Advertisement

Communication of the Cell Periphery with the Golgi Apparatus: A Hypothesis

  • Werner Jaross
Chapter
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 67)

Abstract

The Golgi apparatus plays a central role in the numerous traffic tasks in cells. Whereas the well-investigated chemical signaling is sufficient to explain the information processes in the secretory output of cells, it is insufficient to do that for the substitution of structural elements in the three-dimensional space of the cell. Here we review recent work (Jaross, Front Biosci 23:940–946, 2018) suggesting that molecular vibration patterns of those macromolecules which have to be exchanged are recognized by molecules in the Golgi via resonance of the electromagnetic fingerprints. That results in the activation of specific molecules and induction of the whole substitution process. For bridging intracellular distances, the IR radiation must be coherent. It is discussed that coherence is achieved by chemical reaction during the changing process of the molecule along with the quasicrystalline structure of the neighboring water molecules. Several aspects of the relevance of that signaling to the direct interactions of molecules during various intracellular processes are discussed.

References

  1. Alberts B (2017) Molecular biology of the cell. Garland Science, New York.  https://doi.org/10.1201/9781315735368 CrossRefGoogle Scholar
  2. Balabanian L, Berger CL, Hendricks AG (2016) The role of the microtubule cytoskeleton in regulating intracellular transport. Biophys J 110(3):466a.  https://doi.org/10.1016/j.bpj.2015.11.2494 CrossRefGoogle Scholar
  3. Barghouth PG, Thiruvalluvan M, Oviedo NJ (2015) Bioelectrical regulation of cell cycle and the planarian model system. Biochim Biophys Acta 1848(10 Pt B):2629–2637.  https://doi.org/10.1016/j.bbamem.2015.02.024 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barzanjeh S, Salari V, Tuszynski JA, Cifra M, Simon C (2017) Monitoring microtubule mechanical vibrations via optomechanical coupling. bioRxiv.  https://doi.org/10.1101/097725
  5. Brown RW, Cheng YC, Haacke EM, Thompson MR, Venkatesan R (2014) Electromagnetic principles. In: Magnetic resonance imaging. Wiley, London.  https://doi.org/10.1002/9781118633953.app1 CrossRefGoogle Scholar
  6. Chee HK, Oh SJ (2013) Molecular vibration-activity relationship in the agonism of adenosine receptors. Genomics Inform 11(4):282–288.  https://doi.org/10.5808/GI.2013.11.4.282 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chee HK, Yang JS, Joung JG, Zhang BT, Oh SJ (2015) Characteristic molecular vibrations of adenosine receptor ligands. FEBS Lett 589(4):548–552.  https://doi.org/10.1016/j.febslet.2015.01.024 CrossRefPubMedGoogle Scholar
  8. Chernet BT, Levin M (2013) Transmembrane voltage potential is an essential cellular parameter for the detection and control of tumor development in a Xenopus model. Dis Model Mech 6(3):595–607.  https://doi.org/10.1242/dmm.010835 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cifra M, Pospisil P (2014) Ultra-weak photon emission from biological samples: definition, mechanisms, properties, detection and applications. J Photochem Photobiol B 139:2–10.  https://doi.org/10.1016/j.jphotobiol.2014.02.009 CrossRefPubMedGoogle Scholar
  10. Córdova MO, Flores Ramírez CI, Bejarano BV, Arroyo Razo GA, Pérez Flores FJ, Tellez VC, Ruvalcaba RM (2011) Comparative study using different infrared zones of the solventless activation of organic reactions. Int J Mol Sci 12(12):8575–8580CrossRefGoogle Scholar
  11. Cosic I (1994) Macromolecular bioactivity: is it resonant interaction between macromolecules? – Theory and applications. IEEE Trans Biomed Eng 41(12):1101–1114.  https://doi.org/10.1109/10.33585 CrossRefPubMedGoogle Scholar
  12. Cosic I, Pirogova E, Vojisavljevic V, Fang Q (2006) Electromagnetic properties of biomolecules. FME Trans 34:71–801Google Scholar
