Advertisement

Role of Intracellular Transport in the Centriole-Dependent Formation of Golgi Ribbon

  • Alexander A. MironovEmail author
  • Ivan D. Dimov
  • Galina V. Beznoussenko
Chapter
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 67)

Abstract

The intracellular transport is the most confusing issue in the field of cell biology. The Golgi complex (GC) is the central station along the secretory pathway. It contains Golgi glycosylation enzymes, which are responsible for protein and lipid glycosylation, and in many cells, it is organized into a ribbon. Position and structure of the GC depend on the position and function of the centriole. Here, we analyze published data related to the role of centriole and intracellular transport (ICT) for the formation of Golgi ribbon and specifically stress the importance of the delivery of membranes containing cargo and membrane proteins to the cell centre where centriole/centrosome is localized. Additionally, we re-examined the formation of Golgi ribbon from the point of view of different models of ICT.

Keywords

Golgi complex Intracellular transport Intra-Golgi transport ER-Golgi transport Golgi ribbon Centriole Coatomer I Coatomer II 

Abbreviations

Apo B

Apolipoprotein B

ArfGAP

Arf GTPase activating protein

Bet3

Trafficking protein particle complex subunit BET3

CMC

Cis-most cisterna

CMPM

Compartment (cisterna) maturation progression model

COP

Coatomer

DM

Diffusion model

EGC

ER-Golgi carrier

EGT

ER-Golgi transport

ER

Endoplasmic reticulum

ERES

ER exit site

GC

Golgi complex

GFP

Green fluorescent protein

GMAP210

Golgi microtubule-associated protein 210 KDa

GTP

Guanosine-5′-triphosphate

ICC

Inter-cisternal connections

ICT

Intracellular transport

IGT

Intra-Golgi transport

KARM

Kiss-and-run model

KIFC3

Kinesin family member C3

Man

Mannosidase

MT

Microtubule

NSF

N-ethylmaleimide-sensitive factor

PM

Plasma membrane

Rab

Ras-related in the brain

Sar1

Secretion-associated RAS superfamily-related gene

Sec

Secretory clone

SNAP

Synaptosomal-associated protein

SNARE

Soluble NSF attachment receptor

TGN

Trans-Golgi network

TMC

Trans-most cisterna

TRIP11

Thyroid receptor-interacting protein 11

VLDL

Very low-density lipoprotein

VM

Vesicular model

References

  1. Antonny B, Gounon P, Schekman R, Orci L (2003) Self-assembly of minimal COPII cages. EMBO Rep 4:419–424PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bacia K, Futai E, Prinz S, Meister A, Daum S, Glatte D, Briggs JA, Schekman R (2011) Multibudded tubules formed by COPII on artificial liposomes. Sci Rep 1:17PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bannykh SI, Rowe T, Balch WE (1996) The organization of endoplasmic reticulum export complexes. J Cell Biol 135:19–35PubMedCrossRefGoogle Scholar
  4. Bard F, Casano L, Mallabiabarrena A, Wallace E, Saito K, Kitayama H, Guizzunti G, Hu Y, Wendler F, Dasgupta R, Perrimon N, Malhotra V (2006) Functional genomics reveals genes involved in protein secretion and Golgi organization. Nature 439:604–607PubMedCrossRefPubMedCentralGoogle Scholar
  5. Barlowe C, Orci L, Yeung T, Hosobuchi M, Hamamoto S, Salama N, Rexach MF, Ravazzola M, Amherdt M, Schekman R (1994) COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77:895–907PubMedCrossRefGoogle Scholar
  6. Bednarek SY, Ravazzola M, Hosobuchi M, Amherdt M, Perrelet A, Schekman R, Orci L (1995) COPI- and COPII-coated vesicles bud directly from the endoplasmic reticulum in yeast. Cell 83:1183–1196PubMedCrossRefGoogle Scholar
  7. Beznoussenko GV, Mironov AA (2002) Models of intracellular transport and evolution of the Golgi complex. Anat Rec 268:226–238PubMedCrossRefGoogle Scholar
  8. Beznoussenko GV, Dolgikh VV, Seliverstova EV, Semenov PB, Tokarev YS, Trucco A, Micaroni M, Di Giandomenico D, Auinger P, Senderskiy IV, Skarlato SO, Snigirevskaya ES, Komissarchik YY, Pavelka M, De Matteis MA, Luini A, Sokolova YY, Mironov AA (2007) Analogs of the Golgi complex in microsporidia, structure and avesicular mechanisms of function. J Cell Sci 120:1288–1298PubMedCrossRefGoogle Scholar
  9. Beznoussenko GV, Parashuraman S, Rizzo R, Polishchuk R, Martella O, Di Giandomenico D, Fusella A, Spaar A, Sallese M, Capestrano MG, Pavelka M, Vos MR, Rikers YG, Helms V, Mironov AA, Luini A (2014) Transport of soluble proteins through the Golgi occurs by diffusion via continuities across cisternae. Elife 3.  https://doi.org/10.7554/eLife.02009
