Selected Golgi-Localized Proteins and Carcinogenesis: What Do We Know?

  • Piotr Donizy
  • Jakub Marczuk
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 67)


The role of the Golgi apparatus in carcinogenesis still remains unclear. A number of structural and functional cis-, medial-, and trans-Golgi proteins as well as a complexity of metabolic pathways which they mediate may indicate a central role of the Golgi apparatus in the development and progression of cancer. Pleiotropy of cellular function of the Golgi apparatus makes it a “metabolic heart” or a relay station of a cell, which combines multiple signaling pathways involved in carcinogenesis. Therefore, any damage to or structural abnormality of the Golgi apparatus, causing its fragmentation and/or biochemical dysregulation, results in an up- or downregulation of signaling pathways and may in turn promote tumor progression, as well as local nodal and distant metastases. Three alternative or parallel models of spatial and functional Golgi organization within tumor cells were proposed: (1) compacted Golgi structure, (2) normal Golgi structure with its increased activity, and (3) the Golgi fragmentation with ministacks formation. Regardless of the assumed model, the increased activity of oncogenesis initiators and promoters with inhibition of suppressor proteins results in an increased cell motility and migration, increased angiogenesis, significantly activated trafficking kinetics, proliferation, EMT induction, decreased susceptibility to apoptosis-inducing factors, and modulating immune response to tumor cell antigens. Eventually, this will lead to the increased metastatic potential of cancer cells and an increased risk of lymph node and distant metastases. This chapter provided an overview of the current state of knowledge of selected Golgi proteins, their role in cytophysiology as well as potential involvement in tumorigenesis.



The authors thank Prof. Marzena Podhorska-Okołów and Dr. Katarzyna Haczkiewicz (Department of Human Morphology and Embryology, Wroclaw Medical University) for preparing the electron microphotographs and Ms. Agnieszka Janczak for her editorial support.

Source of Funding

A statutory subsidy by the Polish Ministry of Science and Higher Education as part of grant ST.B130.18.030 (record numbers in the Simple system).


  1. Abrham G, Volpe M, Shpungin S, Nir U (2009) TMF/ARA160 downregulates proangiogenic genes and attenuates the progression of PC3 xenografts. Int J Cancer 125:43–53PubMedCrossRefPubMedCentralGoogle Scholar
  2. Bai G, Chu J, Eli M, Bao Y, Wen J (2017) PAQR3 overexpression suppresses the aggressive phenotype of esophageal squamous cell carcinoma cells via inhibition of ERK signaling. Biomed Pharmacother 94:813–819PubMedCrossRefPubMedCentralGoogle Scholar
  3. Bai Y, Cui X, Gao D, Wang Y, Wang B, Wang W (2018a) Golgi integral membrane protein 4 manipulates cellular proliferation, apoptosis, and cell cycle in human head and neck cancer. Biosci Rep 38:BSR20180454PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bai G, Yang M, Zheng C, Zhang L, Eli M (2018b) Suppressor PAQR3 associated with the clinical significance and prognosis in esophageal squamous cell carcinoma. Oncol Lett 15:5703–5711PubMedPubMedCentralGoogle Scholar
  5. Bammens R, Mehta N, Race V, Foulquier F, Jaeken J, Tiemeyer M, Steet R, Matthijs G, Flanagan-Steet H (2015) Abnormal cartilage development and altered N-glycosylation in Tmem165-deficient zebrafish mirrors the phenotypes associated with TMEM165-CDG. Glycobiology 25:669–682PubMedPubMedCentralCrossRefGoogle Scholar
  6. Barroso M, Nelson DS, Sztul E (1995) Transcytosis-associated protein (TAP)/p115 is a general fusion factor required for binding of vesicles to acceptor membranes. Proc Natl Acad Sci USA 92:527–531PubMedCrossRefPubMedCentralGoogle Scholar
  7. Baschieri F, Confalonieri S, Bertalot G, Di Fiore PP, Dietmaier W, Leist M, Crespo P, Macara IG, Farhan H (2014) Spatial control of Cdc42 signalling by a GM130-RasGRF complex regulates polarity and tumorigenesis. Nat Commun 5:4839PubMedPubMedCentralCrossRefGoogle Scholar
  8. Baschieri F, Uetz-von Allmen E, Legler DF, Farhan H (2015) Loss of GM130 in breast cancer cells and its effects on cell migration, invasion and polarity. Cell Cycle 14:1139–1147PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bascom RA, Srinivasan S, Nussbaum RL (1999) Identification and characterization of golgin-84, a novel Golgi integral membrane protein with a cytoplasmic coiled-coil domain. J Biol Chem 274:2953–2962PubMedCrossRefPubMedCentralGoogle Scholar
  10. Beischlag TV, Taylor RT, Rose DW, Yoon D, Chen Y, Lee WH, Rosenfeld MG, Hankinson O (2004) Recruitment of thyroid hormone receptor/retinoblastoma-interacting protein 230 by the aryl hydrocarbon receptor nuclear translocator is required for the transcriptional response to both dioxin and hypoxia. J Biol Chem 279:54620–54628PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bekier ME 2nd, Wang L, Li J, Huang H, Tang D, Zhang X, Wang Y (2017) Knockout of the Golgi stacking proteins GRASP55 and GRASP65 impairs Golgi structure and function. Mol Biol Cell 28(21):2833–2842PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bergeron JJM, Au CE, Thomas DY, Hermo L (2017) Proteomics identifies Golgi phosphoprotein 3 (GOLPH3) with a link between Golgi structure, cancer, DNA damage and protection from cell death. Mol Cell Proteomics 16:2048–2054PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bhat G, Hothpet VR, Lin MF, Cheng PW (2017) Shifted Golgi targeting of glycosyltransferases and α-mannosidase IA from giantin to GM130-GRASP65 results in formation of high mannose N-glycans in aggressive prostate cancer cells. Biochim Biophys Acta Gen Subj 1861:2891–2901PubMedCrossRefPubMedCentralGoogle Scholar
  14. Blank B, von Blume J (2017) Cab45-Unraveling key features of a novel secretory cargo sorter at the trans-Golgi network. Eur J Cell Biol 96:383–390PubMedCrossRefPubMedCentralGoogle Scholar
