p53-Hsp90 Axis in Human Cancer

  • Amr Ghaleb
  • Natalia MarchenkoEmail author
Part of the Heat Shock Proteins book series (HESP, volume 19)


The heat shock protein 90 (Hsp90) is a ubiquitous molecular chaperone that is abundantly expressed in cancer cells and plays a pivotal role in correct folding and functions of a variety of oncogenic clients. Hsp90 is up-regulated in response to cellular stresses that cancer cells encounter, such as heat, hypoxia and nutrient deprivation, conditions commonly associated with the tumor microenvironment. P53 is the tumor suppressor gene that is mutated in nearly 50% of all human cancers. When mutated p53 not only lose its tumor suppressive function but also gain novel oncogenic activities via gain-of-function mechanisms leading to increased genomic instability, chemoresistance, and metastasis, which promote tumor progression. In contrast to wild-type p53, mutant p53 is protected from degradation via interaction with Hsp90 leading to marked stabilization of mutant p53 protein in cancer cells. Recent in vivo studies unequivocally have proven that the stabilization of mutant p53 is crucial pre-requisite for its oncogenic functions. The pharmacological targeting the pathways involved in the stabilization of mutant p53, in particular, the Hsp90 chaperone complex, recently attracted a lot of attention as a promising therapeutic approach to treat mutant p53 harboring cancers.


Cancer Gain-of-function Heat shock protein Hsp90 Loss of heterozygosity p53 



dominant negative




histone deacetylase


heat shock factor 1


heat shock protein


loss of heterozygosity


mouse double-minute 2


receptor tyrosine kinases


suberoylanilide hydroxamic acid



This work was supported by the Department of Defense grant W81XWH-16-1-0448 (BC151569) and the Carol Baldwin Breast Cancer Research Fund to N. Marchenko.