  10. Beznoussenko GV, Pilyugin SS, Geerts WJ, Kozlov MM, Burger KN, Luini A, Derganc J, Mironov AA (2015) Trans-membrane area asymmetry controls the shape of cellular organelles. Int J Mol Sci 16:5299–5333PubMedPubMedCentralCrossRefGoogle Scholar
  11. Beznoussenko GV, Ragnini-Wilson A, Wilson C, Mironov AA (2016) Three-dimensional and immune electron microscopic analysis of the secretory pathway in Saccharomyces cerevisiae. Histochem Cell Biol 146(5):515–527.  https://doi.org/10.1007/s00418-016-1483-y CrossRefPubMedGoogle Scholar
  12. Boisvieux-Ulrich E, Laine MC, Sandoz D (1990) Cytochalasin D inhibits basal body migration and ciliary elongation in quail oviduct epithelium. Cell Tissue Res 259:443–454CrossRefGoogle Scholar
  13. Bonfanti L, Mironov AA Jr, Martínez-Menárguez JA, Martella O, Fusella A, Baldassarre M, Buccione R, Geuze HJ, Mironov AA, Luini A (1998) Procollagen traverses the Golgi stack without leaving the lumen of cisternae: evidence for cisternal maturation. Cell 95:993–1003PubMedCrossRefGoogle Scholar
  14. Carvajal-Gonzalez JM, Mulero-Navarro S, Mlodzik M (2016) Centriole positioning in epithelial cells and its intimate relationship with planar cell polarity. BioEssays 38:1234–1245PubMedPubMedCentralCrossRefGoogle Scholar
  15. Claude A (1970) Growth and differentiation of cytoplasmic membranes in the course of lipoprotein granule synthesis in the hepatic cell. I. Elaboration of elements of the Golgi complex. J Cell Biol 47:745–766PubMedPubMedCentralCrossRefGoogle Scholar
  16. Clermont Y, Xia L, Rambourg A, Turner JD, Hermo L (1993) Transport of casein submicelles and formation of secretion granules in the Golgi apparatus of epithelial cells of the lactating mammary gland of rat. Anat Rec 235:363–373PubMedCrossRefGoogle Scholar
  17. Cole NB, Sciaky N, Marotta A, Song J, Lippincott-Schwartz J (1996) Golgi dispersal during microtubule disruption: regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites. Mol Biol Cell 7:631–650PubMedPubMedCentralCrossRefGoogle Scholar
  18. Comments on: Silencing of mammalian Sar1 isoforms reveals COPII-independent protein sorting and transport. https://stephenslab.wordpress.com/2013/02/27/comments-on-silencing-of-mammalian-sar1-isoforms-reveals-copii-independent-protein-sorting-and-transport/
  19. Conti B, Berti F, Mercati D, Giusti F, Dallai R (2010) The ultrastructure of malpighian tubules and the chemical composition of the cocoon of Aeolothrips intermedius Bagnall (Thysanoptera). J Morphol 271:244–254PubMedGoogle Scholar
  20. Cosson P, Amherdt M, Rothman JE, Orci L (2002) A resident Golgi protein is excluded from peri-Golgi vesicles in NRK cells. Proc Natl Acad Sci USA 99:12831–12834PubMedCrossRefGoogle Scholar
  21. Cutrona MB, Beznoussenko GV, Fusella A, Martella O, Moral P, Mironov AA (2013) Silencing of the mammalian Sar1 isoforms reveals COPII-independent protein sorting and transport. Traffic 14(6):691–708PubMedCrossRefGoogle Scholar
  22. Dahan S, Ahluwalia JP, Wong L, Posner BI, Bergeron JJ (1994) Concentration of intracellular hepatic apolipoprotein E in Golgi apparatus saccular distensions and endosomes. J Cell Biol 127:1859–1869PubMedCrossRefGoogle Scholar
  23. Dunlop MH, Ernst AM, Schroeder LK, Toomre DK, Lavieu G, Rothman JE (2017) Land-locked mammalian Golgi reveals cargo transport between stable cisternae. Nat Commun 8:432.  https://doi.org/10.1038/s41467-017-00570-z CrossRefPubMedPubMedCentralGoogle Scholar
  24. Emr S, Glick BS, Linstedt AD, Lippincott-Schwartz J, Luini A, Malhotra V, Marsh BJ, Nakano A, Pfeffer SR, Rabouille C, Rothman JE, Warren G, Wieland FT (2009) Journeys through the Golgi—taking stock in a new era. J Cell Biol 187:449–453PubMedPubMedCentralCrossRefGoogle Scholar
  25. Feiguin F, Ferreira A, Kosik KS, Caceres A (1994) Kinesin-mediated organelle translocation revealed by specific cellular manipulations. J Cell Biol 127:1021–1039PubMedCrossRefGoogle Scholar
  26. Forrester A, De Leonibus C, Grumati P, Fasana E, Piemontese M, Staiano L, Fregno I, Raimondi A, Marazza A, Bruno G, Iavazzo M, Intartaglia D, Seczynska M, van Anken E, Conte I, De Matteis MA, Dikic I, Molinari M, Settembre C (2019) A selective ER-phagy exerts procollagen quality control via a Calnexin-FAM134B complex. EMBO J 38:e99847PubMedCrossRefPubMedCentralGoogle Scholar
  27. Fregno I, Molinari M (2018) Endoplasmic reticulum turnover: ER-phagy and other flavors in selective and non-selective ER clearance. F1000Res 7:454PubMedPubMedCentralCrossRefGoogle Scholar
  28. Fregno I, Fasana E, Bergmann TJ, Raimondi A, Loi M, Soldà T, Galli C, D’Antuono R, Morone D, Danieli A, Paganetti P, van Anken E, Molinari M (2018) ER-to-lysosome-associated degradation of proteasome-resistant ATZ polymers occurs via receptor-mediated vesicular transport. EMBO J 37:e99259PubMedCrossRefPubMedCentralGoogle Scholar