  15. Brémond A, Meynet O, Mahiddine K, Coito S, Tichet M, Scotlandi K, Breittmayer JP, Gounon P, Gleeson PA, Bernard A, Bernard G (2009) Regulation of HLA class I surface expression requires CD99 and p230/golgin-245 interaction. Blood 113:347–357PubMedCrossRefPubMedCentralGoogle Scholar
  16. Burguete AS, Fenn TD, Brunger AT, Pfeffer SR (2008) Rab and Arl GTPase family members cooperate in the localization of the golgin GCC185. Cell 132:286–298PubMedPubMedCentralCrossRefGoogle Scholar
  17. Buschman MD, Rahajeng J, Field SJ (2015a) GOLPH3 links the Golgi, DNA damage, and cancer. Cancer Res 75:624–627PubMedPubMedCentralCrossRefGoogle Scholar
  18. Buschman MD, Xing M, Field SJ (2015b) The GOLPH3 pathway regulates Golgi shape and function and is activated by DNA damage. Front Neurosci 9:362PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chan WL, Steiner M, Witkos T, Egerer J, Busse B, Mizumoto S, Pestka JM, Zhang H, Hausser I, Khayal LA, Ott CE, Kolanczyk M, Willie B, Schinke T, Paganini C, Rossi A, Sugahara K, Amling M, Knaus P, Chan D, Lowe M, Mundlos S, Kornak U (2018) Impaired proteoglycan glycosylation, elevated TGF-β signaling, and abnormal osteoblast differentiation as the basis for bone fragility in a mouse model for gerodermia osteodysplastica. PLoS Genet 14:e1007242PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chang SH, Hong SH, Jiang HL, Minai-Tehrani A, Yu KN, Lee JH, Kim JE, Shin JY, Kang B, Park S, Han K, Chae C, Cho MH (2012) GOLGA2/GM130, cis-Golgi matrix protein, is a novel target of anticancer gene therapy. Mol Ther 20:2052–2063PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chen Y, Chen PL, Chen CF, Sharp ZD, Lee WH (1999) Thyroid hormone, T3-dependent phosphorylation and translocation of Trip230 from the Golgi complex to the nucleus. Proc Natl Acad Sci USA 96:4443–4448PubMedCrossRefGoogle Scholar
  22. Chen J, Wang F, Xu J, He Z, Lu Y, Wang Z (2016) The role of PAQR3 gene promoter hypermethylation in breast cancer and prognosis. Oncol Rep 36:1612–1618PubMedCrossRefPubMedCentralGoogle Scholar
  23. Choi Y, Kwon CH, Lee SJ, Park J, Shin JY, Park DY (2018) Integrative analysis of oncogenic fusion genes and their functional impact in colorectal cancer. Br J Cancer 119:230–240PubMedPubMedCentralCrossRefGoogle Scholar
  24. Darby S, Sahadevan K, Khan MM, Robson CN, Leung HY, Gnanapragasam VJ (2006) Loss of Sef (similar expression to FGF) expression is associated with high grade and metastatic prostate cancer. Oncogene 25:4122–4127PubMedCrossRefPubMedCentralGoogle Scholar
  25. Darby S, Murphy T, Thomas H, Robson CN, Leung HY, Mathers ME, Gnanapragasam VJ (2009) Similar expression to FGF (Sef) inhibits fibroblast growth factor-induced tumourigenic behaviour in prostate cancer cells and is downregulated in aggressive clinical disease. Br J Cancer 101:1891–1899PubMedPubMedCentralCrossRefGoogle Scholar
  26. Davis FM, Parsonage MT, Cabot PJ, Parat MO, Thompson EW, Roberts-Thomson SJ, Monteith GR (2013) Assessment of gene expression of intracellular calcium channels, pumps and exchangers with epidermal growth factor-induced epithelial-mesenchymal transition in a breast cancer cell line. Cancer Cell Int 13:76PubMedPubMedCentralCrossRefGoogle Scholar
  27. Derby MC, van Vliet C, Brown D, Luke MR, Lu L, Hong W, Stow JL, Gleeson PA (2004) Mammalian GRIP domain proteins differ in their membrane binding properties and are recruited to distinct domains of the TGN. J Cell Sci 117:5865–5874PubMedCrossRefPubMedCentralGoogle Scholar
  28. Derby MC, Lieu ZZ, Brown D, Stow JL, Goud B, Gleeson PA (2007) The trans-Golgi network golgin, GCC185, is required for endosome-to-Golgi transport and maintenance of Golgi structure. Traffic 8:758–773PubMedCrossRefGoogle Scholar
  29. Diao A, Rahman D, Pappin DJ, Lucocq J, Lowe M (2003) The coiled-coil membrane protein golgin-84 is a novel Rab effector required for Golgi ribbon formation. J Cell Biol 160:201–212PubMedPubMedCentralCrossRefGoogle Scholar
  30. Ding J, Du K (2009) ClipR-59 interacts with Akt and regulates Akt cellular compartmentalization. Mol Cell Biol 29:1459–1471PubMedPubMedCentralCrossRefGoogle Scholar
  31. Ding Z, Liu Y, Yao L, Wang D, Zhang J, Cui G, Yang X, Huang X, Liu F, Shen A (2015) Spy1 induces de-ubiquitinating of RIP1 arrest and confers glioblastoma’s resistance to tumor necrosis factor (TNF-α)-induced apoptosis through suppressing the association of CLIPR-59 and CYLD. Cell Cycle 14:2149–2159PubMedPubMedCentralCrossRefGoogle Scholar
  32. Donizy P, Kaczorowski M, Biecek P, Halon A, Szkudlarek T, Matkowski R (2016) Golgi-related proteins GOLPH2 (GP73/GOLM1) and GOLPH3 (GOPP1/MIDAS) in cutaneous melanoma: patterns of expression and prognostic significance. Int J Mol Sci 17:e1619PubMedCrossRefGoogle Scholar
  33. Duan J, Li X, Huang S, Zeng Y, He Y, Liu H, Lin D, Lu D, Zheng M (2018) GOLPH2, a gene downstream of ras signaling, promotes the progression of pancreatic ductal adenocarcinoma. Mol Med Rep 17:4187–4194PubMedPubMedCentralGoogle Scholar
  34. Duhamel S, Hébert J, Gaboury L, Bouchard A, Simon R, Sauter G, Basik M, Meloche S (2012) Sef downregulation by Ras causes MEK1/2 to become aberrantly nuclear localized leading to polyploidy and neoplastic transformation. Cancer Res 72:626–635PubMedCrossRefGoogle Scholar
  35. Efimov A, Kharitonov A, Efimova N, Loncarek J, Miller PM, Andreyeva N, Gleeson P, Galjart N, Maia AR, McLeod IX, Yates JR 3rd, Maiato H, Khodjakov A, Akhmanova A, Kaverina I (2007) Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. Dev Cell 12:917–930PubMedPubMedCentralCrossRefGoogle Scholar
  36. Egerer J, Emmerich D, Fischer-Zirnsak B, Chan WL, Meierhofer D, Tuysuz B, Marschner K, Sauer S, Barr FA, Mundlos S, Kornak U (2015) GORAB missense mutations disrupt RAB6 and ARF5 binding and Golgi targeting. J Invest Dermatol 135:2368–2376PubMedCrossRefGoogle Scholar
