WebLabLib: New Approach for Creating Remote Laboratories

  • Pablo OrduñaEmail author
  • Luis Rodriguez-Gil
  • Ignacio Angulo
  • Unai Hernandez
  • Aitor Villar
  • Javier Garcia-Zubia
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 80)


Remote laboratories are hardware and software tools that enable students to access real equipment through the Internet. Remote Laboratory Management Systems (RLMS) are software tools developed for creating remote laboratories in an easier way, providing some of the transversal features common in most remote labs (such as authentication, authorization, scheduling platforms or administration tools), and some protocols or APIs (Application Programming Interfaces) for creating the laboratories. WebLab-Deusto is a popular open source RLMS used in different universities to create or administer their remote laboratories; and it offers two approaches for developing remote laboratories: managed (where all the communications go through WebLab-Deusto) and unmanaged (where the communications are managed by the remote lab developer). While originally the managed approach had a number of advantages over the unmanaged, nowadays, with web development technologies fastly changing and increasing productivity, it became important to provide a proper support for the unmanaged by creating a completely new framework called weblablib, developed by LabsLand and also Open Source. This article describes this framework, and the different trade-offs that remote lab developers have to deal with when implementing a remote laboratory.


  1. 1.
    Aktan, B., Bohus, C., Crowl, L., Shor, M.: Distance learning applied to control engineering laboratories. IEEE Trans. Educ. 39(3), 320–326 (1996)CrossRefGoogle Scholar
  2. 2.
    Carisa, B., Burain, A., Molly H.S., Lawrence, C.: Running control engineering experiments over the internet (1995)Google Scholar
  3. 3.
    Cedazo, R., Sanchez, F., Sebastian, J., Martínez, A., Pinazo, A., Barros, B., Read, T.: Ciclope chemical: a remote laboratory to control a spectrograph. Adv. Control Educ. ACE 6 (2006)Google Scholar
  4. 4.
    Coble, A., Smallbone, A., Bhave, A., Watson, R., Braumann, A., Kraft, M.: Delivering authentic experiences for engineering students and professionals through e-labs. In: Education Engineering (EDUCON), 2010 IEEE, pp. 1085–1090. IEEE (2010)Google Scholar
  5. 5.
    Del Alamo, J., Brooks, L., McLean, C., Hardison, J., Mishuris, G., Chang, V., Hui, L.: The mit microelectronics weblab: a web-enabled remote laboratory for microelectronic device characterization. In: World Congress on Networked Learning in a Global Environment, Berlin, Germany (2002)Google Scholar
  6. 6.
    Dziabenko, O., García-Zubia, J., Angulo, I.: Time to play with a microcontroller managed mobile bot. In: Global Engineering Education Conference (EDUCON), 2012 IEEE, pp. 1–5. IEEE (2012)Google Scholar
  7. 7.
    Gillet, D., Latchman, H., Salzmann, C., Crisalle, O.: Hands-on laboratory experiments in flexible and distance learning. J. Eng. Educ. 90(2), 187–191 (2001)CrossRefGoogle Scholar
  8. 8.
    Gillet, D., de Jong, T., Sotirou, S., Salzmann, C.: Personalised learning spaces and federated online labs for stem education at school. In: Global Engineering Education Conference (EDUCON), 2013 IEEE, pp. 769–773. IEEE (2013)Google Scholar
  9. 9.
    Gomes, L., Bogosyan, S.: Current trends in remote laboratories. IEEE Trans. Ind. Electron. 56(12), 4744–4756 (2009)CrossRefGoogle Scholar
  10. 10.
    Gravier, C., Fayolle, J., Bayard, B., Ates, M., Lardon, J.: State of the art about remote laboratories paradigms-foundations of ongoing mutations. iJOE 4(1) (2008)Google Scholar
  11. 11.