  1. Adorno M, Cordenonsi M, Montagner M et al (2009) A mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell 137:87–98PubMedCrossRefPubMedCentralGoogle Scholar
  2. Alexandrova EM, Marchenko ND (2015) Mutant p53 – heat shock response oncogenic cooperation: a new mechanism of cancer cell survival. Front Endocrinol (Lausanne) 6:53CrossRefGoogle Scholar
  3. Alexandrova EM, Yallowitz AR, Li D et al (2015) Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment. Nature 523:352–356PubMedPubMedCentralCrossRefGoogle Scholar
  4. Alexandrova EM, Mirza SA, Xu S, Schulz-Heddergott R, Marchenko ND, Moll UM (2017a) p53 loss-of-heterozygosity is a necessary prerequisite for mutant p53 stabilization and gain-of-function in vivo. Cell Death Dis 8:e2661PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alexandrova EM, Xu S, Moll UM (2017b) Ganetespib synergizes with cyclophosphamide to improve survival of mice with autochthonous tumors in a mutant p53-dependent manner. Cell Death Dis 8:e2683PubMedPubMedCentralCrossRefGoogle Scholar
  6. Barrott JJ, Haystead TA (2013) Hsp90, an unlikely ally in the war on cancer. FEBS J 280:1381–1396PubMedCrossRefGoogle Scholar
  7. Baugh EH, Ke H, Levine AJ, Bonneau RA, Chan CS (2018) Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death Differ 25:154–160PubMedCrossRefGoogle Scholar
  8. Blagosklonny MV, Toretsky J, Bohen S, Neckers L (1996) Mutant conformation of p53 translated in vitro or in vivo requires functional Hsp90. Proc Natl Acad Sci USA 93:8379–8383PubMedCrossRefGoogle Scholar
  9. Blandino G, Di Agostino S (2018) New therapeutic strategies to treat human cancers expressing mutant p53 proteins. J Exp Clin Cancer Res 37:30PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bouaoun L, Sonkin D, Ardin M et al (2016) TP53 variations in human cancers: new lessons from the IARC TP53 database and genomics data. Hum Mutat 37:865–876PubMedCrossRefGoogle Scholar
  11. Burkhart C, Fleyshman D, Kohrn R et al (2014) Curaxin CBL0137 eradicates drug resistant cancer stem cells and potentiates efficacy of gemcitabine in preclinical models of pancreatic cancer. Oncotarget 5:11038–11053PubMedPubMedCentralCrossRefGoogle Scholar
  12. Butler LM, Ferraldeschi R, Armstrong HK, Centenera MM, Workman P (2015) Maximizing the therapeutic potential of Hsp90 inhibitors. Mol Cancer Res 13:1445–1451PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chatterjee S, Burns TF (2017) Targeting heat shock proteins in cancer: a promising therapeutic approach. Int J Mol Sci 18:1978PubMedCentralCrossRefGoogle Scholar
  14. Connell P, Ballinger CA, Jiang J et al (2001) The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat Cell Biol 3:93–96PubMedCrossRefGoogle Scholar
  15. D’Amato V, Raimondo L, Formisano L et al (2015) Mechanisms of lapatinib resistance in HER2-driven breast cancer. Cancer Treat Rev 41:877–883PubMedCrossRefGoogle Scholar
  16. Dai C, Whitesell L, Rogers AB, Lindquist S (2007) Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130:1005–1018PubMedPubMedCentralCrossRefGoogle Scholar
  17. Dai C, Santagata S, Tang Z et al (2012) Loss of tumor suppressor NF1 activates HSF1 to promote carcinogenesis. J Clin Invest 122:3742–3754PubMedPubMedCentralCrossRefGoogle Scholar
  18. Dittmer D, Pati S, Zambetti G et al (1993) Gain of function mutations in p53. Nat Genet 4:42–46PubMedCrossRefGoogle Scholar
  19. Ehrlich ES, Wang T, Luo K et al (2009) Regulation of Hsp90 client proteins by a Cullin5-RING E3 ubiquitin ligase. Proc Natl Acad Sci USA 106:20330–20335PubMedCrossRefGoogle Scholar
  20. Eliyahu D, Raz A, Gruss P, Givol D, Oren M (1984) Participation of p53 cellular tumour antigen in transformation of normal embryonic cells. Nature 312:646–649PubMedCrossRefGoogle Scholar
  21. Eustace BK, Jay DG (2004) Extracellular roles for the molecular chaperone, hsp90. Cell Cycle 3:1098–1100PubMedCrossRefGoogle Scholar
  22. Eustace BK, Sakurai T, Stewart JK et al (2004) Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nat Cell Biol 6:507–514PubMedCrossRefGoogle Scholar
  23. Freed-Pastor WA, Mizuno H, Zhao X et al (2012) Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 148:244–258PubMedPubMedCentralCrossRefGoogle Scholar