  29. Fromme JC, Schekman R (2005) COPII-coated vesicles: flexible enough for large Cargo? Curr Opin Cell Biol 17:345–352PubMedCrossRefPubMedCentralGoogle Scholar
  30. Fukunaga T, Furuno A, Hatsuzawa K, Tani K, Yamamoto A, Tagaya M (1998) NSF is required for the brefeldin A-promoted disassembly of the Golgi apparatus. FEBS Lett 435:237–240PubMedCrossRefPubMedCentralGoogle Scholar
  31. Fusella A, Micaroni M, Di Giandomenico D, Mironov AA, Beznoussenko GV (2013) Segregation of the Qb-SNAREs GS27 and GS28 into Golgi vesicles regulates intra-Golgi transport. Traffic 14:568–584PubMedCrossRefPubMedCentralGoogle Scholar
  32. Ghadialli FN (1982) Ultrastructural pathology of the cell and matrix. Butterworths, London, 971 pGoogle Scholar
  33. Gilchrist A, Au CE, Hiding J, Bell AW, Fernandez-Rodriguez J, Lesimple S, Nagaya H, Roy L, Gosline SJ, Hallett M, Paiement J, Kearney RE, Nilsson T, Bergeron JJ (2006) Quantitative proteomics analysis of the secretory pathway. Cell 127:1265–1281PubMedCrossRefPubMedCentralGoogle Scholar
  34. Girard-Dias W, Alcântara CL, Cunha-E-Silva N, de Souza W, Miranda K (2012) On the ultrastructural organization of Trypanosoma cruzi using cryopreparation methods and electron tomography. Histochem Cell Biol 138:821–831PubMedCrossRefPubMedCentralGoogle Scholar
  35. Glaumann H, Bergstrand A, Ericsson JL (1975) Studies on the synthesis and intracellular transport of lipoprotein particles in rat liver. J Cell Biol 64:356–377PubMedCrossRefGoogle Scholar
  36. Glick BS, Luini A (2011) Models for Golgi traffic: a critical assessment. Cold Spring Harb Perspect Biol 3:a005215PubMedPubMedCentralCrossRefGoogle Scholar
  37. Glick BS, Nakano A (2009) Membrane traffic within the Golgi apparatus. Annu Rev Cell Dev Biol 25:113–132PubMedPubMedCentralCrossRefGoogle Scholar
  38. Glick BS, lston ET, Oster G (1997) A cisternal maturation mechanism can explain the asymmetry of the Golgi stack. FEBS Lett 414:177–181PubMedCrossRefGoogle Scholar
  39. Gorur A, Yuan L, Kenny SJ, Baba S, Xu K, Schekman R (2017) COPII-coated membranes function as transport carriers of intracellular procollagen I. J Cell Biol.  https://doi.org/10.1083/jcb.201702135 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gosavi P, Houghton FJ, McMillan PJ, Hanssen E, Gleeson PA (2018) The Golgi ribbon in mammalian cells negatively regulates autophagy by modulating mTOR activity. J Cell Sci 131:jcs211987PubMedCrossRefGoogle Scholar
  41. Hanus C, Ehlers MD (2008) Secretory outposts for the local processing of membrane cargo in neuronal dendrites. Traffic 9:1437–1445PubMedPubMedCentralCrossRefGoogle Scholar
  42. Henderson GP, Gan L, Jensen GJ (2007) 3-D ultrastructure of O. tauri: electron cryotomography of an entire eukaryotic cell. PLoS One 2:e749PubMedPubMedCentralCrossRefGoogle Scholar
  43. Ho WC, Allan VJ, van Meer G, Berger EG, Kreis TE (1989) Reclustering of scattered Golgi elements occurs along microtubules. Eur J Cell Biol 48:250–263PubMedGoogle Scholar
  44. Hohmann-Marriott MF, Sousa AA, Azari AA, Glushakova S, Zhang G, Zimmerberg J, Leapman RD (2009) Nanoscale 3D cellular imaging by axial scanning transmission electron tomography. Nat Methods 6:729–731PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hoppeler-Lebel A, Celati C, Bellett G, Mogensen MM, Klein-Hitpass L, Bornens M, Tassin AM (2007) Centrosomal CAP350 protein stabilises microtubules associated with the Golgi complex. J Cell Sci 120:3299–3308PubMedCrossRefGoogle Scholar
  46. Horton AC, Racz B, Monson EE, Lin AL, Weinberg RJ, Ehlers MD (2005) Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis. Neuron 48:757–771PubMedCrossRefGoogle Scholar
  47. Inoue T (1992) Complementary scanning electron microscopy, technical notes and applications. Arch Histol Cytol 55:45–51PubMedCrossRefGoogle Scholar
  48. Jamieson JD, Palade GE (1968) Intracellular transport of secretory proteins in the pancreatic exocrine cell. 3. Dissociation of intracellular transport from protein synthesis. J Cell Biol 39:580–588PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kaiser CA, Schekman R (1990) Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway. Cell 61:723–733PubMedCrossRefGoogle Scholar
  50. Kim SD, Pahuja KB, Ravazzola M, Yoon J, Boyadjiev SA, Hammamoto S, Schekman R, Orci L, Kim J (2012) The SEC23-SEC31 interface plays critical role for export of procollagen from the endoplasmic reticulum. J Biol Chem 287(13):10134–10144PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kloc M, Kubiak JZ, Li XC, Ghobrial RM (2014) The newly found functions of MTOC in immunological response. J Leukoc Biol 95:417–430PubMedPubMedCentralCrossRefGoogle Scholar