  37. Fan F, Feng L, He J, Wang X, Jiang X, Zhang Y, Wang Z, Chen Y (2008) RKTG sequesters B-Raf to the Golgi apparatus and inhibits the proliferation and tumorigenicity of human malignant melanoma cells. Carcinogenesis 29:1157–1163PubMedCrossRefGoogle Scholar
  38. Feng L, Xie X, Ding Q, Luo X, He J, Fan F, Liu W, Wang Z, Chen Y (2007) Spatial regulation of Raf kinase signaling by RKTG. Proc Natl Acad Sci U S A 104:14348–14353PubMedPubMedCentralCrossRefGoogle Scholar
  39. Foulquier F, Amyere M, Jaeken J, Zeevaert R, Schollen E, Race V, Bammens R, Morelle W, Rosnoblet C, Legrand D, Demaegd D, Buist N, Cheillan D, Guffon N, Morsomme P, Annaert W, Freeze HH, Van Schaftingen E, Vikkula M, Matthijs G (2012) TMEM165 deficiency causes a congenital disorder of glycosylation. Am J Hum Genet 91:15–26PubMedPubMedCentralCrossRefGoogle Scholar
  40. Fridmann-Sirkis Y, Siniossoglou S, Pelham HR (2004) TMF is a golgin that binds Rab6 and influences Golgi morphology. BMC Cell Biol 5:18PubMedPubMedCentralCrossRefGoogle Scholar
  41. Fritzler MJ, Lung CC, Hamel JC, Griffith KJ, Chan EK (1995) Molecular characterization of Golgin-245, a novel Golgi complex protein containing a granin signature. J Biol Chem 270:31262–31268PubMedCrossRefPubMedCentralGoogle Scholar
  42. Fuchs Y, Brunwasser M, Haif S, Haddad J, Shneyer B, Goldshmidt-Tran O, Korsensky L, Abed M, Zisman-Rozen S, Koren L, Carmi Y, Apte R, Yang RB, Orian A, Bejar J, Ron D (2012) Sef is an inhibitor of proinflammatory cytokine signaling, acting by cytoplasmic sequestration of NF-κB. Dev Cell 23:611–623PubMedCrossRefPubMedCentralGoogle Scholar
  43. Fujikura D, Ito M, Chiba S, Harada T, Perez F, Reed JC, Uede T, Miyazaki T (2012) CLIPR-59 regulates TNF-α-induced apoptosis by controlling ubiquitination of RIP1. Cell Death Dis 3:e264PubMedPubMedCentralCrossRefGoogle Scholar
  44. García-Mata R, Sztul E (2003) The membrane-tethering protein p115 interacts with GBF1, an ARF guanine-nucleotide-exchange factor. EMBO Rep 4:320–325PubMedPubMedCentralCrossRefGoogle Scholar
  45. Gillingham AK, Pfeifer AC, Munro S (2002) CASP, the alternatively spliced product of the gene encoding the CCAAT-displacement protein transcription factor, is a Golgi membrane protein related to giantin. Mol Biol Cell 13:3761–3774PubMedPubMedCentralCrossRefGoogle Scholar
  46. Gosavi P, Houghton FJ, McMillan PJ, Hanssen E, Gleeson PA (2018) The Golgi ribbon in mammalian cells negatively regulates autophagy by modulating mTOR activity. J Cell Sci 131:jcs211987CrossRefGoogle Scholar
  47. Grice DM, Vetter I, Faddy HM, Kenny PA, Roberts-Thomson SJ, Monteith GR (2010) Golgi calcium pump secretory pathway calcium ATPase 1 (SPCA1) is a key regulator of insulin-like growth factor receptor (IGF1R) processing in the basal-like breast cancer cell line MDA-MB-231. J Biol Chem 285:37458–37466PubMedPubMedCentralCrossRefGoogle Scholar
  48. Guinea B, Ligos JM, Laín de Lera T, Martín-Caballero J, Flores J, Gonzalez de la Peña M, García-Castro J, Bernad A (2006) Nucleocytoplasmic shuttling of STK16 (PKL12), a Golgi-resident serine/threonine kinase involved in VEGF expression regulation. Exp Cell Res 312:135–144PubMedCrossRefPubMedCentralGoogle Scholar
  49. Guo W, You X, Xu D, Zhang Y, Wang Z, Man K, Wang Z, Chen Y (2016) PAQR3 enhances Twist1 degradation to suppress epithelial-mesenchymal transition and metastasis of gastric cancer cells. Carcinogenesis 37:397–407PubMedCrossRefPubMedCentralGoogle Scholar
  50. Hayes GL, Brown FC, Haas AK, Nottingham RM, Barr FA, Pfeffer SR (2009) Multiple Rab GTPase binding sites in GCC185 suggest a model for vesicle tethering at the trans-Golgi. Mol Biol Cell 20:209–217PubMedPubMedCentralCrossRefGoogle Scholar
  51. He Q, Gong Y, Gower L, Yang X, Friesel RE (2016) Sef regulates epithelial-mesenchymal transition in breast cancer cells. J Cell Biochem 117:2346–2356PubMedPubMedCentralCrossRefGoogle Scholar
  52. Hennies HC, Kornak U, Zhang H, Egerer J, Zhang X, Seifert W, Kühnisch J, Budde B, Nätebus M, Brancati F, Wilcox WR, Müller D, Kaplan PB, Rajab A, Zampino G, Fodale V, Dallapiccola B, Newman W, Metcalfe K, Clayton-Smith J, Tassabehji M, Steinmann B, Barr FA, Nürnberg P, Wieacker P, Mundlos S (2008) Gerodermia osteodysplastica is caused by mutations in SCYL1BP1, a Rab-6 interacting golgin. Nat Genet 40:1410–1412PubMedPubMedCentralCrossRefGoogle Scholar
  53. Heuer D, Rejman Lipinski A, Machuy N, Karlas A, Wehrens A, Siedler F, Brinkmann V, Meyer TF (2009) Chlamydia causes fragmentation of the Golgi compartment to ensure reproduction. Nature 457:731–735PubMedCrossRefPubMedCentralGoogle Scholar
  54. Hewavitharana T, Wedegaertner PB (2015) PAQR3 regulates Golgi vesicle fission and transport via the Gβγ-PKD signaling pathway. Cell Signal 27:2444–2451PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hoffmann HH, Schneider WM, Blomen VA, Scull MA, Hovnanian A, Brummelkamp TR, Rice CM (2017) Diverse viruses require the calcium transporter SPCA1 for maturation and spread. Cell Host Microbe 22:460–470.e5PubMedPubMedCentralCrossRefGoogle Scholar
  56. Houghton FJ, Chew PL, Lodeho S, Goud B, Gleeson PA (2009) The localization of the Golgin GCC185 is independent of Rab6A/A’ and Arl1. Cell 138:787–794PubMedCrossRefPubMedCentralGoogle Scholar
  57. Howley BV, Howe PH (2018) Metastasis-associated upregulation of ER-Golgi trafficking kinetics: regulation of cancer progression via the Golgi apparatus. Oncoscience 5:142–143PubMedPubMedCentralGoogle Scholar
  58. Howley BV, Link LA, Grelet S, El-Sabban M, Howe PH (2018) A CREB3-regulated ER-Golgi trafficking signature promotes metastatic progression in breast cancer. Oncogene 37:1308–1325PubMedCrossRefPubMedCentralGoogle Scholar
  59. Hsu RM, Zhong CY, Wang CL, Liao WC, Yang C, Lin SY, Lin JW, Cheng HY, Li PY, Yu CJ (2018) Golgi tethering factor golgin-97 suppresses breast cancer cell invasiveness by modulating NF-κB activity. Cell Commun Signal 16:19PubMedPubMedCentralCrossRefGoogle Scholar
