN, Panikov NS, Tiedje JM (1998) Acidophilic methanotrophic communities from Sphagnum peat bogs. Appl Environ Microbiol 64(3):922–929PubMedPubMedCentralGoogle Scholar
  34. Dekas AE, Poretsky RS, Orphan VJ (2009) Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science 326(5951):422–426.  https://doi.org/10.1126/science.1178223 CrossRefPubMedGoogle Scholar
  35. Deusner C, Meyer V, Ferdelman TG (2010) High-pressure systems for gas-phase free continuous incubation of enriched marine microbial communities performing anaerobic oxidation of methane. Biotechnol Bioeng 105(3):524–533.  https://doi.org/10.1002/bit.22553 CrossRefPubMedGoogle Scholar
  36. Deutzmann JS, Hoppert M, Schink B (2014) Characterization and phylogeny of a novel methanotroph, Methyloglobulus morosus gen. nov., spec. nov. Syst Appl Microbiol 37(3):165–169.  https://doi.org/10.1016/j.syapm.2014.02.001 CrossRefPubMedGoogle Scholar
  37. Dunfield PF, Khmelenina VN, Suzina NE, Trotsenko YA, Dedysh SN (2003) Methylocella silvestris sp. nov., a novel methanotroph isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 53(Pt 5):1231–1239.  https://doi.org/10.1099/ijs.0.02481-0 CrossRefPubMedGoogle Scholar
  38. Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, Ly B, Saw JH, Zhou Z, Ren Y, Wang J, Mountain BW, Crowe MA, Weatherby TM, Bodelier PL, Liesack W, Feng L, Wang L, Alam M (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450(7171):879–882.  https://doi.org/10.1038/nature06411 CrossRefPubMedGoogle Scholar
  39. Eshinimaev B, Khmelenina VN, Trotsenko Iu A (2008) First isolation of a type II methanotroph from a soda lake. Mikrobiologiia 77(5):704–707PubMedGoogle Scholar
  40. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJ, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJ, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MS, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464(7288):543–548.  https://doi.org/10.1038/nature08883 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Ettwig KF, Zhu B, Speth D, Keltjens JT, Jetten MSM, Kartal B (2016) Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc Natl Acad Sci U S A 113(45):12792–12796.  https://doi.org/10.1073/pnas.1609534113 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Evans PN, Boyd JA, Leu AO, Woodcroft BJ, Parks DH, Hugenholtz P, Tyson GW (2019) An evolving view of methane metabolism in the Archaea. Nat Rev Microbiol 17(4):219–232.  https://doi.org/10.1038/s41579-018-0136-7 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Girguis PR, Cozen AE, DeLong EF (2005) Growth and population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous-flow bioreactor. Appl Environ Microbiol 71(7):3725–3733.  https://doi.org/10.1128/AEM.71.7.3725-3733.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Girguis PR, Orphan VJ, Hallam SJ, DeLong EF (2003) Growth and methane oxidation rates of anaerobic methanotrophic archaea in a continuous-flow bioreactor. Appl Environ Microbiol 69(9):5472–5482CrossRefPubMedCentralGoogle Scholar
  45. Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60(2):439–471PubMedPubMedCentralGoogle Scholar
  46. Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500(7464):567CrossRefGoogle Scholar
  47. He Z, Cai C, Shen L, Lou L, Zheng P, Xu X, Hu B (2015a) Effect of inoculum sources on the enrichment of nitrite-dependent anaerobic methane-oxidizing bacteria. Appl Microbiol Biotechnol 99(2):939–946.  https://doi.org/10.1007/s00253-014-6033-8 CrossRefPubMedGoogle Scholar
  48. He Z, Cai C, Wang J, Xu X, Zheng P, Jetten MS, Hu B (2016) A novel denitrifying methanotroph of the NC10 phylum and its microcolony. Sci Rep 6:32241.  https://doi.org/10.1038/srep32241 CrossRefPubMedPubMedCentralGoogle Scholar
  49. He Z, Geng S, Cai C, Liu S, Liu Y, Pan Y, Lou L, Zheng P, Xu X, Hu B (2015b) Anaerobic oxidation of methane coupled to nitrite reduction by halophilic marine NC10 bacteria. Appl Environ Microbiol 81(16):5538–5545.  https://doi.org/10.1128/AEM.00984-15 CrossRefPubMedPubMedCentralGoogle Scholar