  52. Koegler E, Bonnon C, Waldmeier L, Mitrovic S, Halbeisen R, Hauri HP (2010) p28, a novel ERGIC/cis Golgi protein, required for golgi ribbon formation. Traffic 11:70–89PubMedCrossRefGoogle Scholar
  53. Kondylis V, Rabouille C (2003) A novel role for dp115 in the organization of tER sites in Drosophila. J Cell Biol 162:185–198PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kreft ME, Di Giandomenico D, Beznoussenko GV, Resnik N, Mironov AA, Jezernik K (2010) Golgi apparatus fragmentation as a mechanism responsible for uniform delivery of uroplakins to the apical plasma membrane of uroepithelial cells. Biol Cell 102:593–607PubMedCrossRefGoogle Scholar
  55. Kurokawa K, Ishii M, Suda Y, Ichihara A, Nakano A (2013) Live cell visualization of Golgi membrane dynamics by super-resolution confocal live imaging microscopy. Methods Cell Biol 118:235–242PubMedCrossRefGoogle Scholar
  56. Kweon HS, Beznoussenko GV, Micaroni M, Polishchuk RS, Trucco A, Martella O, Di Giandomenico D, Marra P, Fusella A, Di Pentima A, Berger EG, Geerts WJ, Koster AJ, Burger KN, Luini A, Mironov AA (2004) Golgi enzymes are enriched in perforated zones of golgi cisternae but are depleted in COPI vesicles. Mol Biol Cell 15:4710–4724PubMedPubMedCentralCrossRefGoogle Scholar
  57. Ladinsky MS, Mastronarde DN, McIntosh JR, Howell KE, Staehelin LA (1999) Golgi structure in three dimensions, functional insights from the normal rat kidney cell. J Cell Biol 144:1135–1149PubMedPubMedCentralCrossRefGoogle Scholar
  58. Ladinsky MS, Wu CC, McIntosh S, McIntosh JR, Howell KE (2002) Structure of the Golgi and distribution of reporter molecules at 20°C reveals the complexity of the exit compartments. Mol Biol Cell 13:2810–2825PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lanoix J, Ouwendijk J, Lin CC, Stark A, Love HD, Ostermann J, Nilsson T (1999) GTP hydrolysis by arf-1 mediates sorting and concentration of Golgi resident enzymes into functional COPI vesicles. EMBO J 18:4935–4948PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lavieu G, Zheng H, Rothman JE (2013) Stapled Golgi cisternae remain in place as cargo passes through the stack. Elife 2:e00558PubMedPubMedCentralCrossRefGoogle Scholar
  61. Leblond CP (1989) Synthesis and secretion of collagen by cells of connective tissue, bone, and dentin. Anat Rec 224:123–138PubMedCrossRefGoogle Scholar
  62. Lee MC, Orci L, Hamamoto S, Futai E, Ravazzola M, Schekman R (2005) Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell 122:605–617PubMedCrossRefGoogle Scholar
  63. Lippincott-Schwartz J, Cole NB, Marotta A, Conrad PA, Bloom GS (1995) Kinesin is the motor for microtubule-mediated Golgi-to-ER membrane traffic. J Cell Biol 128:293–306PubMedCrossRefGoogle Scholar
  64. Luby-Phelps K (1994) Physical properties of cytoplasm. Curr Opin Cell Biol 6:3–9PubMedCrossRefGoogle Scholar
  65. Makhoul C, Gosavi P, Gleeson PA (2018) The Golgi architecture and cell sensing. Biochem Soc Trans 46:1063–1072PubMedCrossRefGoogle Scholar
  66. Malhotra V, Erlmann P, Nogueira C (2015) Procollagen export from the endoplasmic reticulum. Biochem Soc Trans 43:104–107PubMedCrossRefGoogle Scholar
  67. Marchi F, Leblond CP (1983) Collagen biogenesis and assembly into fibrils as shown by ultrastructural and 3H-proline radioautographic studies on the fibroblasts of the rat food pad. Am J Anat 168:167–197PubMedCrossRefGoogle Scholar
  68. Marra P, Salvatore L, Mironov A Jr, Di Campli A, Di Tullio G, Trucco A, Beznoussenko G, Mironov A, De Matteis MA (2007) The biogenesis of the Golgi ribbon, the roles of membrane input from the ER and of GM130. Mol Biol Cell 18:1595–1608PubMedPubMedCentralCrossRefGoogle Scholar
  69. Marsh BJ, Mastronarde DN, Buttle KF, Howell KE, McIntosh JR (2001) Organellar relationships in the Golgi region of pancreatic beta cell line, HIT-T15, visualized by high resolution electron tomography. Proc Natl Acad Sci USA 98:2399–2406PubMedCrossRefGoogle Scholar
  70. Martínez-Menárguez JA, Geuze HJ, Slot JW, Klumperman J (1999) Vesicular tubular clusters (VTCs) between ER and Golgi mediate concentration of soluble secretory proteins by exclusion from COPI-coated vesicles. Cell 98:81–90PubMedCrossRefGoogle Scholar
  71. Matsuura S, Tashiro Y (1979) Immunoelectron-microscopic studies of endoplasmic reticulum-Golgi relationships in the intracellular transport process of lipoprotein particles in rat hepatocytes. J Cell Sci 39:273–290PubMedGoogle Scholar