  60. Huang S, Wang Y (2017) Golgi structure formation, function, and post-translational modifications in mammalian cells. F1000Res 6:2050PubMedPubMedCentralCrossRefGoogle Scholar
  61. Huang W, Guo W, You X, Pan Y, Dong Z, Jia G, Yang C, Chen Y (2016) PAQR3 suppresses the proliferation, migration and tumorigenicity of human prostate cancer cells. Oncotarget 33:53948–53958Google Scholar
  62. Infante C, Ramos-Morales F, Fedriani C, Bornens M, Rios RM (1999) GMAP-210, a cis-Golgi network-associated protein, is a minus end microtubule-binding protein. J Cell Biol 145:83–98PubMedPubMedCentralCrossRefGoogle Scholar
  63. Ise M, Kageyama H, Araki A, Itami M (2018) Identification of a novel GORASP2-ALK fusion in an ALK-positive large B-cell lymphoma. Leuk Lymphoma 6:1–5Google Scholar
  64. Jiang Y, Xie X, Zhang Y, Luo X, Wang X, Fan F, Zheng D, Wang Z, Chen Y (2010) Regulation of G-protein signaling by RKTG via sequestration of the G betagamma subunit to the Golgi apparatus. Mol Cell Biol 30:78–90PubMedCrossRefPubMedCentralGoogle Scholar
  65. Jiang Y, Xie X, Li Z, Wang Z, Zhang Y, Ling ZQ, Pan Y, Wang Z, Chen Y (2011) Functional cooperation of RKTG with p53 in tumorigenesis and epithelial-mesenchymal transition. Cancer Res 71:2959–2968PubMedCrossRefPubMedCentralGoogle Scholar
  66. Jiang Y, Su Y, Zhao Y, Pan C, Chen L (2015) Golgi phosphoprotein3 overexpression is associated with poor survival in patients with solid tumors: a meta-analysis. Int J Clin Exp Pathol 8:10615–10624PubMedPubMedCentralGoogle Scholar
  67. Jin Y, Dai Z (2016) USO1 promotes tumor progression via activating Erk pathway in multiple myeloma cells. Biomed Pharmacother 78:264–271PubMedCrossRefPubMedCentralGoogle Scholar
  68. Jin T, Ding Q, Huang H, Xu D, Jiang Y, Zhou B, Li Z, Jiang X, He J, Liu W, Zhang Y, Pan Y, Wang Z, Thomas WG, Chen Y (2012) PAQR10 and PAQR11 mediate Ras signaling in the Golgi apparatus. Cell Res 22:661–676PubMedCrossRefPubMedCentralGoogle Scholar
  69. Jing J, Junutula JR, Wu C, Burden J, Matern H, Peden AA, Prekeris R (2010) FIP1/RCP binding to Golgin-97 regulates retrograde transport from recycling endosomes to the trans-Golgi network. Mol Biol Cell 21:3041–3053PubMedPubMedCentralCrossRefGoogle Scholar
  70. Joachim J, Jefferies HB, Razi M, Frith D, Snijders AP, Chakravarty P, Judith D, Tooze SA (2015) Activation of ULK kinase and autophagy by GABARAP trafficking from the centrosome is regulated by WAC and GM130. Mol Cell 60:899–913PubMedPubMedCentralCrossRefGoogle Scholar
  71. Ju Q, Zhao Y, Liu Y, Zhou G, Li F, Xie P, Li Y, Li GC (2013) Monoclonal antibody preparation of Golgi phosphoprotein 2 and preliminary application in the early diagnosis of hepatocellular carcinoma. Mol Med Rep 8:517–522PubMedCrossRefPubMedCentralGoogle Scholar
  72. Kienzle C, Basnet N, Crevenna AH, Beck G, Habermann B, Mizuno N, von Blume J (2014) Cofilin recruits F-actin to SPCA1 and promotes Ca2+-mediated secretory cargo sorting. J Cell Biol 206:635–654PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kim S, Hill A, Warman ML, Smits P (2012a) Golgi disruption and early embryonic lethality in mice lacking USO1. PLoS One 7:e50530PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kim HJ, Lv D, Zhang Y, Peng T, Ma X (2012b) Golgi phosphoprotein 2 in physiology and in diseases. Cell Biosci 2:31PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kodani A, Kristensen I, Huang L, Sütterlin C (2009) GM130-dependent control of Cdc42 activity at the Golgi regulates centrosome organization. Mol Biol Cell 20:1192–2000PubMedPubMedCentralCrossRefGoogle Scholar
  76. Koreishi M, Gniadek TJ, Yu S, Masuda J, Honjo Y, Satoh A (2013) The golgin tether giantin regulates the secretory pathway by controlling stack organization within Golgi apparatus. PLoS One 8:e59821PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kovacs L, Chao-Chu J, Schneider S, Gottardo M, Tzolovsky G, Dzhindzhev NS, Riparbelli MG, Callaini G, Glover DM (2018) Gorab is a Golgi protein required for structure and duplication of Drosophila centrioles. Nat Genet 50:1021–1031PubMedPubMedCentralCrossRefGoogle Scholar
  78. Kurahashi H, Akagi K, Inazawa J, Ohta T, Niikawa N, Kayatani F, Sano T, Okada S, Nishisho I (1995) Isolation and characterization of a novel gene deleted in DiGeorge syndrome. Hum Mol Genet 4:541–549PubMedCrossRefPubMedCentralGoogle Scholar
  79. Lallemand-Breitenbach V, Quesnoit M, Braun V, El Marjou A, Poüs C, Goud B, Perez F (2004) CLIPR-59 is a lipid raft-associated protein containing a cytoskeleton-associated protein glycine-rich domain (CAP-Gly) that perturbs microtubule dynamics. J Biol Chem 279:41168–41178PubMedCrossRefPubMedCentralGoogle Scholar
  80. Lee JS, Kim MY, Park ER, Shen YN, Jeon JY, Cho EH, Park SH, Han CJ, Choi DW, Jang JJ, Suh KS, Hong J, Kim SB, Lee KH (2018) TMEM165, a Golgi transmembrane protein, is a novel marker for hepatocellular carcinoma and its depletion impairs invasion activity. Oncol Rep 40:1297–1306PubMedPubMedCentralGoogle Scholar
  81. Li Z, Ling ZQ, Guo W, Lu XX, Pan Y, Wang Z, Chen Y (2015) PAQR3 expression is downregulated in human breast cancers and correlated with HER2 expression. Oncotarget 6:12357–12368PubMedPubMedCentralGoogle Scholar
  82. Li RH, Zhang AM, Li S, Li TY, Wang LJ, Zhang HR, Shi JW, Liu XR, Chen Y, Chen YC, Wei TY, Gao Y, Li W, Tang HY, Tang MY (2016) PAQR3 gene expression and its methylation level in colorectal cancer tissues. Oncol Lett 12:1773–1778PubMedPubMedCentralCrossRefGoogle Scholar
  83. Li X, Li M, Chen D, Shi G, Zhao H (2018a) PAQR3 inhibits proliferation via suppressing PI3K/AKT signaling pathway in non-small cell lung cancer. Arch Med Sci 14:1289–1297PubMedCrossRefPubMedCentralGoogle Scholar
  84. Li H, Yang LL, Xiao Y, Deng WW, Chen L, Wu L, Zhang WF, Sun ZJ (2018b) Overexpression of Golgi phosphoprotein 2 is associated with poor prognosis in oral squamous cell carcinoma. Am J Clin Pathol 150:74–83PubMedCrossRefPubMedCentralGoogle Scholar