  50. He Z, Geng S, Shen L, Lou L, Zheng P, Xu X, Hu B (2015c) The short- and long-term effects of environmental conditions on anaerobic methane oxidation coupled to nitrite reduction. Water Res 68:554–562.  https://doi.org/10.1016/j.watres.2014.09.055 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Heyer J, Berger U, Hardt M, Dunfield PF (2005) Methylohalobius crimeensis gen. nov., sp. nov., a moderately halophilic, methanotrophic bacterium isolated from hypersaline lakes of Crimea. Int J Syst Evol Microbiol 55(Pt 5):1817–1826.  https://doi.org/10.1099/ijs.0.63213-0 CrossRefPubMedGoogle Scholar
  52. Heyer J, Galchenko VF, Dunfield PF (2002) Molecular phylogeny of type II methane-oxidizing bacteria isolated from various environments. Microbiology 148(Pt 9):2831–2846.  https://doi.org/10.1099/00221287-148-9-2831 CrossRefPubMedGoogle Scholar
  53. Hinrichs K-U, Boetius A (2003) The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry. In: Wefer G, Billett D, Hebbeln D, Jørgensen BB, Schlüter M, van Weering TCE (eds) Ocean margin systems. Springer, Berlin, pp 457–477.  https://doi.org/10.1007/978-3-662-05127-6_28 CrossRefGoogle Scholar
  54. Hirayama H, Abe M, Miyazaki M, Nunoura T, Furushima Y, Yamamoto H, Takai K (2014) Methylomarinovum caldicuralii gen. nov., sp. nov., a moderately thermophilic methanotroph isolated from a shallow submarine hydrothermal system, and proposal of the family Methylothermaceae fam. nov. Int J Syst Evol Microbiol 64(Pt 3):989–999.  https://doi.org/10.1099/ijs.0.058172-0 CrossRefPubMedGoogle Scholar
  55. Hirayama H, Fuse H, Abe M, Miyazaki M, Nakamura T, Nunoura T, Furushima Y, Yamamoto H, Takai K (2013) Methylomarinum vadi gen. nov., sp. nov., a methanotroph isolated from two distinct marine environments. Int J Syst Evol Microbiol 63(Pt 3):1073–1082.  https://doi.org/10.1099/ijs.0.040568-0 CrossRefPubMedGoogle Scholar
  56. Hirayama H, Suzuki Y, Abe M, Miyazaki M, Makita H, Inagaki F, Uematsu K, Takai K (2011) Methylothermus subterraneus sp. nov., a moderately thermophilic methanotroph isolated from a terrestrial subsurface hot aquifer. Int J Syst Evol Microbiol 61(Pt 11):2646–2653.  https://doi.org/10.1099/ijs.0.028092-0 CrossRefPubMedGoogle Scholar
  57. Hoefman S, van der Ha D, De Vos P, Boon N, Heylen K (2012) Miniaturized extinction culturing is the preferred strategy for rapid isolation of fast-growing methane-oxidizing bacteria. Microb Biotechnol 5(3):368–378.  https://doi.org/10.1111/j.1751-7915.2011.00314.x CrossRefPubMedPubMedCentralGoogle Scholar
  58. Hojberg O, Binnerup SJ, Sorensen J (1997) Growth of silicone-immobilized bacteria on polycarbonate membrane filters, a technique to study microcolony formation under anaerobic conditions. Appl Environ Microbiol 63(7):2920–2924PubMedPubMedCentralGoogle Scholar
  59. Holler T, Wegener G, Knittel K, Boetius A, Brunner B, Kuypers MM, Widdel F (2009) Substantial (13) C/(12) C and D/H fractionation during anaerobic oxidation of methane by marine consortia enriched in vitro. Environ Microbiol Rep 1(5):370–376.  https://doi.org/10.1111/j.1758-2229.2009.00074.x CrossRefPubMedGoogle Scholar
  60. Holler T, Widdel F, Knittel K, Amann R, Kellermann MY, Hinrichs KU, Teske A, Boetius A, Wegener G (2011) Thermophilic anaerobic oxidation of methane by marine microbial consortia. ISME J 5(12):1946–1956.  https://doi.org/10.1038/ismej.2011.77 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Hu BL, Shen LD, Lian X, Zhu Q, Liu S, Huang Q, He ZF, Geng S, Cheng DQ, Lou LP, Xu XY, Zheng P, He YF (2014) Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands. Proc Natl Acad Sci U S A 111(12):4495–4500.  https://doi.org/10.1073/pnas.1318393111 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Hu S, Zeng RJ, Keller J, Lant PA, Yuan Z (2011) Effect of nitrate and nitrite on the selection of microorganisms in the denitrifying anaerobic methane oxidation process. Environ Microbiol Rep 3(3):315–319.  https://doi.org/10.1111/j.1758-2229.2010.00227.x CrossRefPubMedPubMedCentralGoogle Scholar