  72. Matsuura-Tokita K, Takeuchi M, Ichihara A, Mikuriya K, Nakano A (2006) Live imaging of yeast Golgi cisternal maturation. Nature 441:1007–1010PubMedCrossRefGoogle Scholar
  73. Mavillard F, Hidalgo J, Megias D, Levitsky KL, Velasco A (2010) PKA-mediated Golgi remodeling during cAMP signal transmission. Traffic 11(1):90–109PubMedCrossRefGoogle Scholar
  74. McCaughey J, Stevenson NL, Cross S, Stephens DJ (2019) ER-to-Golgi trafficking of procollagen in the absence of large carriers. J Cell Biol.  https://doi.org/10.1083/jcb.201806035 PubMedCrossRefGoogle Scholar
  75. Micaroni M, Perinetti G, Di Giandomenico D, Bianchi K, Spaar A, Mironov AA (2010) Synchronous intra-Golgi transport induces the release of Ca2+ from the Golgi apparatus. Exp Cell Res 316:2071–2086PubMedCrossRefGoogle Scholar
  76. Minin AA (1997) Dispersal of Golgi apparatus in nocodazole-treated fibroblasts is a kinesin-driven process. J Cell Sci 110:2495–2505PubMedGoogle Scholar
  77. Mironov AA (2014) ER-Golgi transport could occur in the absence of COPII vesicles. Nat Rev Mol Cell Biol.  https://doi.org/10.1038/nrm3588-c1 PubMedCrossRefGoogle Scholar
  78. Mironov AA, Arvan P (2008) Origin of the regulated secretory pathway. In: Mironov AA, Pavelka M (eds) Golgi apparatus, Chapter 3.11. Springer, Wien, pp 482–515CrossRefGoogle Scholar
  79. Mironov AA, Beznoussenko GV (2008) Intra-Golgi transport. In: Mironov AA, Pavelka M (eds) The Golgi Apparatus. State of the art 110 years after Camillo Golgi’s discovery, Chapter 3.2. Springer, Wien, pp 342–357Google Scholar
  80. Mironov AA, Beznoussenko GV (2011) Molecular mechanisms responsible for formation of Golgi ribbon. Histol Histopathol 26:117–133PubMedGoogle Scholar
  81. Mironov AA, Beznoussenko GV (2012) The kiss-and-run model of intra-Golgi transport. Int J Mol Sci 13:6800–6819PubMedPubMedCentralCrossRefGoogle Scholar
  82. Mironov AA Jr, Mironov AA (1998) Estimation of subcellular organelle volume from ultrathin sections through centrioles with a discretized version of vertical rotator. J Microsc 192:29–36PubMedCrossRefGoogle Scholar
  83. Mironov AA, Pavelka M (2008) The Golgi apparatus as a crossroad in intracellular traffic. In: Mironov AA, Pavelka M (eds) The Golgi apparatus. State of the art 110 years after Camillo Golgi’s discovery, Chapter 1.2. Springer, Wien, pp 16–39Google Scholar
  84. Mironov AA, Weidman P, Luini A (1997) Variations on the intracellular transport theme, maturing cisternae and trafficking tubules. J Cell Biol 138:481–484PubMedPubMedCentralCrossRefGoogle Scholar
  85. Mironov AA Jr, Luini A, Mironov AA (1998) A synthetic model of intra-Golgi traffic. FASEB J 12:249–252PubMedCrossRefGoogle Scholar
  86. Mironov AA, Beznoussenko GV, Nicoziani P, Martella O, Trucco A, Kweon HS, Di Giandomenico D, Polishchuk RS, Fusella A, Lupetti P, Berger EG, Geerts WJ, Koster AJ, Burger KN, Luini A (2001) Small cargo proteins and large aggregates can traverse the Golgi by a common mechanism without leaving the lumen of cisternae. J Cell Biol 155:1225–1238PubMedPubMedCentralCrossRefGoogle Scholar
  87. Mironov AA, Mironov AA Jr, Beznoussenko GV, Trucco A, Lupetti P, Smith JD, Geerts WJ, Koster AJ, Burger KN, Martone ME, Deerinck TJ, Ellisman MH, Luini A (2003) ER-to-Golgi carriers arise through direct en bloc protrusion and multistage maturation of specialized ER exit domains. Dev Cell 5:583–594PubMedCrossRefGoogle Scholar
  88. Mironov AA, Colanzi A, Polishchuk RS, Beznoussenko GV, Mironov AA Jr, Fusella A, Di Tullio G, Silletta MG, Corda D, De Matteis MA, Luini A (2004) Dicumarol, an inhibitor of ADP-ribosylation of CtBP3/BARS, fragments Golgi non-compact tubular zones and inhibits intra-Golgi transport. Eur J Cell Biol 83:263–279PubMedCrossRefGoogle Scholar
  89. Mironov AA, Beznoussenko GV, Polishchuk RS, Trucco A (2005) Intra-Golgi transport: a way to a new paradigm? Biochim Biophys Acta 1744:340–350PubMedCrossRefGoogle Scholar
  90. Mironov AA, Sesorova IV, Beznoussenko GV (2013) Golgi’s way: a long path toward the new paradigm of the intra-Golgi transport. Histochem Cell Biol 140:383–393PubMedCrossRefPubMedCentralGoogle Scholar
  91. Mironov AA, Sesorova IS, Seliverstova EV, Beznoussenko GV (2016) Different Golgi ultrastructure across species and tissues: implications under functional and pathological conditions, and an attempt at classification. Tissue Cell.  https://doi.org/10.1016/j.tice.2016.12.002 PubMedCrossRefGoogle Scholar