  85. Lieu ZZ, Gleeson PA (2010) Identification of different itineraries and retromer components for endosome-to-Golgi transport of TGN38 and Shiga toxin. Eur J Cell Biol 89:379–393PubMedCrossRefPubMedCentralGoogle Scholar
  86. Lieu ZZ, Derby MC, Teasdale RD, Hart C, Gunn P, Gleeson PA (2007) The golgin GCC88 is required for efficient retrograde transport of cargo from the early endosomes to the trans-Golgi network. Mol Biol Cell 18:4979–4991PubMedPubMedCentralCrossRefGoogle Scholar
  87. Lieu ZZ, Lock JG, Hammond LA, La Gruta NL, Stow JL, Gleeson PA (2008) A trans-Golgi network golgin is required for the regulated secretion of TNF in activated macrophages in vivo. Proc Natl Acad Sci U S A 105:3351–3356PubMedPubMedCentralCrossRefGoogle Scholar
  88. Lin YC, Chiang TC, Liu YT, Tsai YT, Jang LT, Lee FJ (2011) ARL4A acts with GCC185 to modulate Golgi complex organization. J Cell Sci 124:4014–4026PubMedCrossRefGoogle Scholar
  89. Ling ZQ, Guo W, Lu XX, Zhu X, Hong LL, Wang Z, Wang Z, Chen Y (2014) A Golgi-specific protein PAQR3 is closely associated with the progression, metastasis and prognosis of human gastric cancers. Ann Oncol 25:1363–1372PubMedCrossRefPubMedCentralGoogle Scholar
  90. Liu KC, Lin BS, Zhao M, Wang KY, Lan XP (2013) Cutl1: a potential target for cancer therapy. Cell Signal 25:349–354PubMedCrossRefPubMedCentralGoogle Scholar
  91. Liu G, Zhang Y, He F, Li J, Wei X, Li Y, Liao X, Sun J, Yi W, Niu D (2014) Expression of GOLPH2 is associated with the progression of and poor prognosis in gastric cancer. Oncol Rep 32:2077–2085PubMedCrossRefPubMedCentralGoogle Scholar
  92. Liu Y, Snedecor ER, Choi YJ, Yang N, Zhang X, Xu Y, Han Y, Jones EC, Shroyer KR, Clark RA, Zhang L, Qin C, Chen J (2016) Gorab is required for dermal condensate cells to respond to hedgehog signals during hair follicle morphogenesis. J Invest Dermatol 136:378–386PubMedCrossRefPubMedCentralGoogle Scholar
  93. Liu J, Yang X, Li B, Wang J, Wang W, Liu J, Liu Q, Zhang X (2017) STK16 regulates actin dynamics to control Golgi organization and cell cycle. Sci Rep 7:44607PubMedPubMedCentralCrossRefGoogle Scholar
  94. Lock JG, Hammond LA, Houghton F, Gleeson PA, Stow JL (2005) E-cadherin transport from the trans-Golgi network in tubulovesicular carriers is selectively regulated by golgin-97. Traffic 6:1142–1156PubMedCrossRefPubMedCentralGoogle Scholar
  95. Lounglaithong K, Bychkov A, Sampatanukul P (2018) Aberrant promoter methylation of the PAQR3 gene is associated with prostate cancer. Pathol Res Pract 214:126–129PubMedCrossRefPubMedCentralGoogle Scholar
  96. Lu L, Hong W (2003) Interaction of Arl1-GTP with GRIP domains recruits autoantigens Golgin-97 and Golgin-245/p230 onto the Golgi. Mol Biol Cell 14:3767–3781PubMedPubMedCentralCrossRefGoogle Scholar
  97. Lu L, Tai G, Hong W (2004) Autoantigen Golgin-97, an effector of Arl1 GTPase, participates in traffic from the endosome to the trans-golgi network. Mol Biol Cell 15:4426–4443PubMedPubMedCentralCrossRefGoogle Scholar
  98. Lu L, Tai G, Hong W (2005) Interaction of Arl1 GTPase with the GRIP domain of Golgin-245 as assessed by GST (glutathione-S-transferase) pull-down experiments. Methods Enzymol 404:432–441PubMedCrossRefPubMedCentralGoogle Scholar
  99. Lührig S, Kolb S, Mellies N, Nolte J (2013) The novel BTB-kelch protein, KBTBD8, is located in the Golgi apparatus and translocates to the spindle apparatus during mitosis. Cell Div 8:3PubMedPubMedCentralCrossRefGoogle Scholar
  100. Luke MR, Kjer-Nielsen L, Brown DL, Stow JL, Gleeson PA (2003) GRIP domain-mediated targeting of two new coiled-coil proteins, GCC88 and GCC185, to subcompartments of the trans-Golgi network. J Biol Chem 278:4216–4226PubMedCrossRefPubMedCentralGoogle Scholar
  101. Luke MR, Houghton F, Perugini MA, Gleeson PA (2005) The trans-Golgi network GRIP-domain proteins form alpha-helical homodimers. Biochem J 388:835–841PubMedPubMedCentralCrossRefGoogle Scholar
  102. Ma Z, Wang Y, Piao T, Li Z, Zhang H, Liu Z, Liu J (2015) The tumor suppressor role of PAQR3 in osteosarcoma. Tumour Biol 36:3319–3324PubMedCrossRefPubMedCentralGoogle Scholar
  103. MacNeil AJ, Pohajdak B (2009) Getting a GRASP on CASP: properties and role of the cytohesin-associated scaffolding protein in immunity. Immunol Cell Biol 87:72–80PubMedCrossRefPubMedCentralGoogle Scholar
  104. Makowski SL, Tran TT, Field SJ (2017) Emerging themes of regulation at the Golgi. Curr Opin Cell Biol 45:17–23PubMedPubMedCentralCrossRefGoogle Scholar
  105. McGee LJ, Jiang AL, Lan Y (2017) Golga5 is dispensable for mouse embryonic development and postnatal survival. Genesis 55. CrossRefGoogle Scholar
  106. Meyer S, Nolte J, Opitz L, Salinas-Riester G, Engel W (2010) Pluripotent embryonic stem cells and multipotent adult germline stem cells reveal similar transcriptomes including pluripotency-related genes. Mol Hum Reprod 16:846–855PubMedCrossRefPubMedCentralGoogle Scholar
  107. Micaroni M, Giacchetti G, Plebani R, Xiao GG, Federici L (2016) ATP2C1 gene mutations in Hailey-Hailey disease and possible roles of SPCA1 isoforms in membrane trafficking. Cell Death Dis 7:e2259PubMedPubMedCentralCrossRefGoogle Scholar
  108. Millarte V, Farhan H (2012) The Golgi in cell migration: regulation by signal transduction and its implications for cancer cell metastasis. Sci World J 2012:498278CrossRefGoogle Scholar
  109. Missiaen L, Raeymaekers L, Dode L, Vanoevelen J, Van Baelen K, Parys JB, Callewaert G, De Smedt H, Segaert S, Wuytack F (2004) SPCA1 pumps and Hailey-Hailey disease. Biochem Biophys Res Commun 332:1204–1213CrossRefGoogle Scholar
  110. Mo P, Yang S (2018) The store-operated calcium channels in cancer metastasis: from cell migration, invasion to metastatic colonization. Front Biosci (Landmark Ed) 23:1241–1256CrossRefGoogle Scholar