  63. Hutchens E, Radajewski S, Dumont MG, McDonald IR, Murrell JC (2004) Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing. Environ Microbiol 6(2):111–120CrossRefGoogle Scholar
  64. Iguchi H, Yurimoto H, Sakai Y (2011) Stimulation of methanotrophic growth in cocultures by cobalamin excreted by rhizobia. Appl Environ Microbiol 77(24):8509–8515.  https://doi.org/10.1128/aem.05834-11 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Islam T, Jensen S, Reigstad LJ, Larsen O, Birkeland NK (2008) Methane oxidation at 55 degrees C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci U S A 105(1):300–304.  https://doi.org/10.1073/pnas.0704162105 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Islam T, Larsen O, Torsvik V, Ovreas L, Panosyan H, Murrell JC, Birkeland NK, Bodrossy L (2015) Novel methanotrophs of the family Methylococcaceae from different geographical regions and habitats. Microorganisms 3(3):484–499.  https://doi.org/10.3390/microorganisms3030484 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Islam T, Torsvik V, Larsen Ø, Bodrossy L, Øvreås L, Birkeland N-K (2016) Acid-tolerant moderately thermophilic methanotrophs of the class Gammaproteobacteria isolated from tropical topsoil with methane seeps. Front Microbiol 7(851):1–12.  https://doi.org/10.3389/fmicb.2016.00851 CrossRefGoogle Scholar
  68. Jin R-C, Yang G-F, Yu J-J, Zheng P (2012) The inhibition of the anammox process: a review. Chem Eng J 197:67–79.  https://doi.org/10.1016/j.cej.2012.05.014 CrossRefGoogle Scholar
  69. Kaluzhnaya M, Khmelenina V, Eshinimaev B, Suzina N, Nikitin D, Solonin A, Lin JL, McDonald I, Murrell C, Trotsenko Y (2001) Taxonomic characterization of new alkaliphilic and alkalitolerant methanotrophs from soda lakes of the Southeastern Transbaikal region and description of Methylomicrobium buryatense sp.nov. Syst Appl Microbiol 24(2):166–176.  https://doi.org/10.1078/0723-2020-00028 CrossRefPubMedGoogle Scholar
  70. Kalyuzhnaya MG, Khmelenina V, Eshinimaev B, Sorokin D, Fuse H, Lidstrom M, Trotsenko Y (2008) Classification of halo(alkali)philic and halo(alkali)tolerant methanotrophs provisionally assigned to the genera Methylomicrobium and Methylobacter and emended description of the genus Methylomicrobium. Int J Syst Evol Microbiol 58(Pt 3):591–596.  https://doi.org/10.1099/ijs.0.65317-0 CrossRefPubMedGoogle Scholar
  71. Kalyuzhnaya MG, Khmelenina VN, Kotelnikova S, Holmquist L, Pedersen K, Trotsenko YA (1999) Methylomonas scandinavica sp. nov., a new methanotrophic psychrotrophic bacterium isolated from deep igneous rock ground water of Sweden. Syst Appl Microbiol 22(4):565–572.  https://doi.org/10.1016/S0723-2020(99)80010-1 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Kalyuzhnaya MG, Puri AW, Lidstrom ME (2015) Metabolic engineering in methanotrophic bacteria. Metab Eng 29:142–152.  https://doi.org/10.1016/j.ymben.2015.03.010 CrossRefPubMedGoogle Scholar
  73. Khadem AF, Pol A, Wieczorek A, Mohammadi SS, Francoijs KJ, Stunnenberg HG, Jetten MS, Op den Camp HJ (2011) Autotrophic methanotrophy in verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation. J Bacteriol 193(17):4438–4446.  https://doi.org/10.1128/JB.00407-11 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Kim J, Kim DD, Yoon S (2018) Rapid isolation of fast-growing methanotrophs from environmental samples using continuous cultivation with gradually increased dilution rates. Appl Microbiol Biotechnol 102(13):5707–5715.  