  24. Fu S, Hou MM, Naing A et al (2015) Phase I study of pazopanib and vorinostat: a therapeutic approach for inhibiting mutant p53-mediated angiogenesis and facilitating mutant p53 degradation. Ann Oncol 26:1012–1018PubMedPubMedCentralCrossRefGoogle Scholar
  25. Gabai VL, Mosina VA, Budagova KR, Kabakov AE (1995) Spontaneous overexpression of heat-shock proteins in Ehrlich ascites carcinoma cells during in vivo growth. Biochem Mol Biol Int 35:95–102PubMedGoogle Scholar
  26. Gatz SA, Wiesmuller L (2006) p53 in recombination and repair. Cell Death Differ 13:1003–1016PubMedCrossRefGoogle Scholar
  27. Gomez-Pastor R, Burchfiel ET, Thiele DJ (2018) Regulation of heat shock transcription factors and their roles in physiology and disease. Nat Rev Mol Cell Biol 19:4–19PubMedCrossRefGoogle Scholar
  28. Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387:296–299PubMedCrossRefGoogle Scholar
  29. Hinds PW, Finlay CA, Frey AB, Levine AJ (1987) Immunological evidence for the association of p53 with a heat shock protein, hsc70, in p53-plus-ras-transformed cell lines. Mol Cell Biol 7:2863–2869PubMedPubMedCentralCrossRefGoogle Scholar
  30. Ingallina E, Sorrentino G, Bertolio R et al (2018) Mechanical cues control mutant p53 stability through a mevalonate-RhoA axis. Nat Cell Biol 20:28–35PubMedCrossRefGoogle Scholar
  31. Jackson SE (2013) Hsp90: structure and function. Top Curr Chem 328:155–240PubMedCrossRefGoogle Scholar
  32. Jenkins JR, Rudge K, Currie GA (1984) Cellular immortalization by a cDNA clone encoding the transformation-associated phosphoprotein p53. Nature 312:651–654PubMedCrossRefPubMedCentralGoogle Scholar
  33. Kress M, May E, Cassingena R, May P (1979) Simian virus 40-transformed cells express new species of proteins precipitable by anti-simian virus 40 tumor serum. J Virol 31:472–483PubMedPubMedCentralGoogle Scholar
  34. Lane DP, Crawford LV (1979) T antigen is bound to a host protein in SV40-transformed cells. Nature 278:261–263PubMedCrossRefPubMedCentralGoogle Scholar
  35. Lang GA, Iwakuma T, Suh YA et al (2004) Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119:861–872PubMedCrossRefGoogle Scholar
  36. Lee MK, Teoh WW, Phang BH, Tong WM, Wang ZQ, Sabapathy K (2012) Cell-type, dose, and mutation-type specificity dictate mutant p53 functions in vivo. Cancer Cell 22:751–764PubMedCrossRefPubMedCentralGoogle Scholar
  37. Levine AJ, Momand J, Finlay CA (1991) The p53 tumour suppressor gene. Nature 351:453–456PubMedCrossRefGoogle Scholar
  38. Li D, Marchenko ND (2017) ErbB2 inhibition by lapatinib promotes degradation of mutant p53 protein in cancer cells. Oncotarget 8:5823–5833PubMedPubMedCentralGoogle Scholar
  39. Li D, Marchenko ND, Moll UM (2011a) SAHA shows preferential cytotoxicity in mutant p53 cancer cells by destabilizing mutant p53 through inhibition of the HDAC6-Hsp90 chaperone axis. Cell Death Differ 18:1904–1913PubMedPubMedCentralCrossRefGoogle Scholar
  40. Li D, Marchenko ND, Schulz R et al (2011b) Functional inactivation of endogenous MDM2 and CHIP by Hsp90 causes aberrant stabilization of mutant p53 in human cancer cells. Mol Cancer Res 9:577–588PubMedPubMedCentralCrossRefGoogle Scholar
  41. Li D, Yallowitz A, Ozog L, Marchenko N (2014) A gain-of-function mutant p53-HSF1 feed forward circuit governs adaptation of cancer cells to proteotoxic stress. Cell Death Dis 5:e1194PubMedPubMedCentralCrossRefGoogle Scholar
  42. Linzer DI, Levine AJ (1979) Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17:43–52PubMedCrossRefGoogle Scholar
  43. Lukashchuk N, Vousden KH (2007) Ubiquitination and degradation of mutant p53. Mol Cell Biol 27:8284–8295PubMedPubMedCentralCrossRefGoogle Scholar
  44. Mendillo ML, Santagata S, Koeva M et al (2012) HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 150:549–562PubMedPubMedCentralCrossRefGoogle Scholar
  45. Menon V, Povirk L (2014) Involvement of p53 in the repair of DNA double strand breaks: multifaceted roles of p53 in homologous recombination repair (HRR) and non-homologous end joining (NHEJ). Subcell Biochem 85:321–336PubMedPubMedCentralCrossRefGoogle Scholar
  46. Mileo AM, Fanuele M, Battaglia F et al (1990) Selective over-expression of mRNA coding for 90 KDa stress-protein in human ovarian cancer. Anticancer Res 10:903–906PubMedGoogle Scholar