  92. Mitrovic S, Ben-Tekaya H, Koegler E, Gruenberg J, Hauri HP (2008) The cargo receptors Surf4, endoplasmic reticulum-Golgi intermediate compartment (ERGIC)-53, and p25 are required to maintain the architecture of ERGIC and Golgi. Mol Biol Cell 19:1976–1990PubMedPubMedCentralCrossRefGoogle Scholar
  93. Morin-Ganet MN, Rambourg A, Deitz SB, Franzusoff A, Képès F (2000) Morphogenesis and dynamics of the yeast Golgi apparatus. Traffic 1:56–68PubMedCrossRefGoogle Scholar
  94. Motta PM, Makabe S, Naguro T, Correr S (1994) Oocyte follicle cells association during development of human ovarian follicle. A study by high resolution scanning and transmission electron microscopy. Arch Histol Cytol 57:369–394PubMedCrossRefGoogle Scholar
  95. Nogueira C, Erlmann P, Villeneuve J, Santos AJ, Martínez-Alonso E, Martínez-Menárguez JÁ, Malhotra V (2014) SLY1 and Syntaxin 18 specify a distinct pathway for procollagen VII export from the endoplasmic reticulum. Elife 3:e02784PubMedPubMedCentralCrossRefGoogle Scholar
  96. Oprins A, Rabouille C, Posthuma G, Klumperman J, Geuze HJ, Slot JW (2001) The ER to Golgi interface is the major concentration site of secretory proteins in the exocrine pancreatic cell. Traffic 2:831–838PubMedCrossRefGoogle Scholar
  97. Orci L, Glick BS, Rothman JE (1986) A new type of coated vesicular carrier that appears not to contain clathrin: its possible role in protein transport within the Golgi stack. Cell 46:171–184PubMedCrossRefGoogle Scholar
  98. Orci L, Stamnes M, Ravazzola M, Amherdt M, Perrelet A, Sollner TH, Rothman JE (1997) Bidirectional transport by distinct populations of COPI-coated vesicles. Cell 90:335–349PubMedCrossRefGoogle Scholar
  99. Orci L, Perrelet A, Rothman JE (1998) Vesicles on strings: morphological evidence for processive transport within the Golgi stack. Proc Natl Acad Sci USA 95:2279–2283PubMedCrossRefGoogle Scholar
  100. Orci L, Amherdt M, Ravazzola M, Perrelet A, Rothman JE (2000a) Exclusion of Golgi residents from transport vesicles budding from Golgi cisternae in intact cells. J Cell Biol 150:1263–1270PubMedPubMedCentralCrossRefGoogle Scholar
  101. Orci L, Ravazzola M, Volchuk A, Engel T, Gmachl M, Amherdt M, Perrelet A, Sollner TH, Rothman JE (2000b) Anterograde flow of cargo across the golgi stack potentially mediated via bidirectional “percolating” COPI vesicles. Proc Natl Acad Sci USA 97:10400–10405PubMedCrossRefGoogle Scholar
  102. Pagano RE, Longmuir KJ (1985) Phosphorylation, transbilayer movement, and facilitated intracellular transport of diacylglycerol are involved in the uptake of a fluorescent analog of phosphatidic acid by cultured fibroblasts. J Biol Chem 260:1909–1916PubMedGoogle Scholar
  103. Pagano RE, Sepanski MA, Martin OC (1989) Molecular trapping of a fluorescent ceramide analogue at the Golgi apparatus of fixed cells: interaction with endogenous lipids provides a trans-Golgi marker for both light and electron microscopy. J Cell Biol 109:2067–2079PubMedCrossRefGoogle Scholar
  104. Palade G (1975) Intracellular aspects of the process of protein synthesis. Science 189:347–359PubMedCrossRefGoogle Scholar
  105. Patterson GH, Hirschberg K, Polishchuk RS, Gerlich D, Phair RD, Lippincott-Schwartz J (2008) Transport through the Golgi apparatus by rapid partitioning within a two-phase membrane system. Cell 133:1055–1067PubMedPubMedCentralCrossRefGoogle Scholar
  106. Pavelka M, Roth J (2005) Functional ultrastructure. Atlas of tissue biology and pathology. Springer, Wien, 326 pCrossRefGoogle Scholar
  107. Pellett PA, Dietrich F, Bewersdorf J, Rothman JE, Lavieu G (2013) Inter-Golgi transport mediated by COPI-containing vesicles carrying small cargoes. Elife 2:e01296PubMedPubMedCentralCrossRefGoogle Scholar
  108. Perinetti G, Müller T, Spaar A, Polishchuk R, Luini A, Egner A (2009) Correlation of 4Pi- and electron microscopy to study transport through single Golgi stacks in living cells with super resolution. Traffic 10:379–391PubMedCrossRefGoogle Scholar
  109. Peters A, Palay SL, Webster HdeF (1991) Fine structure of the nervous system: neurons and their supporting cells, 3rd edn. Oxford University Press, Oxford, 528 pGoogle Scholar
  110. Polishchuk RS, Mironov AA (2004) Structural aspects of Golgi function. Cell Mol Life Sci 61:146–158PubMedCrossRefGoogle Scholar
  111. Polishchuk RS, Polishchuk EV, Mironov AA (1999) Coalescence of Golgi fragments in microtubule-deprived living cells. Eur J Cell Biol 78:170–185PubMedCrossRefGoogle Scholar
  112. Polishchuk RS, Polishchuk EV, Marra P, Alberti S, Buccione R, Luini A, Mironov AA (2000) Correlative light-electron microscopy reveals the tubular-saccular ultrastructure of carriers operating between Golgi apparatus and plasma membrane. J Cell Biol 148(1):45–58PubMedPubMedCentralCrossRefGoogle Scholar