https://doi.org/10.1007/s00253-018-8978-5 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Kip N, Ouyang W, van Winden J, Raghoebarsing A, van Niftrik L, Pol A, Pan Y, Bodrossy L, van Donselaar EG, Reichart GJ, Jetten MS, Damste JS, Op den Camp HJ (2011) Detection, isolation, and characterization of acidophilic methanotrophs from Sphagnum mosses. Appl Environ Microbiol 77(16):5643–5654.  https://doi.org/10.1128/AEM.05017-11 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Knief C (2015) Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front Microbiol 6:1346.  https://doi.org/10.3389/fmicb.2015.01346 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334.  https://doi.org/10.1146/annurev.micro.61.080706.093130 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Knittel K, Losekann T, Boetius A, Kort R, Amann R (2005) Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol 71(1):467–479.  https://doi.org/10.1128/AEM.71.1.467-479.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Kool DM, Talbot HM, Rush D, Ettwig K, Sinninghe Damsté JS (2014) Rare bacteriohopanepolyols as markers for an autotrophic, intra-aerobic methanotroph. Geochim Cosmochim Acta 136:114–125.  https://doi.org/10.1016/j.gca.2014.04.002 CrossRefGoogle Scholar
  80. Kool DM, Zhu B, Rijpstra WI, Jetten MS, Ettwig KF, Sinninghe Damste JS (2012) Rare branched fatty acids characterize the lipid composition of the intra-aerobic methane oxidizer “Candidatus Methylomirabilis oxyfera”. Appl Environ Microbiol 78(24):8650–8656.  https://doi.org/10.1128/AEM.02099-12 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Krause SMB, Johnson T, Samadhi Karunaratne Y, Fu Y, Beck DAC, Chistoserdova L, Lidstrom ME (2017) Lanthanide-dependent cross-feeding of methane-derived carbon is linked by microbial community interactions. Proc Natl Acad Sci U S A 114(2):358–363.  https://doi.org/10.1073/pnas.1619871114 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Kruger M, Wolters H, Gehre M, Joye SB, Richnow HH (2008) Tracing the slow growth of anaerobic methane-oxidizing communities by (15)N-labelling techniques. FEMS Microbiol Ecol 63(3):401–411.  https://doi.org/10.1111/j.1574-6941.2007.00431.x CrossRefPubMedPubMedCentralGoogle Scholar
  83. Laso-Perez R, Krukenberg V, Musat F, Wegener G (2018) Establishing anaerobic hydrocarbon-degrading enrichment cultures of microorganisms under strictly anoxic conditions. Nat Protoc 13(6):1310–1330.  https://doi.org/10.1038/nprot.2018.030 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Lau E, Ahmad A, Steudler PA, Cavanaugh CM (2007) Molecular characterization of methanotrophic communities in forest soils that consume atmospheric methane. FEMS Microbiol Ecol 60(3):490–500.  https://doi.org/10.1111/j.1574-6941.2007.00308.x CrossRefPubMedPubMedCentralGoogle Scholar
  85. Lau E, Fisher MC, Steudler PA, Cavanaugh CM (2013) The methanol mehydrogenase gene, mxaF, as a functional and phylogenetic marker for proteobacterial methanotrophs in natural environments. PLoS One 8(2):e56993.  https://doi.org/10.1371/journal.pone.0056993 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Lee J-W, Kwon KK, Azizi A, Oh H-M, Kim W, Bahk J-J, Lee D-H, Lee J-H (2013) Microbial community structures of methane hydrate-bearing sediments in the Ulleung Basin, East Sea of Korea. Mar Pet Geol 47:136–146.  https://doi.org/10.1016/j.marpetgeo.2013.06.002 CrossRefGoogle Scholar
  87. Lidstrom ME (1988) Isolation and characterization of marine methanotrophs. Antonie Leeuwenhoek 54(3):189–199CrossRefPubMedCentralGoogle Scholar
  88. Luesken FA, Zhu B, van Alen TA, Butler MK, Diaz MR, Song B, Op den Camp HJ, Jetten MS, Ettwig KF (2011) pmoA primers for detection of anaerobic methanotrophs. Appl Environ Microbiol 77(11):3877–3880.  https://doi.org/10.1128/AEM.02960-10 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Martinez-Cruz K, Leewis MC, Herriott IC, Sepulveda-Jauregui A, Anthony KW, Thalasso F, Leigh MB (2017) Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments. Sci Total Environ 607-608:23–31.  https://doi.org/10.1016/j.scitotenv.2017.06.187 CrossRefPubMedPubMedCentralGoogle Scholar
