Ovarian Cortical Tissue Biopsy and Freezing for Autotransplantation

  • Trisha Shah
  • Erkan BuyukEmail author


Ovarian cortical tissue freezing and transplantation, although considered experimental, is an established method of fertility preservation in reproductive age women at risk of losing their fertility. The number of live births following autotransplantation of the frozen-thawed ovarian tissue increased significantly worldwide during the last 15 years, exceeding 130 cumulative live births in 2017. This chapter focuses on the technique of ovarian transplantation, with special emphasis on in vitro maturation and artificial ovary.


Ovarian cortical tissue biopsy and freezing for autotransplantation: Ovary Cortical tissue Cryopreservation Autotransplantation In vitro maturation 


  1. 1.
    Parkes AS, Smith AU. Regeneration of rat ovarian tissue grafted after exposure to low temperatures. Proc R Soc Lond B Biol Sci. 1953;140(901):455–70.CrossRefPubMedGoogle Scholar
  2. 2.
    Gosden RG, Baird DT, Wade JC, Webb R. Restoration of fertility to oophorectomized sheep by ovarian autographs at e196 degrees C. Hum Reprod. 1994;9:597–603.CrossRefPubMedGoogle Scholar
  3. 3.
    Newton H, Aubard Y, Rutherford A, Sharma V, Gosden R. Low temperature storage and grafting of human ovarian tissue. Hum Reprod. 1996;11(7):1487–91.CrossRefPubMedGoogle Scholar
  4. 4.
    Oktay K, Karlikaya G. Ovarian function after transplantation of frozen, banked autologous ovarian tissue. N Engl J Med. 2000;342(25):1919.CrossRefPubMedGoogle Scholar
  5. 5.
    Donnez J, Dolmans MM, Demylle D, Jadoul P, Pirard C, Squifflet J, et al. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet (London, England). 2004;364(9443):1405–10.CrossRefGoogle Scholar
  6. 6.
    Gellert SE, Pors SE, Kristensen SG, Bay-Bjorn AM, Ernst E, Yding Andersen C. Transplantation of frozen-thawed ovarian tissue: an update on worldwide activity published in peer-reviewed papers and on the Danish cohort. J Assist Reprod Genet. 2018;35(4):561–70.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Donnez JA, Dolmans M. Fertility preservation in women. N Engl J Med. 2017;377(17):1657–65.CrossRefPubMedGoogle Scholar
  8. 8.
    Kutluk Oktay BEH, Partridge AH, Quinn GP, Reinecke J, Taylor HS, Hamish Wallace W, Wang ET, Loren AW. Fertility preservation in patients with cancer: ASCO clinical practice guideline update. J Clin Oncol. 2018;38(19):1994–2001.CrossRefGoogle Scholar
  9. 9.
    Salama M, Woodruff TK. New advances in ovarian autotransplantation to restore fertility in cancer patients. Cancer Metastasis Rev. 2015;34(4):807–22.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9–29.CrossRefGoogle Scholar
  11. 11.
    Demeestere I, et al. Orthotopic and heterotopic ovarian tissue transplantation. Hum Reprod Update. 2009;15(6):649–65.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Marci R, et al. Radiations and female fertility. Reprod Biol Endocrinol. 2018;16(1):112.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Andersen AN. Chemotherapy risks to fertility of childhood cancer survivors. Lancet (London, England). 2016;17(5):540–1.Google Scholar
  14. 14.
    Bea G. Reproductive outcomes after a childhood and adolescent young adult cancer diagnosis in female cancer survivors: a systematic review and meta-analysis. J Adolesc Young Adult Oncol. 2018;7:627–42.CrossRefGoogle Scholar
  15. 15.
    Kitajima M, Dolmans M, Donnez O, Masuzaki H, Soares M, Donnez J. Enhanced follicular recruitment and atresia in cortex derived from ovaries with endometriomas. Fertil Steril. 2014;101:1031–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Nagy ZP, Varghese AC, Agarwal A, editors. Cryopreservation of mammalian gametes and embryos: methods and protocols. New York: The Humana Press; 2017.Google Scholar
  17. 17.
    Practice Committee of American Society for Reproductive Medicine. Ovarian tissue cryopreservation: a committee opinion. Fertil Steril. 2014;101(5):1237–43.CrossRefGoogle Scholar
  18. 18.