  13. Cosic I, Cosic D, Lazar K (2015) Is it possible to predict electromagnetic resonances in proteins, DNA and RNA? EPJ Nonlinear Biomed Phys 3(1):5.  https://doi.org/10.1140/epjnbp/s40366-015-0020-6 CrossRefGoogle Scholar
  14. Cosic I, Cosic D, Lazar K (2016) Environmental light and its relationship with electromagnetic resonances of biomolecular interactions, as predicted by the resonant recognition model. Int J Environ Res Public Health 13(7):647.  https://doi.org/10.3390/ijerph130706 CrossRefPubMedCentralGoogle Scholar
  15. De Ninno AD (2017) Dynamics of formation of the exclusion zone near hydrophilic surfaces. Chem Phys Lett 667:322–326.  https://doi.org/10.1016/j.cplett.2016.11.015 CrossRefGoogle Scholar
  16. De Ninno AD, Pregnolato M (2017) Electromagnetic homeostasis and the role of low-amplitude electromagnetic fields on life organization. Electromagn Biol Med 36(2):115–122.  https://doi.org/10.1080/15368378.2016.1194293 CrossRefPubMedGoogle Scholar
  17. De Ninno AD, Castellano AC, Giudice ED (2013) The supramolecular structure of liquid water and quantum coherent processes in biology. J Phys Conf Ser 442:012031.  https://doi.org/10.1088/1742-6596/442/1/012031 CrossRefGoogle Scholar
  18. Dotta BT (2016) Ultra-weak photon emissions differentiate malignant cells from non-malignant cells in vitro. Arch Cancer Res 4(2):85.  https://doi.org/10.21767/2254-6081.100085 CrossRefGoogle Scholar
  19. Foletti A, Grimaldi S, Lisi A, Ledda M, Liboff AR (2013) Bioelectromagnetic medicine: the role of resonance signaling. Electromagn Biol Med 32(4):484–499.  https://doi.org/10.3109/15368378.2012.743908 CrossRefPubMedGoogle Scholar
  20. Foletti A, Ledda M, Grimaldi S, D’Emilia E, Giuliani L, Liboff A, Lisi A (2015) The trail from quantum electro dynamics to informative medicine. Electromagn Biol Med 34(2):147–150.  https://doi.org/10.3109/15368378.2015.1036073 CrossRefPubMedGoogle Scholar
  21. Funk RH (2015) Endogenous electric fields as guiding cue for cell migration. Front Physiol 6:143.  https://doi.org/10.3389/fphys.2015.00143 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Funk RH (2018) Biophysical mechanisms complementing ldquo classical rdquo cell biology. Front Biosci 23(3):921–939.  https://doi.org/10.2741/4625 CrossRefGoogle Scholar
  23. Gu Q (1992) Quantum theory of biophoton emission. Recent advances in biophoton research and its applications, pp 59–112.  https://doi.org/10.1142/9789814439671_0003 CrossRefGoogle Scholar
  24. Gyoeva FK (2014) The role of motor proteins in signal propagation. Biochemistry (Mosc) 79(9):849–855.  https://doi.org/10.1134/S0006297914090028 CrossRefGoogle Scholar
  25. Haltiwanger SG (2010) The science of bioenergetic and bioelectric. Technologies formatted full-text articleGoogle Scholar
  26. Havelka D, Cifra M, Kucera O (2014) Multi-mode electro-mechanical vibrations of a microtubule: in silico demonstration of electric pulse moving along a microtubule. Appl Phys Lett 104(24):243702.  https://doi.org/10.1063/1.48841180 CrossRefGoogle Scholar
  27. Hoeprich G, Hancock W, Berger C (2015) Kinesin-2’s role in intracellular cargo transport: navigating the complex microtubule landscape. Biophys J 108(2):135a–136a.  https://doi.org/10.1016/j.bpj.2014.11.750 CrossRefGoogle Scholar
  28. Jaross W (2015) Hypothesis on a signaling system based on molecular vibrations of structure forming macromolecules in cells and tissues. Integr Mol Med 2(5).  https://doi.org/10.15761/IMM.1000168
  29. Jaross W (2016) Are molecular vibration patterns of cell structural elements used for intracellular signalling? Open Biochem J 10:12–16.  https://doi.org/10.2174/1874091X01610010012 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jaross W (2018) Hypothesis on interactions of macromolecules based on molecular vibration patterns in cells and tissues. Front Biosci 23(3):940–946.  https://doi.org/10.2741/4626 CrossRefGoogle Scholar