  90. McDonald IR, Bodrossy L, Chen Y, Murrell JC (2008) Molecular ecology techniques for the study of aerobic methanotrophs. Appl Environ Microbiol 74(5):1305–1315.  https://doi.org/10.1128/AEM.02233-07 CrossRefPubMedGoogle Scholar
  91. Meulepas RJ, Jagersma CG, Gieteling J, Buisman CJ, Stams AJ, Lens PN (2009) Enrichment of anaerobic methanotrophs in sulfate-reducing membrane bioreactors. Biotechnol Bioeng 104(3):458–470.  https://doi.org/10.1002/bit.22412 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener G, Schmid M, Lieberwirth I, Wagner M, Widdel F, Kuypers MMM (2012) Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491:541.  https://doi.org/10.1038/nature11656 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Miyashita A, Mochimaru H, Kazama H, Ohashi A, Yamaguchi T, Nunoura T, Horikoshi K, Takai K, Imachi H (2009) Development of 16S rRNA gene-targeted primers for detection of archaeal anaerobic methanotrophs (ANMEs). FEMS Microbiol Lett 297(1):31–37.  https://doi.org/10.1111/j.1574-6968.2009.01648.x CrossRefPubMedPubMedCentralGoogle Scholar
  94. Musat N, Halm H, Winterholler B, Hoppe P, Peduzzi S, Hillion F, Horreard F, Amann R, Jorgensen BB, Kuypers MM (2008) A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc Natl Acad Sci U S A 105(46):17861–17866.  https://doi.org/10.1073/pnas.0809329105 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Nauhaus K, Albrecht M, Elvert M, Boetius A, Widdel F (2007) In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environ Microbiol 9(1):187–196.  https://doi.org/10.1111/j.1462-2920.2006.01127.x CrossRefPubMedPubMedCentralGoogle Scholar
  96. Nguyen N-L, Yu W-J, Gwak J-H, Kim S-J, Park S-J, Herbold CW, Kim J-G, Jung M-Y, Rhee S-K (2018) Genomic insights into the acid adaptation of novel methanotrophs enriched from acidic forest soils. Front Microbiol 9:1982.  https://doi.org/10.3389/fmicb.2018.01982 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Nguyen NL, Yu WJ, Yang HY, Kim JG, Jung MY, Park SJ, Roh SW, Rhee SK (2017) A novel methanotroph in the genus Methylomonas that contains a distinct clade of soluble methane monooxygenase. J Microbiol 55(10):775–782.  https://doi.org/10.1007/s12275-017-7317-3 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Niemann H, Elvert M (2008) Diagnostic lipid biomarker and stable carbon isotope signatures of microbial communities mediating the anaerobic oxidation of methane with sulphate. Org Geochem 39(12):1668–1677.  https://doi.org/10.1016/j.orggeochem.2007.11.003 CrossRefGoogle Scholar
  99. Ogiso T, Ueno C, Dianou D, Huy TV, Katayama A, Kimura M, Asakawa S (2012) Methylomonas koyamae sp. nov., a type I methane-oxidizing bacterium from floodwater of a rice paddy field. Int J Syst Evol Microbiol 62(Pt 8):1832–1837.  https://doi.org/10.1099/ijs.0.035261-0 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Omel’chenko MV, Vasil’eva LV, Zavarzin GA, Savel’eva ND, Lysenko AM, Mityushina LL, Khmelenina VN, Trotsenko YA (1996) A novel psychrophilic methanotroph of the genus Methylobacter. Microbiology 65:339–343Google Scholar
  101. Orphan VJ, House CH (2009) Geobiological investigations using secondary ion mass spectrometry: microanalysis of extant and paleo-microbial processes. Geobiology 7(3):360–372.  https://doi.org/10.1111/j.1472-4669.2009.00201 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Oshkin IY, Beck DA, Lamb AE, Tchesnokova V, Benuska G, McTaggart TL, Kalyuzhnaya MG, Dedysh SN, Lidstrom ME, Chistoserdova L (2015) Methane-fed microbial microcosms show differential community dynamics and pinpoint taxa involved in communal response. ISME J 9(5):1119–1129.  