  111. Mori K, Kato H (2002) A putative nuclear receptor coactivator (TMF/ARA160) associates with hbrm/hSNF2 alpha and BRG-1/hSNF2 beta and localizes in the Golgi apparatus. FEBS Lett 520:127–132PubMedCrossRefGoogle Scholar
  112. Murphy T, Darby S, Mathers ME, Gnanapragasam VJ (2010) Evidence for distinct alterations in the FGF axis in prostate cancer progression to an aggressive clinical phenotype. J Pathol 220:452–460PubMedPubMedCentralGoogle Scholar
  113. Nacak TG, Leptien K, Fellner D, Augustin HG, Kroll J (2006) The BTB-kelch protein LZTR-1 is a novel Golgi protein that is degraded upon induction of apoptosis. J Biol Chem 281:5065–5671PubMedCrossRefPubMedCentralGoogle Scholar
  114. Nakamura N, Lowe M, Levine TP, Rabouille C, Warren G (1997) The vesicle docking protein p115 binds GM130, a cis-Golgi matrix protein, in a mitotically regulated manner. Cell 89:445–455PubMedCrossRefGoogle Scholar
  115. Naumann N, Schwaab J, Metzgeroth G, Jawhar M, Haferlach C, Göhring G, Schlegelberger B, Dietz CT, Schnittger S, Lotfi S, Gärtner M, Dang TA, Hofmann WK, Cross NC, Reiter A, Fabarius A (2015) Fusion of PDGFRB to MPRIP, CPSF6, and GOLGB1 in three patients with eosinophilia-associated myeloproliferative neoplasms. Genes Chromosomes Cancer 54:762–770PubMedCrossRefPubMedCentralGoogle Scholar
  116. Navarro Negredo P, Edgar JR, Manna PT, Antrobus R, Robinson MS (2018) The WDR11 complex facilitates the tethering of AP-1-derived vesicles. Nat Commun 9:596PubMedPubMedCentralCrossRefGoogle Scholar
  117. Ogino K, Low SE, Yamada K, Saint-Amant L, Zhou W, Muto A, Asakawa K, Nakai J, Kawakami K, Kuwada JY, Hirata H (2015) RING finger protein 121 facilitates the degradation and membrane localization of voltage-gated sodium channels. Proc Natl Acad Sci USA 112:2859–2864PubMedCrossRefPubMedCentralGoogle Scholar
  118. Oka T, Ungar D, Hughson FM, Krieger M (2004) The COG and COPI complexes interact to control the abundance of GEARs, a subset of Golgi integral membrane proteins. Mol Biol Cell 15:2423–2435PubMedPubMedCentralCrossRefGoogle Scholar
  119. Pakdel M, von Blume J (2018) Exploring new routes for secretory protein export from the trans-Golgi network. Mol Biol Cell 29:235–240PubMedPubMedCentralCrossRefGoogle Scholar
  120. Papadopoulos N, Lennartsson J, Heldin CH (2018) PDGFRβ translocates to the nucleus and regulates chromatin remodeling via TATA element-modifying factor 1. J Cell Biol 217:1701–1717PubMedPubMedCentralCrossRefGoogle Scholar
  121. Peng W, Lei Q, Jiang Z, Hu Z (2014) Characterization of Golgi scaffold proteins and their roles in compartmentalizing cell signaling. J Mol Histol 45:435–445PubMedCrossRefPubMedCentralGoogle Scholar
  122. Perez F, Pernet-Gallay K, Nizak C, Goodson HV, Kreis TE, Goud B (2002) CLIPR-59, a new trans-Golgi/TGN cytoplasmic linker protein belonging to the CLIP-170 family. J Cell Biol 156:61–642CrossRefGoogle Scholar
  123. Perry E, Tsruya R, Levitsky P, Pomp O, Taller M, Weisberg S, Parris W, Kulkarni S, Malovani H, Pawson T, Shpungin S, Nir U (2004) TMF/ARA160 is a BC-box-containing protein that mediates the degradation of Stat3. Oncogene 23:8908–8919PubMedCrossRefGoogle Scholar
  124. Petrosyan A, Holzapfel MS, Muirhead DE, Cheng PW (2014) Restoration of compact Golgi morphology in advanced prostate cancer enhances susceptibility to galectin-1-induced apoptosis by modifying mucin O-glycan synthesis. Mol Cancer Res 12:1704–1716PubMedPubMedCentralCrossRefGoogle Scholar
  125. Philips MR (2004) Sef: a MEK/ERK catcher on the Golgi. Mol Cell 15:168–169PubMedCrossRefPubMedCentralGoogle Scholar
  126. Pizzo P, Lissandron V, Pozzan T (2010) The trans-golgi compartment: a new distinct intracellular Ca store. Commun Integr Biol 3:462–464PubMedPubMedCentralCrossRefGoogle Scholar
  127. Popławski P, Piekiełko-Witkowska A, Nauman A (2017) The significance of TRIP11 and T3 signalling pathway in renal cancer progression and survival of patients. Endokrynol Pol 68:631–641PubMedPubMedCentralGoogle Scholar
  128. Potelle S, Dulary E, Climer L, Duvet S, Morelle W, Vicogne D, Lebredonchel E, Houdou M, Spriet C, Krzewinski-Recchi MA, Peanne R, Klein A, de Bettignies G, Morsomme P, Matthijs G, Marquardt T, Lupashin V, Foulquier F (2017) Manganese-induced turnover of TMEM165. Biochem J 474:1481–1493PubMedPubMedCentralCrossRefGoogle Scholar
  129. Pranke IM, Morello V, Bigay J, Gibson K, Verbavatz JM, Antonny B, Jackson CL (2011) α-Synuclein and ALPS motifs are membrane curvature sensors whose contrasting chemistry mediates selective vesicle binding. J Cell Biol 194:89–103PubMedPubMedCentralCrossRefGoogle Scholar
  130. Preisinger C, Short B, De Corte V, Bruyneel E, Haas A, Kopajtich R, Gettemans J, Barr FA (2004) YSK1 is activated by the Golgi matrix protein GM130 and plays a role in cell migration through its substrate 14-3-3zeta. J Cell Biol 164:1009–1020PubMedPubMedCentralCrossRefGoogle Scholar
  131. Qiao S, Guo W, Liao L, Wang L, Wang Z, Zhang R, Xu D, Zhang Y, Pan Y, Wang Z, Chen Y (2015) DDB2 is involved in ubiquitination and degradation of PAQR3 and regulates tumorigenesis of gastric cancer cells. Biochem J 469:469–480PubMedCrossRefPubMedCentralGoogle Scholar
  132. Reddy JV, Burguete AS, Sridevi K, Ganley IG, Nottingham RM, Pfeffer SR (2006) A functional role for the GCC185 golgin in mannose 6-phosphate receptor recycling. Mol Biol Cell 17:4353–4363PubMedPubMedCentralCrossRefGoogle Scholar
  133. Rejman Lipinski A, Heymann J, Meissner C, Karlas A, Brinkmann V, Meyer TF, Heuer D (2009) Rab6 and Rab11 regulate chlamydia trachomatis development and golgin-84-dependent Golgi fragmentation. PLoS Pathog 5:e1000615PubMedCrossRefGoogle Scholar
  134. Ren Y, Cheng L, Rong Z, Li Z, Li Y, Li H, Wang Z, Chang Z (2006) hSef co-localizes and interacts with Ras in the inhibition of Ras/MAPK signaling pathway. Biochem Biophys Res Commun 347:988–993PubMedCrossRefPubMedCentralGoogle Scholar