  113. Polishchuk EV, Di Pentima A, Luini A, Polishchuk RS (2003) Mechanism of constitutive export from the Golgi: bulk flow via the formation, protrusion, and en bloc cleavage of large trans-Golgi network tubular domains. Mol Biol Cell 14:4470–4485PubMedPubMedCentralCrossRefGoogle Scholar
  114. Presley JF, Cole NB, Schroer TA, Hirschberg K, Zaal KJ, Lippincott-Schwartz J (1997) ER-to-Golgi transport visualized in living cells. Nature 389:81–85PubMedCrossRefGoogle Scholar
  115. Rahkila P, Alakangas A, Väänänen K, Metsikkö K (1996) Transport pathway, maturation, and targeting of the vesicular stomatitis virus glycoprotein in skeletal muscle fibers. J Cell Sci 109:1585–1596PubMedGoogle Scholar
  116. Rambourg A, Clermont Y, Chrétien M, Olivier L (1993) Modulation of the Golgi apparatus in stimulated and nonstimulated prolactin cells of female rats. Anat Rec 235:353–362PubMedCrossRefGoogle Scholar
  117. Raote I, Ortega Bellido M, Pirozzi M, Zhang C, Melville D, Parashuraman S, Zimmermann T, Malhotra V (2017) TANGO1 assembles into rings around COPII coats at ER exit sites. J Cell Biol 216(4):901–909PubMedPubMedCentralCrossRefGoogle Scholar
  118. Raote I, Ortega-Bellido M, Santos AJ, Foresti O, Zhang C, Garcia-Parajo MF, Campelo F, Malhotra V (2018) TANGO1 builds a machine for collagen export by recruiting and spatially organizing COPII, tethers and membranes. Elife 7:e32723.  https://doi.org/10.7554/eLife.32723 CrossRefPubMedPubMedCentralGoogle Scholar
  119. Razi M, Chan EY, Tooze SA (2009) Early endosomes and endosomal coatomer are required for autophagy. J Cell Biol 185:305–321PubMedPubMedCentralCrossRefGoogle Scholar
  120. Rexach MF, Schekman RW (1992) Use of sec mutants to define intermediates in protein transport from endoplasmic reticulum. Methods Enzymol 219:267–286PubMedCrossRefGoogle Scholar
  121. Rhodin JAG (1974) Histology: a text and atlas. Oxford University Press, New York, 803 ppGoogle Scholar
  122. Rizzo R, Parashuraman S, Mirabelli P, Puri C, Lucocq J, Luini A (2013) The dynamics of engineered resident proteins in the mammalian Golgi complex relies on cisternal maturation. J Cell Biol 201:1027–1036PubMedPubMedCentralCrossRefGoogle Scholar
  123. Romero N, Dumur CI, Martinez H, García IA, Monetta P, Slavin I, Sampieri L, Koritschoner N, Mironov AA, De Matteis MA, Alvarez C (2013) Rab1b overexpression modifies Golgi size and gene expression in HeLa cells and modulates the thyrotrophin response in thyroid cells in culture. Mol Biol Cell 24:617–632PubMedPubMedCentralCrossRefGoogle Scholar
  124. Rothman JE, Bursztyn-Pettegrew H, Fine RE (1980) Transport of the membrane glycoprotein of vesicular stomatitis virus to the cell surface in two stages by clathrin-coated vesicles. J Cell Biol 86:162–171PubMedCrossRefGoogle Scholar
  125. Rothman JE, Miller RL, Urbani LJ (1984) Intercompartmental transport in the Golgi complex is a dissociative process: facile transfer of membrane protein between two Golgi populations. J Cell Biol 99:260–271PubMedCrossRefGoogle Scholar
  126. Sabesin SM, Frase S (1977) Electron microscopic studies of the assembly, intracellular transport, and secretion of chylomicrons by rat intestine. J Lipid Res 18:496–511PubMedGoogle Scholar
  127. Saito K, Chen M, Bard F, Chen S, Zhou H, Woodley D, Polischuk R, Schekman R, Malhotra V (2009) TANGO1 facilitates cargo loading at endoplasmic reticulum exit sites. Cell 136(5):891–902PubMedCrossRefGoogle Scholar
  128. Santos AJ, Nogueira C, Ortega-Bellido M, Malhotra V (2016) TANGO1 and Mia2/cTAGE5 (TALI) cooperate to export bulky pre-chylomicrons/VLDLs from the endoplasmic reticulum. J Cell Biol 213:343–354PubMedPubMedCentralCrossRefGoogle Scholar
  129. Sesorova IS, Beznoussenko GV, Kazakova TE, Sesorov VV, Dimov ID, Mironov AA (2018) New opportunities of light microscopy in cytology and histology. Tsitologia 60(5):319–329CrossRefGoogle Scholar
  130. Sesso A, de Faria FP, Iwamura ES, Correa H (1994) A three-dimensional reconstruction study of the rough ER-Golgi interface in serial thin sections of the pancreatic acinar cell of the rat. J Cell Sci 107:517–528PubMedGoogle Scholar
  131. Siddiqi SA, Gorelick FS, Mahan JT, Mansbach CM 2nd (2003) COPII proteins are required for Golgi fusion but not for endoplasmic reticulum budding of the pre-chylomicron transport vesicle. J Cell Sci 116:415–427PubMedCrossRefGoogle Scholar
  132. Sleight RG, Pagano RE (1983) Rapid appearance of newly synthesized phosphatidylethanolamine at the plasma membrane. J Biol Chem 258:9050–9058PubMedGoogle Scholar