https://doi.org/10.1038/ismej.2014.203 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Oshkin IY, Belova SE, Danilova OV, Miroshnikov KK, Rijpstra WI, Sinninghe Damste JS, Liesack W, Dedysh SN (2016) Methylovulum psychrotolerans sp. nov., a cold-adapted methanotroph from low-temperature terrestrial environments, and emended description of the genus Methylovulum. Int J Syst Evol Microbiol 66(6):2417–2423.  https://doi.org/10.1099/ijsem.0.001046 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Oswald K, Milucka J, Brand A, Hach P, Littmann S, Wehrli B, Kuypers MMM, Schubert CJ (2016) Aerobic gammaproteobacterial methanotrophs mitigate methane emissions from oxic and anoxic lake waters. Limnol Oceanogr 61(S1):S101–S118.  https://doi.org/10.1002/lno.10312 CrossRefGoogle Scholar
  105. Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MS, Op den Camp HJ (2007) Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450(7171):874–878.  https://doi.org/10.1038/nature06222 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Polerecky L, Adam B, Milucka J, Musat N, Vagner T, Kuypers MM (2012) Look@NanoSIMS—a tool for the analysis of nanoSIMS data in environmental microbiology. Environ Microbiol 14(4):1009–1023.  https://doi.org/10.1111/j.1462-2920.2011.02681.x CrossRefPubMedPubMedCentralGoogle Scholar
  107. Rahalkar M, Bussmann I, Schink B (2007) Methylosoma difficile gen. nov., sp. nov., a novel methanotroph enriched by gradient cultivation from littoral sediment of Lake Constance. Int J Syst Evol Microbiol 57(Pt 5):1073–1080.  https://doi.org/10.1099/ijs.0.64574-0 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Rasigraf O, Kool DM, Jetten MS, Sinninghe Damste JS, Ettwig KF (2014) Autotrophic carbon dioxide fixation via the Calvin-Benson-Bassham cycle by the denitrifying methanotroph “Candidatus Methylomirabilis oxyfera”. Appl Environ Microbiol 80(8):2451–2460.  https://doi.org/10.1128/AEM.04199-13 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107(2):486–513.  https://doi.org/10.1021/cr050362v CrossRefPubMedPubMedCentralGoogle Scholar
  110. Reeburgh WS, Heggie DT (1977) Microbial methane consumption reactions and their effect on methane distributions in freshwater and marine environments. Limnol Oceanogr 22(1):1–9.  https://doi.org/10.4319/lo.1977.22.1.0001 CrossRefGoogle Scholar
  111. Rissanen AJ, Saarenheimo J, Tiirola M, Peura S, Aalto SL, Karvinen A, Nykänen H (2018) Gammaproteobacterial methanotrophs dominate methanotrophy in aerobic and anaerobic layers of boreal lake waters. Aquat Microb Ecol 81(3):257–276CrossRefGoogle Scholar
  112. Rittmann BE, MacCarty PL (2001) Environmental biotechnology: principles and applications. McGraw-Hill, Boston, MAGoogle Scholar
  113. Roalkvam I, Dahle H, Chen Y, Jorgensen SL, Haflidason H, Steen IH (2012) Fine-scale community structure analysis of ANME in Nyegga sediments with high and low methane flux. Front Microbiol 3:216.  https://doi.org/10.3389/fmicb.2012.00216 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Rossel PE, Lipp JS, Fredricks HF, Arnds J, Boetius A, Elvert M, Hinrichs K-U (2008) Intact polar lipids of anaerobic methanotrophic archaea and associated bacteria. Org Geochem 39(8):992–999.  https://doi.org/10.1016/j.orggeochem.2008.02.021 CrossRefGoogle Scholar
  115. Söhngen NL (1906) Ueber Bakterien, welche Methan als Kohlenstoffnahrung und Energiequelle gebrauchen. Centralbl Bakteriol Parasitenk Infektionskr Hyg Abt II 15:513–517Google Scholar
  116. Sauer P, Glombitza C, Kallmeyer J (2012) A system for incubations at high gas partial pressure. Front Microbiol 3:25.  https://doi.org/10.3389/fmicb.2012.00025 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Semrau JD, DiSpirito AA, Gu W, Yoon S (2018) Metals and methanotrophy. Appl Environ Microbiol 84(6).  https://doi.org/10.1128/AEM.02289-17
  118. Sharp CE, Smirnova AV, Graham JM, Stott MB, Khadka R, Moore TR, Grasby SE, Strack M, Dunfield PF (2014) Distribution and diversity of Verrucomicrobia methanotrophs in geothermal and acidic environments. Environ Microbiol 16(6):1867–1878.  https://doi.org/10.1111/1462-2920.12454 CrossRefPubMedGoogle Scholar