  31. Kobayashi M, Takeda M, Sato T, Yamazaki Y, Kaneko K, Ito K, Kato H, Inaba H (1999) In vivo imaging of spontaneous ultraweak photon emission from a rat’s brain correlated with cerebral energy metabolism and oxidative stress. Neurosci Res 34(2):103–113.  https://doi.org/10.1016/S0168-0102(99)00040-1 CrossRefPubMedGoogle Scholar
  32. Kucera O, Cifra M (2013) Cell-to-cell signaling through light: just a ghost of chance? Cell Commun Signal 11:87.  https://doi.org/10.1186/1478-811X-11-87 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lemeshko M, Krems RV, Doyle JM, Kais S (2013) Manipulation of molecules with electromagnetic fields. Mol Phys 111(12–13):1648–1682.  https://doi.org/10.1080/00268976.2013.813595 CrossRefGoogle Scholar
  34. Levin M (2012) Molecular bioelectricity in developmental biology: new tools and recent discoveries: control of cell behavior and pattern formation by transmembrane potential gradients. BioEssays 34(3):205–217.  https://doi.org/10.1002/bies.201100136 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lloyd S (2011) Quantum coherence in biological systems. J Phys Conf Ser 302:012037.  https://doi.org/10.1088/1742-6596/302/1/012037 CrossRefGoogle Scholar
  36. May V, Kühn O (2011) Electronic and vibrational molecular states. In: May V, Kühn O (eds) Charge and energy transfer dynamics in molecular systems. Wiley, New York.  https://doi.org/10.1002/9783527633791 CrossRefGoogle Scholar
  37. Movasaghi Z, Rehman S, ur Rehmann DI (2008) Fourier Transform Infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev 43(2):134–179.  https://doi.org/10.1080/0570492070182904 CrossRefGoogle Scholar
  38. Murugan NJ, Karbowski LM, Persinger MA (2015) Cosic’s resonance model for protein sequences and photon emission differentiates lethal and non-lethal ebola strains: implications for treatment. Open J Biophys 05(01):35–43.  https://doi.org/10.4236/ojbiphy.2015.51003 CrossRefGoogle Scholar
  39. Nebenfuhr A, Staehelin LA (2001) Mobile factories: Golgi dynamics in plant cells. Trends Plant Sci 6(4):160–167.  https://doi.org/10.1016/S1360-1385(01)01891-X CrossRefPubMedPubMedCentralGoogle Scholar
  40. Nuccitelli R (2003) Endogenous electric fields in embryos during development, regeneration and wound healing. Radiat Prot Dosim 106(4):375–383.  https://doi.org/10.1093/oxfordjournals.rpd.a006375 CrossRefGoogle Scholar
  41. Pelletier J, Pelletier CC (2010) Spectroscopic theory for chemical imaging. In: Raman, infrared, and near-infrared chemical imaging. Wiley, New York.  https://doi.org/10.1002/9780470768150.ch1 CrossRefGoogle Scholar
  42. Pollack GH, Clegg J (2008) Unexpected linkage between unstirred layers, exclusion zones, and water. Phase Trans Cell Biol:143–152.  https://doi.org/10.1007/978-1-4020-8651-9_9
  43. Rouleau N, Dotta BT (2014) Electromagnetic fields as structure-function zeitgebers in biological systems: environmental orchestrations of morphogenesis and consciousness. Front Integr Neurosci 8:84.  https://doi.org/10.3389/fnint.2014.00084 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Saito K, Katada T (2015) Mechanisms for exporting large-sized cargoes from the endoplasmic reticulum. Cell Mol Life Sci 72(19):3709–3720.  https://doi.org/10.1007/s00018-015-1952-9 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Steiner G, Zimmerer C (2013) IV. Infrared and Raman spectra: datasheet from Landolt-Börnstein – Group VIII advanced materials and technologies Vol 6A1: “Polymer solids and polymer melts – definitions and physical properties I” in Springer materials. In: Arndt KF, Lechner MD (eds) Springer, Berlin.  https://doi.org/10.1007/978-3-642-32072-9_22 Google Scholar
  46. Zhao Y, Zhan Q (2012) Electric fields generated by synchronized oscillations of microtubules, centrosomes and chromosomes regulate the dynamics of mitosis and meiosis. Theor Biol Med Model 9:26.  https://doi.org/10.1186/1742-4682-9-26 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Werner Jaross
    • 1
  1. 1.Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universitaet DresdenDresdenGermany

Personalised recommendations