  47. Milicevic Z, Bogojevic D, Mihailovic M, Petrovic M, Krivokapic Z (2008) Molecular characterization of hsp90 isoforms in colorectal cancer cells and its association with tumour progression. Int J Oncol 32:1169–1178PubMedGoogle Scholar
  48. Milner J, Medcalf EA, Cook AC (1991) Tumor suppressor p53: analysis of wild-type and mutant p53 complexes. Mol Cell Biol 11:12–19PubMedPubMedCentralCrossRefGoogle Scholar
  49. Min JN, Huang L, Zimonjic DB, Moskophidis D, Mivechi NF (2007) Selective suppression of lymphomas by functional loss of Hsf1 in a p53-deficient mouse model for spontaneous tumors. Oncogene 26:5086–5097PubMedCrossRefGoogle Scholar
  50. Morton JP, Timpson P, Karim SA et al (2010) Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proc Natl Acad Sci USA 107:246–251PubMedCrossRefGoogle Scholar
  51. Muller PA, Caswell PT, Doyle B et al (2009) Mutant p53 drives invasion by promoting integrin recycling. Cell 139:1327–1341PubMedCrossRefGoogle Scholar
  52. Neckers L, Workman P (2012) Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res 18:64–76PubMedPubMedCentralCrossRefGoogle Scholar
  53. Neznanov N, Komarov AP, Neznanova L, Stanhope-Baker P, Gudkov AV (2011) Proteotoxic stress targeted therapy (PSTT): induction of protein misfolding enhances the antitumor effect of the proteasome inhibitor bortezomib. Oncotarget 2:209–221PubMedPubMedCentralCrossRefGoogle Scholar
  54. Nolan KD, Franco OE, Hance MW, Hayward SW, Isaacs JS (2015) Tumor-secreted Hsp90 subverts polycomb function to drive prostate tumor growth and invasion. J Biol Chem 290:8271–8282PubMedPubMedCentralCrossRefGoogle Scholar
  55. Olive KP, Tuveson DA, Ruhe ZC et al (2004) Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119:847–860PubMedCrossRefGoogle Scholar
  56. Oren M, Rotter V (2010) Mutant p53 gain-of-function in cancer. Cold Spring Harb Perspect Biol 2:a001107PubMedPubMedCentralCrossRefGoogle Scholar
  57. Parada LF, Land H, Weinberg RA, Wolf D, Rotter V (1984) Cooperation between gene encoding p53 tumour antigen and ras in cellular transformation. Nature 312:649–651PubMedCrossRefGoogle Scholar
  58. Parrales A, Ranjan A, Iyer SV et al (2016) DNAJA1 controls the fate of misfolded mutant p53 through the mevalonate pathway. Nat Cell Biol 18:1233–1243PubMedPubMedCentralCrossRefGoogle Scholar
  59. Peng Y, Chen L, Li C, Lu W, Chen J (2001) Inhibition of MDM2 by hsp90 contributes to mutant p53 stabilization. J Biol Chem 276:40583–40590PubMedCrossRefGoogle Scholar
  60. Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M (2007) TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26:2157–2165PubMedCrossRefPubMedCentralGoogle Scholar
  61. Pratt WB (1987) Transformation of glucocorticoid and progesterone receptors to the DNA-binding state. J Cell Biochem 35:51–68PubMedCrossRefPubMedCentralGoogle Scholar
  62. Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1997) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90:65–75PubMedCrossRefPubMedCentralGoogle Scholar
  63. Roe SM, Prodromou C, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1999) Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem 42:260–266PubMedCrossRefGoogle Scholar
  64. Saldana-Meyer R, Recillas-Targa F (2011) Transcriptional and epigenetic regulation of the p53 tumor suppressor gene. Epigenetics 6:1068–1077PubMedCrossRefGoogle Scholar
  65. Sauvage F, Messaoudi S, Fattal E, Barratt G, Vergnaud-Gauduchon J (2017) Heat shock proteins and cancer: how can nanomedicine be harnessed? J Control Release 248:133–143PubMedCrossRefPubMedCentralGoogle Scholar
  66. Schulz-Heddergott R, Moll UM (2018) Gain-of-Function (GOF) mutant p53 as actionable therapeutic target. Cancers (Basel) 10:188CrossRefGoogle Scholar
  67. Schulz-Heddergott R, Stark N, Edmunds SJ et al (2018) Therapeutic ablation of gain-of-function mutant p53 in colorectal cancer inhibits Stat3-mediated tumor growth and invasion. Cancer Cell 34:298–314 e7PubMedPubMedCentralCrossRefGoogle Scholar