  119. Sharp CE, Stott MB, Dunfield PF (2012) Detection of autotrophic verrucomicrobial methanotrophs in a geothermal environment using stable isotope probing. Front Microbiol 3:303.  https://doi.org/10.3389/fmicb.2012.00303 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Sharpe PL, Dicosimo D, Bosak MD, Knoke K, Tao L, Cheng Q, Ye RW (2007) Use of transposon promoter-probe vectors in the metabolic engineering of the obligate methanotroph Methylomonas sp. strain 16a for enhanced C40 carotenoid synthesis. Appl Environ Microbiol 73(6):1721CrossRefPubMedCentralGoogle Scholar
  121. Shen LD, Liu S, Zhu Q, Li XY, Cai C, Cheng DQ, Lou LP, Xu XY, Zheng P, Hu BL (2014) Distribution and diversity of nitrite-dependent anaerobic methane-oxidising bacteria in the sediments of the Qiantang River. Microb Ecol 67(2):341–349.  https://doi.org/10.1007/s00248-013-0330-0 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Sorokin DY, Jones BE, Gijs Kuenen J (2000) An obligate methylotrophic, methane-oxidizing Methylomicrobium species from a highly alkaline environment. Extremophiles 4(3):145–155.  https://doi.org/10.1007/s007920070029 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Strong PJ, Xie S, Clarke WP (2015) Methane as a resource: can the methanotrophs add value? Environ Sci Technol 49(7):4001–4018.  https://doi.org/10.1021/es504242n CrossRefPubMedPubMedCentralGoogle Scholar
  124. Svenning MM, Wartiainen I, Hestnes AG, Binnerup SJ (2003) Isolation of methane oxidising bacteria from soil by use of a soil substrate membrane system. FEMS Microbiol Ecol 44(3):347–354.  https://doi.org/10.1016/S0168-6496(03)00073-4 CrossRefPubMedPubMedCentralGoogle Scholar
  125. Takeuchi M, Kamagata Y, Oshima K, Hanada S, Tamaki H, Marumo K, Maeda H, Nedachi M, Hattori M, Iwasaki W, Sakata S (2014) Methylocaldum marinum sp. nov., a thermotolerant, methane-oxidizing bacterium isolated from marine sediments, and emended description of the genus Methylocaldum. Int J Syst Evol Microbiol 64(Pt 9):3240–3246.  https://doi.org/10.1099/ijs.0.063503-0 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Tang Y, Zhou C, Ziv-El M, Rittmann BE (2011) A pH-control model for heterotrophic and hydrogen-based autotrophic denitrification. Water Res 45(1):232–240.  https://doi.org/10.1016/j.watres.2010.07.049 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Tavormina PL, Hatzenpichler R, McGlynn S, Chadwick G, Dawson KS, Connon SA, Orphan VJ (2015) Methyloprofundus sedimenti gen. nov., sp. nov., an obligate methanotroph from ocean sediment belonging to the ‘deep sea-1’ clade of marine methanotrophs. Int J Syst Evol Microbiol 65(Pt 1):251–259.  https://doi.org/10.1099/ijs.0.062927-0 CrossRefPubMedGoogle Scholar
  128. Tavormina PL, Orphan VJ, Kalyuzhnaya MG, Jetten MS, Klotz MG (2011) A novel family of functional operons encoding methane/ammonia monooxygenase-related proteins in gammaproteobacterial methanotrophs. Environ Microbiol Rep 3(1):91–100.  https://doi.org/10.1111/j.1758-2229.2010.00192.x CrossRefPubMedPubMedCentralGoogle Scholar
  129. Trotsenko YA, Khmelenina VN (2002) Biology of extremophilic and extremotolerant methanotrophs. Arch Microbiol 177(2):123–131.  https://doi.org/10.1007/s00203-001-0368-0 CrossRefPubMedPubMedCentralGoogle Scholar
  130. Trotsenko YA, Murrell JC (2008) Metabolic aspects of aerobic obligate methanotrophy. Adv Appl Microbiol 63:183–229.  https://doi.org/10.1016/S0065-2164(07)00005-6 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Tsubota J, Eshinimaev B, Khmelenina VN, Trotsenko YA (2005) Methylothermus thermalis gen. nov., sp. nov., a novel moderately thermophilic obligate methanotroph from a hot spring in Japan. Int J Syst Evol Microbiol 55(Pt 5):1877–1884.  https://doi.org/10.1099/ijs.0.63691-0 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Vaksmaa A, Guerrero-Cruz S, van Alen TA, Cremers G, Ettwig KF, Luke C, Jetten MSM (2017) Enrichment of anaerobic nitrate-dependent methanotrophic ‘Candidatus Methanoperedens nitroreducens’ archaea from an Italian paddy field soil. Appl Microbiol Biotechnol 101(18):7075–7084.  https://doi.org/10.1007/s00253-017-8416-0 CrossRefPubMedPubMedCentralGoogle Scholar