    Jensen AK, Macklon KT, Fedder J, Ernst E, Humaidan P, Andersen CY. 86 successful births and 9 ongoing pregnancies worldwide in women transplanted with frozen-thawed ovarian tissue: focus on birth and perinatal outcome in 40 of these children. J Assist Reprod Genet. 2017;34(3):325–36.CrossRefPubMedGoogle Scholar
  19. 19.
    Keros V, Xella S, Hultenby K, Pettersson K, Sheikhi M, Volpe A, et al. Vitrification versus controlled-rate freezing in cryopreservation of human ovarian tissue. Hum Reprod. 2009;24:1670–83.CrossRefPubMedGoogle Scholar
  20. 20.
    Oktay K, Tilly J. Livebirth after cryopreserved ovarian tissue autotransplantation. Lancet (London, England). 2004;364(9451):2091–2; author reply 2–3CrossRefGoogle Scholar
  21. 21.
    Kim SS, Hwang IT, Lee HC. Heterotopic autotransplantation of cryobanked human ovarian tissue as a strategy to restore ovarian function. Fertil Steril. 2004;82(4):930–2.CrossRefPubMedGoogle Scholar
  22. 22.
    Oktay K, Buyuk E. Ovarian transplantation in humans: indications, techniques and the risk of reseeding cancer. Eur J Obstet Gynecology Reprod Biol. 2004;113(Suppl 1):S45–7.CrossRefGoogle Scholar
  23. 23.
    Oktay KBE, Rosenwaks Z, Rucinski J. A technique for transplantation of ovarian cortical strips to the forearm. Fertil Steril. 2003;80:193–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Oktay K, Buyuk E, Veeck L, Zaninovic N, Xu K, Takeuchi T, Opsahl M, Rosenwaks Z. Embryo development after heterotopic transplantation of cryopreserved ovarian tissue. Lancet (London, England). 2004;363(9412):837–40.CrossRefGoogle Scholar
  25. 25.
    Sonmezer M, Oktay K. Orthotopic and heterotopic ovarian tissue transplantation. Best Pract Res Clin Obstet Gynaecol. 2010;24(1):113–26.CrossRefPubMedGoogle Scholar
  26. 26.
    Donnez J, Dolmans M. Transplantation of ovarian tissue. Best Pract Res Clin Obstet Gynaecol. 2014;28(8):1188–97.CrossRefPubMedGoogle Scholar
  27. 27.
    Baird DT, Webb R, Campbell BK, Harkness LM, Gosden RG. Long-term ovarian function in sheep after ovariectomy and transplantation of autografts stored at −196 C. Endocrinology. 1999;140:462–71.CrossRefPubMedGoogle Scholar
  28. 28.
    Martinez-Madrid B, Dolmans M, Van Langendonckt A, Defrere S, Donnez J. Freeze-thawing intact human ovary with its vascular pedicle with a passive cooling device. Fertil Steril. 2004;82:1390–4.CrossRefPubMedGoogle Scholar
  29. 29.
    Arav A, Revel A, et al. Oocyte recovery, embryo development and ovarian function after cryopreservation and transplantation of whole sheep ovary. Hum Reprod. 2005;20(12):3554–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Pacheco F, Oktay K. Current success and efficiency of autology ovarian transplantation: a meta-analysis. Reprod Sci. 2017;24(8):1111–20.CrossRefPubMedGoogle Scholar
  31. 31.
    Jadoul P, Guilmain A, Squifflet J, Luyckx M, Votino R, Wyns C, et al. Efficacy of ovarian tissue cryopreservation for fertility preservation: lessons learned from 545 cases. Hum Reprod. 2017;32(5):1046–54.CrossRefPubMedGoogle Scholar
  32. 32.
    Dittrich R, Hackl J, Lotz L, Hoffmann I, Beckmann MW. Pregnancies and live births after 20 transplantations of cryopreserved ovarian tissue in a single center. Fertil Steril. 2015;103(2):462–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Stoop D, et al. Fertility preservation for age-related fertility decline. Lancet (London, England). 2014;384:1311–9.CrossRefGoogle Scholar
  34. 34.