  133. Sokolova YY, Mironov AA (2008) Structure and function of the Golgi organelle in parasitic protists. In: Mironov AA, Pavelka M (eds) Golgi apparatus, Chapter 4.14. Springer, Wien, pp 647–674CrossRefGoogle Scholar
  134. Styers ML, O’Connor AK, Grabski R, Cormet-Boyaka E, Sztul E (2008) Depletion of beta-COP reveals a role for COP-I in compartmentalization of secretory compartments and in biosynthetic transport of caveolin-1. Am J Physiol Cell Physiol 294:C1485–C1498PubMedCrossRefGoogle Scholar
  135. Sukhorukov VM, Meyer-Hermann M (2015) Structural heterogeneity of mitochondria induced by the microtubule cytoskeleton. Sci Rep 5:13924PubMedPubMedCentralCrossRefGoogle Scholar
  136. Taylor RS, Jones SM, Dahl RH, Nordeen MH, Howell KE (1997) Characterization of the Golgi complex cleared of proteins in transit and examination of calcium uptake activities. Mol Biol Cell 8:1911–1931PubMedPubMedCentralCrossRefGoogle Scholar
  137. Townley AK, Feng Y, Schmidt K, Carter DA, Porter R, Verkade P, Stephens DJ (2008) Efficient coupling of Sec23-Sec24 to Sec13-Sec31 drives COPII-dependent collagen secretion and is essential for normal craniofacial development. J Cell Sci 121:3025–3034PubMedCrossRefGoogle Scholar
  138. Townley AK, Schmidt K, Hodgson L, Stephens DJ (2012) Epithelial organization and cyst lumen expansion require efficient Sec13-Sec31-driven secretion. J Cell Sci 125:673–684PubMedPubMedCentralCrossRefGoogle Scholar
  139. Trucco A, Polishchuk RS, Martella O, Di Pentima A, Fusella A, Di Giandomenico D, San Pietro E, Beznoussenko GV, Polishchuk EV, Baldassarre M, Buccione R, Geerts WJ, Koster AJ, Burger KN, Mironov AA, Luini A (2004) Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments. Nat Cell Biol 6:1071–1081PubMedCrossRefGoogle Scholar
  140. Valderrama F, Babià T, Ayala I, Kok JW, Renau-Piqueras J, Egea G (1998) Actin microfilaments are essential for the cytological positioning and morphology of the Golgi complex. Eur J Cell Biol 76:9–17PubMedCrossRefGoogle Scholar
  141. Velasco A, Hendricks L, Moreman KW, Tulsiani DRP, Touster O, Farquhar MG (1993) Cell-type dependent variations in the subcellular distribution of a-mannosidase I and II. J Cell Biol 122:39–51PubMedCrossRefGoogle Scholar
  142. Venditti R, Scanu T, Santoro M, Di Tullio G, Spaar A, Gaibisso R, Beznoussenko GV, Mironov AA, Mironov A Jr, Zelante L, Piemontese MR, Notarangelo A, Malhotra V, Vertel BM, Wilson C, De Matteis MA (2012) Sedlin controls the ER export of procollagen by regulating the Sar1 cycle. Science 337:1668–1672PubMedPubMedCentralCrossRefGoogle Scholar
  143. Watson P, Forster R, Palmer KJ, Pepperkok R, Stephens DJ (2005) Coupling of ER exit to microtubules through direct interaction of COPII with dynactin. Nat Cell Biol 7:48–55PubMedCrossRefGoogle Scholar
  144. Weidman P, Roth R, Heuser J (1993) Golgi membrane dynamics imaged by freeze-etch electron microscopy: views of different membrane coatings involved in tubulation versus vesiculation. Cell 75:123–133PubMedCrossRefGoogle Scholar
  145. Weinstock M, Leblond CP (1974) Synthesis, migration, and release of precursor collagen by odontoblasts as visualized by radioautography after (3H)proline administration. J Cell Biol 60:92–127PubMedPubMedCentralCrossRefGoogle Scholar
  146. Wu J, Akhmanova A (2017) Microtubule-organizing centers. Annu Rev Cell Dev Biol 33:51–75PubMedCrossRefGoogle Scholar
  147. Yang JS, Valente C, Polishchuk RS, Turacchio G, Layre E, Branch Moody D, Leslie CC, Gelb MH, Brown WJ, Corda D, Luini A, Hsu VW (2011) COPI acts in both vesicular and tubular transport. Nat Cell Biol.  https://doi.org/10.1038/ncb2273 PubMedPubMedCentralCrossRefGoogle Scholar
  148. Yang C, Wu J, de Heus C, Grigoriev I, Liv N, Yao Y, Smal I, Meijering E, Klumperman J, Qi RZ, Akhmanova A (2017) EB1 and EB3 regulate microtubule minus end organization and Golgi morphology. J Cell Biol 216:3179–3198PubMedPubMedCentralCrossRefGoogle Scholar
  149. Zeuschner D, Geerts WJ, van Donselaar E, Humbel BM, Slot JW, Koster AJ, Klumperman J (2006) Immuno-electron tomography of ER exit sites reveals the existence of free COPII-coated transport carriers. Nat Cell Biol 8:377–383PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alexander A. Mironov
    • 1
    Email author
  • Ivan D. Dimov
    • 2
  • Galina V. Beznoussenko
    • 1
  1. 1.The FIRC Institute of Molecular OncologyMilanItaly
  2. 2.Department of AnatomySaint Petersburg State Paediatric Medical UniversitySaint PetersburgRussia

Personalised recommendations