  68. Shepherd FA, Lacas B, Le Teuff G et al (2017) Pooled analysis of the prognostic and predictive effects of TP53 comutation status combined with KRAS or EGFR mutation in early-stage resected non-small-cell lung cancer in four trials of adjuvant chemotherapy. J Clin Oncol 35:2018–2027PubMedPubMedCentralCrossRefGoogle Scholar
  69. Shyamala G, Gauthier Y, Moore SK, Catelli MG, Ullrich SJ (1989) Estrogenic regulation of murine uterine 90-kilodalton heat shock protein gene expression. Mol Cell Biol 9:3567–3570PubMedPubMedCentralCrossRefGoogle Scholar
  70. Soussi T (2010) The history of p53. A perfect example of the drawbacks of scientific paradigms. EMBO Rep 11:822–826PubMedPubMedCentralCrossRefGoogle Scholar
  71. Stuhlmiller TJ, Miller SM, Zawistowski JS et al (2015) Inhibition of Lapatinib-induced kinome reprogramming in ERBB2-positive breast cancer by targeting BET family bromodomains. Cell Rep 11:390–404PubMedPubMedCentralCrossRefGoogle Scholar
  72. Sturzbecher HW, Addison C, Jenkins JR (1988) Characterization of mutant p53-hsp72/73 protein-protein complexes by transient expression in monkey COS cells. Mol Cell Biol 8:3740–3747PubMedPubMedCentralCrossRefGoogle Scholar
  73. Terzian T, Suh YA, Iwakuma T et al (2008) The inherent instability of mutant p53 is alleviated by Mdm2 or p16INK4a loss. Genes Dev 22:1337–1344PubMedPubMedCentralCrossRefGoogle Scholar
  74. Travers J, Sharp S, Workman P (2012) Hsp90 inhibition: two-pronged exploitation of cancer dependencies. Drug Discov Today 17:242–252PubMedCrossRefPubMedCentralGoogle Scholar
  75. Turrell FK, Kerr EM, Gao M et al (2017) Lung tumors with distinct p53 mutations respond similarly to p53 targeted therapy but exhibit genotype-specific statin sensitivity. Genes Dev 31:1339–1353PubMedPubMedCentralCrossRefGoogle Scholar
  76. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310PubMedCrossRefPubMedCentralGoogle Scholar
  77. Weissmueller S, Manchado E, Saborowski M et al (2014) Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor beta signaling. Cell 157:382–394PubMedPubMedCentralCrossRefGoogle Scholar
  78. Whitesell L, Lindquist SL (2005) Hsp90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772PubMedCrossRefGoogle Scholar
  79. Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM (1994) Inhibition of heat shock protein Hsp90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci USA 91:8324–8328PubMedCrossRefPubMedCentralGoogle Scholar
  80. Wijnhoven SW, Speksnijder EN, Liu X et al (2007) Dominant-negative but not gain-of-function effects of a p53.R270H mutation in mouse epithelium tissue after DNA damage. Cancer Res 67:4648–4656PubMedCrossRefGoogle Scholar
  81. Willis A, Jung EJ, Wakefield T, Chen X (2004) Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes. Oncogene 23:2330–2338PubMedCrossRefGoogle Scholar
  82. Workman P, Burrows F, Neckers L, Rosen N (2007) Drugging the cancer chaperone Hsp90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann N Y Acad Sci 1113:202–216PubMedCrossRefPubMedCentralGoogle Scholar
  83. Wu X, Bayle JH, Olson D, Levine AJ (1993) The p53-mdm-2 autoregulatory feedback loop. Genes Dev 7:1126–1132PubMedCrossRefGoogle Scholar
  84. Xu W, Marcu M, Yuan X, Mimnaugh E, Patterson C, Neckers L (2002) Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for c-ErbB2/Neu. Proc Natl Acad Sci USA 99:12847–12852PubMedCrossRefGoogle Scholar
  85. Yallowitz AR, Li D, Lobko A, Mott D, Nemajerova A, Marchenko N (2015) Mutant p53 amplifies epidermal growth factor receptor family signaling to promote mammary tumorigenesis. Mol Cancer Res 13:743–754PubMedPubMedCentralCrossRefGoogle Scholar
  86. Yallowitz A, Ghaleb A, Garcia L, Alexandrova EM, Marchenko N (2018) Heat shock factor 1 confers resistance to lapatinib in ERBB2-positive breast cancer cells. Cell Death Dis 9:621PubMedPubMedCentralCrossRefGoogle Scholar
  87. Yan W, Liu G, Scoumanne A, Chen X (2008) Suppression of inhibitor of differentiation 2, a target of mutant p53, is required for gain-of-function mutations. Cancer Res 68:6789–6796PubMedPubMedCentralCrossRefGoogle Scholar
  88. Zhao Y, Liu H, Liu Z et al (2011) Overcoming trastuzumab resistance in breast cancer by targeting dysregulated glucose metabolism. Cancer Res 71:4585–4597PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PathologyStony Brook UniversityStony BrookUSA

Personalised recommendations