    Van der Ven H, Liebenthron J, Beckmann M, Toth B, Korell M, Krüssel J, Frambach T, Kupka M, Hohl MK, Winkler-Crepaz K, et al. Ninety-five orthotopic transplantations in 74 women of ovarian tissue after cytotoxic treatment in a fertility preservation network: tissue activity, pregnancy and delivery rates. Hum Reprod. 2016;31:2031–41.CrossRefPubMedGoogle Scholar
  35. 35.
    Donnez J, Dolmans M. Ovarian cortex transplantation: 60 reported live births brings the success and worldwide expansion of the technique towards routine clinical practice. J Assist Reprod Genet. 2015;32:1167–70.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Dolmans MM, Marinescu C, Saussoy P, Van Langendonckt A, Amorim C, Donnez J. Reimplantation of cryopreserved ovarian tissue from patients with acute lymphoblastic leukemia is potentially unsafe. Blood. 2010;116:2908–14.CrossRefPubMedGoogle Scholar
  37. 37.
    Dolmans MM, Luyckx V, Donnez J, Andersen CY, Greve T. Risk of transferring malignant cells with transplanted frozen-thawed ovarian tissue. Fertil Steril. 2013;99:1514–22.CrossRefPubMedGoogle Scholar
  38. 38.
    Tea G. Cryopreserved ovarian cortex from patients with leukemia in complete remission contains no apparent viable malignant cells. Blood. 2012;120(22):4311–6.CrossRefGoogle Scholar
  39. 39.
    Practice Committees of the American Society for Reproductive Medicine and the Society for Assisted Reproductive Technology. In vitro maturation: a committee opinion. Fertil Steril. 2013;99(3):663–6.CrossRefGoogle Scholar
  40. 40.
    Cha KY, Koo JJ, Ko JJ, Choi DH, Han SY, Yoon TK. Pregnancy after in vitro fertilization of human follicular oocytes collected from nonstimulated cycles, their culture in vitro and their transfer in a donor oocyte program. Fertil Steril. 1991;55(1):109.CrossRefPubMedGoogle Scholar
  41. 41.
    Walls ML, Hart RJ. In vitro maturation. Best Pract Res Clin Obstet Gynaecol. 2018;53:60–72.CrossRefPubMedGoogle Scholar
  42. 42.
    Creux H, et al. Immature oocyte retrieval and in vitro oocyte maturation at different phases of the menstrual cycle in women with cancer who require urgent gonadotoxic treatment. Fertil Steril. 2017;107:198–204.CrossRefPubMedGoogle Scholar
  43. 43.
    Creux H, et al. Thirteen years’ experience in fertility preservation for cancer patients after in vitro fertilization and in vitro maturation treatments. J Assist Reprod Genet. 2018;35(4):583–92.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Huang JY, et al. Combining ovarian tissue cryobanking with retrieval of immature oocytes followed by in vitro maturation and vitrification: an additional strategy of fertility preservation. Fertil Steril. 2008;89:567–72.CrossRefPubMedGoogle Scholar
  45. 45.
    Segers I, et al. In vitro maturation (IVM) of oocytes recovered from ovariectomy specimens in the laboratory: a promising “ex vivo” method of oocyte cryopreservation resulting in the first report of an ongoing pregnancy in Europe. J Assist Reprod Genet. 2015;32(8):1221–31.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Sermondade N, et al. Serum antimüllerian hormone is associated with the number of oocytes matured in vitro and with primordial follicle density in candidates for fertility preservation. Fertil Steril. 2019;111(2):357–62.CrossRefPubMedGoogle Scholar
  47. 47.
    Hart R. Optimizing the opportunity for female fertility preservation in a limited time-frame for patients with cancer using in vitro maturation and ovarian tissue cryopreservation. Fertil Steril. 2019;111(2):258–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Amorim CA, Van Langendonckt A, David A, Dolmans MM, Donnez J. Survival of human pre-antral follicles after cryopreservation of ovarian tissue, follicular isolation and in vitro culture in a calcium alginate matrix. Hum Reprod. 2009;24:92–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Shikanov S, Xu M, Woodruff TK, Shea LD. Interpenetrating fibrin-alginate matrices for in vitro ovarian follicle development. Biomaterials. 2009;30:5476–85.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Hornick JE, Duncan FE, Shea LD, Woodruff TK. Isolated primate primordial follicles require a rigid physical environment to survive and grow in vitro. Hum Reprod. 2012;27:1801–10.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Smith RM, Shikanov A, Kniazeva E, Ramadurai D, Woodruff TK, Shea LD. Fibrin-mediated delivery of an ovarian follicle pool in a mouse model of infertility. Tissue Eng Part A. 2014;20:3021–30.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Rajabzadeh AR, Eimani H, Mohseni Koochesfahani H, Shahvardi AH, Fathi R. Morphological study of isolated ovarian preantral follicles using fibrin gel plus platelet lysate after subcutaneous transplantation. Cell J. 2015;17:145–52.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Dolmans MM, Martinez-Madrid B, Gadisseux E, Guiot Y, Yuan WY, Torre A, Camboni A, Van Langendonckt A, Donnez J. Short-term transplantation of isolated human ovarian follicles and cortical tissue into nude mice. Reproduction. 2007;134:253–62.CrossRefPubMedGoogle Scholar
  54. 54.