  133. Valentine DL, Reeburgh WS (2000) New perspectives on anaerobic methane oxidation. Environ Microbiol 2(5):477–484CrossRefPubMedCentralGoogle Scholar
  134. Wang S, Liu Y, Liu G, Huang Y, Zhou Y (2017) A new primer to amplify pmoA gene from NC10 bacteria in the sediments of Dongchang Lake and Dongping Lake. Curr Microbiol 74(8):908–914.  https://doi.org/10.1007/s00284-017-1260-8 CrossRefPubMedPubMedCentralGoogle Scholar
  135. Wang Y, Wegener G, Hou J, Wang F, Xiao X (2019) Expanding anaerobic alkane metabolism in the domain of Archaea. Nat Microbiol 4(4):595–602.  https://doi.org/10.1038/s41564-019-0364-2 CrossRefPubMedGoogle Scholar
  136. Wang Y, Zhu G, Harhangi HR, Zhu B, Jetten MS, Yin C, Op den Camp HJ (2012) Co-occurrence and distribution of nitrite-dependent anaerobic ammonium and methane-oxidizing bacteria in a paddy soil. FEMS Microbiol Lett 336(2):79–88.  https://doi.org/10.1111/j.1574-6968.2012.02654.x CrossRefPubMedPubMedCentralGoogle Scholar
  137. Wankel SD, Adams MM, Johnston DT, Hansel CM, Joye SB, Girguis PR (2012) Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction. Environ Microbiol 14(10):2726–2740.  https://doi.org/10.1111/j.1462-2920.2012.02825.x CrossRefPubMedGoogle Scholar
  138. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703CrossRefPubMedCentralGoogle Scholar
  139. Whittenbury R, Phillips KC, Wilkinson JF (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61(2):205–218.  https://doi.org/10.1099/00221287-61-2-205 CrossRefPubMedPubMedCentralGoogle Scholar
  140. Wu ML, Ettwig KF, Jetten MS, Strous M, Keltjens JT, van Niftrik L (2011) A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium “Candidatus Methylomirabilis oxyfera”. Biochem Soc Trans 39(1):243–248.  https://doi.org/10.1042/BST0390243 CrossRefPubMedGoogle Scholar
  141. Yanagawa K, Sunamura M, Lever MA, Morono Y, Hiruta A, Ishizaki O, Matsumoto R, Urabe T, Inagaki F (2011) Niche separation of methanotrophic archaea (ANME-1 and -2) in methane-seep sediments of the Eastern Japan Sea Offshore Joetsu. Geomicrobiol J 28(2):118–129.  https://doi.org/10.1080/01490451003709334 CrossRefGoogle Scholar
  142. Yang J, Jiang H, Wu G, Hou W, Sun Y, Lai Z, Dong H (2012) Co-occurrence of nitrite-dependent anaerobic methane oxidizing and anaerobic ammonia oxidizing bacteria in two Qinghai-Tibetan saline lakes. Front Earth Sci 6(4):383–391.  https://doi.org/10.1007/s11707-012-0336-9 CrossRefGoogle Scholar
  143. Zhao W, Wang Y, Liu S, Pan M, Yang J, Chen S (2013) Denitrification activities and N2O production under salt stress with varying COD/N ratios and terminal electron acceptors. Chem Eng J 215–216:252–260.  https://doi.org/10.1016/j.cej.2012.10.084 CrossRefGoogle Scholar
  144. Zhou Z, Han P, Gu JD (2014) New PCR primers based on mcrA gene for retrieving more anaerobic methanotrophic archaea from coastal reedbed sediments. Appl Microbiol Biotechnol 98(10):4663–4670.  https://doi.org/10.1007/s00253-014-5599-5 CrossRefPubMedGoogle Scholar
  145. Zhu B, van Dijk G, Fritz C, Smolders AJ, Pol A, Jetten MS, Ettwig KF (2012) Anaerobic oxidization of methane in a minerotrophic peatland: enrichment of nitrite-dependent methane-oxidizing bacteria. Appl Environ Microbiol 78(24):8657–8665.  https://doi.org/10.1128/AEM.02102-12 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sung-Keun Rhee
    • 1
    Email author
  • Samuel Imisi Awala
    • 1
  • Ngoc-Loi Nguyen
    • 1
  1. 1.Department of MicrobiologyChungbuk National UniversityCheongjuRepublic of Korea

Personalised recommendations