  135. Ren Y, Cheng L, Rong Z, Li Z, Li Y, Zhang X, Xiong S, Hu J, Fu XY, Chang Z (2008) hSef potentiates EGF-mediated MAPK signaling through affecting EGFR trafficking and degradation. Cell Signal 20:518–533PubMedCrossRefPubMedCentralGoogle Scholar
  136. Ríos RM, Sanchís A, Tassin AM, Fedriani C, Bornens M (2004) GMAP-210 recruits gamma-tubulin complexes to cis-Golgi membranes and is required for Golgi ribbon formation. Cell 118:323–335PubMedCrossRefPubMedCentralGoogle Scholar
  137. Rivero S, Cardenas J, Bornens M, Rios RM (2009) Microtubule nucleation at the cis-side of the Golgi apparatus requires AKAP450 and GM130. EMBO J 28:1016–1028PubMedPubMedCentralCrossRefGoogle Scholar
  138. Rizzo R, Parashuraman S, D'Angelo G, Luini A (2017) GOLPH3 and oncogenesis: what is the molecular link? Tissue Cell 49:170–174PubMedCrossRefPubMedCentralGoogle Scholar
  139. Rong Z, Wang A, Li Z, Ren Y, Cheng L, Li Y, Wang Y, Ren F, Zhang X, Hu J, Chang Z (2009) IL-17RD (Sef or IL-17RLM) interacts with IL-17 receptor and mediates IL-17 signaling. Cell Res 19:208–215PubMedPubMedCentralCrossRefGoogle Scholar
  140. Sato K, Roboti P, Mironov AA, Lowe M (2015) Coupling of vesicle tethering and Rab binding is required for in vivo functionality of the golgin GMAP-210. Mol Biol Cell 26:537–553PubMedPubMedCentralCrossRefGoogle Scholar
  141. Satoh A, Wang Y, Malsam J, Beard MB, Warren G (2003) Golgin-84 is a rab1 binding partner involved in Golgi structure. Traffic 4:153–161PubMedPubMedCentralCrossRefGoogle Scholar
  142. Sechi S, Frappaolo A, Belloni G, Colotti G, Giansanti MG (2015) The multiple cellular functions of the oncoprotein Golgi phosphoprotein 3. Oncotarget 6:3493–3506PubMedPubMedCentralCrossRefGoogle Scholar
  143. Shin JJH, Gillingham AK, Begum F, Chadwick J, Munro S (2017) TBC1D23 is a bridging factor for endosomal vesicle capture by golgins at the trans-Golgi. Nat Cell Biol 19:1424–1432PubMedPubMedCentralCrossRefGoogle Scholar
  144. Sohda M, Misumi Y, Yamamoto A, Nakamura N, Ogata S, Sakisaka S, Hirose S, Ikehara Y, Oda K (2010) Interaction of Golgin-84 with the COG complex mediates the intra-Golgi retrograde transport. Traffic 11:1552–1566PubMedCrossRefGoogle Scholar
  145. Sohda M, Misumi Y, Ogata S, Sakisaka S, Hirose S, Ikehara Y, Oda K (2015) Trans-Golgi protein p230/golgin-245 is involved in phagophore formation. Biochem Biophys Res Commun 456:275–281PubMedCrossRefGoogle Scholar
  146. Sorice M, Matarrese P, Manganelli V, Tinari A, Giammarioli AM, Mattei V, Misasi R, Garofalo T, Malorni W (2010) Role of GD3-CLIPR-59 association in lymphoblastoid T cell apoptosis triggered by CD95/Fas. PLoS One 5:e8567PubMedPubMedCentralCrossRefGoogle Scholar
  147. Stogios PJ, Downs GS, Jauhal JJ, Nandra SK, Privé GG (2005) Sequence and structural analysis of BTB domain proteins. Genome Biol 6:R82PubMedPubMedCentralCrossRefGoogle Scholar
  148. Sui J, Li X, Xing J, Cao F, Wang H, Gong H, Zhang W (2015) Lentivirus-mediated silencing of USO1 inhibits cell proliferation and migration of human colon cancer cells. Med Oncol 32:218PubMedCrossRefPubMedCentralGoogle Scholar
  149. Tan X, Banerjee P, Guo HF, Ireland S, Pankova D, Ahn YH, Nikolaidis IM, Liu X, Zhao Y, Xue Y, Burns AR, Roybal J, Gibbons DL, Zal T, Creighton CJ, Ungar D, Wang Y, Kurie JM (2017) Epithelial-to-mesenchymal transition drives a pro-metastatic Golgi compaction process through scaffolding protein PAQR11. J Clin Invest 127:117–131PubMedCrossRefPubMedCentralGoogle Scholar
  150. Taneja TK, Ma D, Kim BY, Welling PA (2018) Golgin-97 targets ectopically expressed inward rectifying potassium channel, Kir2.1, to the trans-Golgi network in COS-7 cells. Front Physiol 9:1070PubMedPubMedCentralCrossRefGoogle Scholar
  151. Tang SL, Gao YL, Hu WZ (2017) PAQR3 inhibits the proliferation, migration and invasion in human glioma cells. Biomed Pharmacother 92:24–32PubMedCrossRefPubMedCentralGoogle Scholar
  152. Tompkins N, MacKenzie B, Ward C, Salgado D, Leidal A, McCormick C, Pohajdak B (2014a) Cytohesin-associated scaffolding protein (CASP) is involved in migration and IFN-γ secretion in natural killer cells. Biochem Biophys Res Commun 451:165–170PubMedCrossRefPubMedCentralGoogle Scholar
  153. Tompkins N, MacNeil AJ, Pohajdak B (2014b) Cytohesin-associated scaffolding protein (CASP) is a substrate for granzyme B and ubiquitination. Biochem Biophys Res Commun 452:473–478PubMedCrossRefPubMedCentralGoogle Scholar
  154. Troadec E, Dobbelstein S, Bertrand P, Faumont N, Trimoreau F, Touati M, Chauzeix J, Petit B, Bordessoule D, Feuillard J, Bastard C, Gachard N (2017) A novel t(3;13)(q13;q12) translocation fusing FLT3 with GOLGB1: toward myeloid/lymphoid neoplasms with eosinophilia and rearrangement of FLT3? Leukemia 31:514–517PubMedCrossRefPubMedCentralGoogle Scholar
  155. Vanegas S, Sua LF, López-Tenorio J, Ramírez-Montaño D, Pachajoa H (2018) Achondrogenesis type 1A: clinical, histologic, molecular, and prenatal ultrasound diagnosis. Appl Clin Genet 11:69–73PubMedPubMedCentralCrossRefGoogle Scholar
  156. Wang Y, Seemann J, Pypaert M, Shorter J, Warren G (2003) A direct role for GRASP65 as a mitotically regulated Golgi stacking factor. EMBO J 22:3279–3290PubMedPubMedCentralCrossRefGoogle Scholar
  157. Wang X, Li X, Fan F, Jiao S, Wang L, Zhu L, Pan Y, Wu G, Ling ZQ, Fang J, Chen Y (2012) PAQR3 plays a suppressive role in the tumorigenesis of colorectal cancers. Carcinogenesis 33:2228–2235PubMedCrossRefGoogle Scholar
  158. Wang X, Wang L, Zhu L, Pan Y, Xiao F, Liu W, Wang Z, Guo F, Liu Y, Thomas WG, Chen Y (2013) PAQR3 modulates insulin signaling by shunting phosphoinositide 3-kinase p110α to the Golgi apparatus. Diabetes 62:444–456PubMedPubMedCentralCrossRefGoogle Scholar
  159. Wang XW, Wei W, Wang WQ, Zhao XY, Guo H, Fang DC (2014) RING finger proteins are involved in the progression of Barrett esophagus to esophageal adenocarcinoma: a preliminary study. Gut Liver 8:487–494PubMedPubMedCentralCrossRefGoogle Scholar