    Boehler RM, Graham JG, Shea LD. Tissue engineering tools for modulation of the immune response. BioTechniques. 2011;51:239–40.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Chiu CL, Hecht V, Duong H, Wu B, Tawil B. Permeability of three-dimensional fibrin constructs corresponds to fibrinogen and thrombin concentrations. Biores Open Access. 2012;1(97):134–40.Google Scholar
  56. 56.
    Luyckx V, et al. First step in developing a 3D biodegradable fibrin scaffold for an artificial ovary. J Ovarian Res. 2013;6:83.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Luyckx V, et al. A new step toward the artificial ovary: survival and proliferation of isolated murine follicles after autologous transplantation in a fibrin scaffold. Fertil Steril. 2014;101(4):1149–56.CrossRefPubMedGoogle Scholar
  58. 58.
    Chiti MC, et al. Influence of follicle stage on artificial ovary outcome using fibrin as a matrix. Hum Reprod. 2016;31(2):427–35.PubMedGoogle Scholar
  59. 59.
    Paulini F, et al. Survival and growth of human preantral follicles after cryopreservation of ovarian tissue, follicle isolation and short-term xenografting. Reprod Biomed Online. 2016;33:425–32.CrossRefPubMedGoogle Scholar
  60. 60.
    Yang ZY, Chian RC. Development of in vitro maturation techniques for clinical applications. Fertil Steril. 2017;108(4):577–84.CrossRefPubMedGoogle Scholar
  61. 61.
    Chian RC, Xu CL, Huang JY, Ata B. Obstetric outcomes and congenital abnormalities in infants conceived with oocytes matured in vitro. Facts Views Vis Obgyn. 2014;6:15–8.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Soderstrom-Antilla V, Salokorpi T, Pihlaja M, Serenius-Sirve S, Suikkari AM. Obstetric and perinatal outcome and preliminary results of development of children born after in vitro maturation of oocytes. Hum Reprod. 2006;21:1508–13.CrossRefGoogle Scholar
  63. 63.
    Buckett WM, Chian RC, Holzer H, Dean N, Usher R, Tan SL. Obstetric outcomes and congenital abnormalities after in vitro maturation, in vitro fertilization, and intracytoplasmic sperm injection. Obstet Gynecol. 2007;110:885–91.CrossRefPubMedGoogle Scholar
  64. 64.
    Fadini R, Mignini Renzini M, Guarnieri T, Dal Canto M, de Ponti E, Sutcliffe A, et al. Comparison of the obstetric and perinatal outcomes of children conceived from in vitro or in vivo matured oocytes in in vitro maturation treatments with births from conventional ICSI cycles. Hum Reprod. 2012;27:3601–8.CrossRefPubMedGoogle Scholar
  65. 65.
    Roesner S, von Wolff M, Elsaesser M, Roesner K, Reuner G, Pietz J, et al. Two-year development of children conceived by IVM: a prospective controlled single-blinded study. Hum Reprod. 2017;32:1341–50.CrossRefPubMedGoogle Scholar
  66. 66.
    Practice Committee of American Society for Reproductive Medicine. Fertility preservation in patients undergoing gonadotoxic therapy or gonadectomy: a committee opinion. Fertil Steril. 2013;100(5):1214–23.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Montefiore’s Institute for Reproductive Medicine and Health, Department of Obstetrics and Gynecology & Women’s Health, Albert Einstein College of Medicine, Montefiore Medical CenterBronxUSA

Personalised recommendations