    Gustavsson, I., Zackrisson, J., Håkansson, L., Claesson, I., Lagö, T.: The visir project—an open source software initiative for distributed online laboratories. In: Proceedings of the REV 2007 Conference, Porto, Portugal (2007)Google Scholar
  12. 12.
    Hardison, J., DeLong, K., Bailey, P., Harward, V.: Deploying interactive remote labs using the ilab shared architecture. In: Frontiers in Education Conference, 2008. FIE 2008. 38th Annual, pp. S2A–1. IEEE (2008)Google Scholar
  13. 13.
    Henry, J.: Running laboratory experiments via the world wide web. In: ASEE Annual Conference (1996)Google Scholar
  14. 14.
    de Jong, T., Linn, M.C., Zacharia, Z.C.: Physical and virtual laboratories in science and engineering education. Science 340(6130), 305–308 (2013)CrossRefGoogle Scholar
  15. 15.
    Lowe, D., Machet, T., Kostulski, T.: Uts remote labs, labshare, and the sahara architecture. Using Remote Labs in Education: Two Little Ducks in Remote Experimentation, p. 403 (2012)Google Scholar
  16. 16.
    Nedic, Z., Machotka, J., Nafalski, A.: Remote laboratory netlab for effective interaction with real equipment over the internet. In: 2008 Conference on Human System Interactions, pp. 846–851. IEEE (2008)Google Scholar
  17. 17.
    Orduña, P.: Transitive and scalable federation model for remote laboratories. Ph.D. thesis, Universidad de Deusto, Bilbao, Spain (May 2013).
  18. 18.
    Orduña, P., Almeida, A., Ros, S., Lpez-de Ipiña, D., García-Zubia, J.: Leveraging non-explicit social communities for learning analytics in mobile remote laboratories. J. Univ. Comput. Sci. 20(15), 2043–2053 (2014)Google Scholar
  19. 19.
    Orduña, P., Bailey, P., DeLong, K., López-de-Ipiña, D., García-Zubia, J.: Towards federated interoperable bridges for sharing educational remote laboratories. Comput. Hum. Behav. 30, 389–395 (2014), Scholar
  20. 20.
    Orduña, P., Garbi Zutin, D., Govaerts, S., Lequerica Zorrozua, I., Bailey, P.H., Sancristobal, E., Salzmann, C., Rodriguez-Gil, L., DeLong, K., Gillet, D., et al.: An extensible architecture for the integration of remote and virtual laboratories in public learning tools. IEEE Rev. Iberoamericana Tecnologias Aprendizaje 10(4), 223–233 (2015)CrossRefGoogle Scholar
  21. 21.
    Richter, T., Boehringer, D., Jeschke, S.: Lila: A European project on networked experiments. In: Automation, Communication and Cybernetics in Science and Engineering 2009/2010, pp. 307–317 (2011)Google Scholar
  22. 22.
    Safaric, R., Truntič, M., Hercog, D., Pačnik, G.: Control and robotics remote laboratory for engineering education. Int. J. Online Eng. (iJOE) 1(1) (2005)Google Scholar
  23. 23.
    Schauer, F., Krbecek, M., Beno, P., Gerza, M., Palka, L., Spilakov, P., Tkac, L.: Remlabnet iii—federated remote laboratory management system for university and secondary schools. In: 2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV), pp. 238–241. IEEE (2016)Google Scholar
  24. 24.
    Torres, F., Candelas, F., Puente, S., Pomares, J., Gil, P., Ortiz, F.: Experiences with virtual environment and remote laboratory for teaching and learning robotics at the university of alicante. Int. J. Eng. Educ. 22(4), 766–776 (2006)Google Scholar
  25. 25.
    Zappatore, M., Longo, A., Bochicchio, M.A.: Enabling MOOL in acoustics by mobile crowd-sensing paradigm. In: 2016 IEEE Global Engineering Education Conference (EDUCON), pp. 733–740. IEEE (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Pablo Orduña
    • 1
    • 2
    Email author
  • Luis Rodriguez-Gil
    • 1
  • Ignacio Angulo
    • 2
  • Unai Hernandez
    • 2
  • Aitor Villar
    • 1
  • Javier Garcia-Zubia
    • 2
  1. 1.LabsLandBilbaoSpain
  2. 2.DeustoTech, Fundacion DeustoBilbaoSpain

Personalised recommendations