  160. Wei JH, Seemann J (2009) Mitotic division of the mammalian Golgi apparatus. Semin Cell Dev Biol 20:810–816PubMedCrossRefGoogle Scholar
  161. Wei JH, Seemann J (2017) Golgi ribbon disassembly during mitosis, differentiation and disease progression. Curr Opin Cell Biol 47:43–51PubMedPubMedCentralCrossRefGoogle Scholar
  162. Wei JH, Zhang ZC, Wynn RM, Seemann J (2015) GM130 regulates Golgi-derived spindle assembly by activating TPX2 and capturing microtubules. Cell 162:287–299PubMedPubMedCentralCrossRefGoogle Scholar
  163. Witkos TM, Lowe M (2016) The Golgin family of coiled-coil tethering proteins. Front Cell Dev Biol 3:86PubMedPubMedCentralCrossRefGoogle Scholar
  164. Wong M, Gillingham AK, Munro S (2017) The golgin coiled-coil proteins capture different types of transport carriers via distinct N-terminal motifs. BMC Biol 15:3PubMedPubMedCentralCrossRefGoogle Scholar
  165. Wu M, Lu L, Hong W, Song H (2004) Structural basis for recruitment of GRIP domain golgin-245 by small GTPase Arl1. Nat Struct Mol Biol 11:86–94PubMedCrossRefGoogle Scholar
  166. Wu Q, Zhuang K, Li H (2016) PAQR3 plays a suppressive role in laryngeal squamous cell carcinoma. Tumour Biol 37:561–565PubMedCrossRefPubMedCentralGoogle Scholar
  167. Wu MH, Luo JD, Wang WC, Chang TH, Hwang WL, Lee KH, Liu SY, Yang JW, Chiou CT, Chang CH, Chiang WF (2018) Risk analysis of malignant potential of oral verrucous hyperplasia: a follow-up study of 269 patients and copy number variation analysis. Head Neck 40:1046–1056PubMedCrossRefPubMedCentralGoogle Scholar
  168. Xiang P, Sun Y, Liu Y, Shu Q, Zhu Y (2018) Really interesting new gene finger protein 121 is a tumor suppressor of renal cell carcinoma. Gene 676:322–328PubMedCrossRefPubMedCentralGoogle Scholar
  169. Xiu Y, Liu Z, Xia S, Jin C, Yin H, Zhao W, Wu Q (2014) MicroRNA-137 upregulation increases bladder cancer cell proliferation and invasion by targeting PAQR3. PLoS One 9:e109734PubMedPubMedCentralCrossRefGoogle Scholar
  170. Xu Y, Deng N, Wang X, Chen Y, Li G, Fan H (2017) RKTG overexpression inhibits proliferation and induces apoptosis of human leukemia cells via suppression of the ERK and PI3K/AKT signaling pathways. Oncol Lett 14:965–970PubMedPubMedCentralCrossRefGoogle Scholar
  171. Yamane J, Kubo A, Nakayama K, Yuba-Kubo A, Katsuno T, Tsukita S, Tsukita S (2007) Functional involvement of TMF/ARA160 in Rab6-dependent retrograde membrane traffic. Exp Cell Res 313:3472–3485PubMedCrossRefGoogle Scholar
  172. Yang X, Kovalenko D, Nadeau RJ, Harkins LK, Mitchell J, Zubanova O, Chen PY, Friesel R (2004) Sef interacts with TAK1 and mediates JNK activation and apoptosis. J Biol Chem 279:38099–38102PubMedCrossRefPubMedCentralGoogle Scholar
  173. Yu L, Zhou L, Cheng Y, Sun L, Fan J, Liang J, Guo M, Liu N, Zhu L (2014) MicroRNA-543 acts as an oncogene by targeting PAQR3 in hepatocellular carcinoma. Am J Cancer Res 4:897–906PubMedPubMedCentralGoogle Scholar
  174. Yu N, Signorile L, Basu S, Ottema S, Lebbink JHG, Leslie K, Smal I, Dekkers D, Demmers J, Galjart N (2016) Isolation of functional tubulin dimers and of tubulin-associated proteins from mammalian cells. Curr Biol 26:1728–1736PubMedCrossRefPubMedCentralGoogle Scholar
  175. Zemirli N, Pourcelot M, Dogan N, Vazquez A, Arnoult D (2014) The E3 ubiquitin ligase RNF121 is a positive regulator of NF-κB activation. Cell Commun Signal 12:72PubMedPubMedCentralGoogle Scholar
  176. Zhang X, Wang Y (2016) GRASPs in Golgi structure and function. Front Cell Dev Biol 3:84PubMedPubMedCentralCrossRefGoogle Scholar
  177. Zhang Y, Jiang X, Qin X, Ye D, Yi Z, Liu M, Bai O, Liu W, Xie X, Wang Z, Fang J, Chen Y (2010) RKTG inhibits angiogenesis by suppressing MAPK-mediated autocrine VEGF signaling and is downregulated in clear-cell renal cell carcinoma. Oncogene 29:5404–5415PubMedCrossRefPubMedCentralGoogle Scholar
  178. Zhang H, Zhao X, Yan L, Li M (2011) Similar expression to FGF (Sef) reduces endometrial adenocarcinoma cells proliferation via inhibiting fibroblast growth factor 2-mediated MAPK/ERK signaling pathway. Gynecol Oncol 122:669–674PubMedCrossRefPubMedCentralGoogle Scholar
  179. Zhang Y, Hu W, Wang L, Han B, Lin R, Wei N (2017) Association of GOLPH2 expression with survival in non-small-cell lung cancer: clinical implications and biological validation. Biomark Med 11:967–977PubMedCrossRefPubMedCentralGoogle Scholar
  180. Zhao Y, Hongdu B, Ma D, Chen Y (2014) Really interesting new gene finger protein 121 is a novel Golgi-localized membrane protein that regulates apoptosis. Acta Biochim Biophys Sin Shanghai 46:668–674PubMedCrossRefPubMedCentralGoogle Scholar
  181. Zhao J, Yang C, Guo S, Wu Y (2015) GM130 regulates epithelial-to-mesenchymal transition and invasion of gastric cancer cells via snail. Int J Clin Exp Pathol 8:10784–10791PubMedPubMedCentralGoogle Scholar
  182. Zhao C, Li Y, Chen G, Wang F, Shen Z, Zhou R (2017) Overexpression of miR-15b-5p promotes gastric cancer metastasis by regulating PAQR3. Oncol Rep 38:352–358PubMedCrossRefPubMedCentralGoogle Scholar
  183. Zhou Z, Sun X, Zou Z, Sun L, Zhang T, Guo S, Wen Y, Liu L, Wang Y, Qin J, Li L, Gong W, Bao S (2010) PRMT5 regulates Golgi apparatus structure through methylation of the golgin GM130. Cell Res 20:1023–1033PubMedCrossRefGoogle Scholar
  184. Zhou F, Wang S, Wang J (2017) PAQR3 inhibits the proliferation and tumorigenesis in esophageal Cancer cells. Oncol Res 25:663–671PubMedCrossRefPubMedCentralGoogle Scholar
  185. Zisman-Rozen S, Fink D, Ben-Izhak O, Fuchs Y, Brodski A, Kraus MH, Bejar J, Ron D (2007) Downregulation of Sef, an inhibitor of receptor tyrosine kinase signaling, is common to a variety of human carcinomas. Oncogene 26:6093–6098PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Piotr Donizy
    • 1
    • 2
  • Jakub Marczuk
    • 1
  1. 1.Department of Pathomorphology and Oncological CytologyWroclaw Medical UniversityWroclawPoland
  2. 2.Jan Mikulicz-Radecki University Teaching HospitalWroclawPoland

Personalised recommendations