Role of Heat Shock Protein 90 in Mammary Tumorigenesis

  • B. V. Sunil Kumar
  • Priya K. Gopal
  • Ramneek Verma
Part of the Heat Shock Proteins book series (HESP, volume 19)


Heat shock proteins (HSP) are the proteins with a wide range of functions. They protect the cells from various stressors including heat stress and also act as chaperones thereby aiding in protein folding and maintenance of cellular homeostasis. Various members of HSP family have been associated with cancers. HSP90 is one such member which promotes protein folding and has an important role in breast cancer progression. Reports indicate that mammary tumor cells constitutively secrete HSP90 in order to facilitate tumor invasion and metastasis. Further, neutralisation of extracellular HSP90 or inhibition of its secretion or interruption of its signalling has been found to block cancer invasion. The recent findings that various isoforms of HSP90 are upregulated in breast neoplasia and breast cancer/mammary tumor subjects have elevated serum HSP90 levels suggest an important role of this chaperone in malignant transformation of mammary glands. This chapter briefly reviews recent advances in our understanding of the role of HSP90 in mammary gland tumorigenesis.


Diagnosis Expression HSP90 HSP90 inhibitors Mammary gland Mammary tumor 



Serine-threonine protein kinase


B-cell lymphoma gene 2


bcl-2-like 1


Cyclin-dependent kinase-5


Checkpoint kinase


Cancer stem cells


Phosphoprotein Dishevelled


Epidermal growth factor receptor-2


fms-like tyrosine kinase 3


Endoplasmic reticulum Hsp90 homolog


Glycogen synthase kinase 3- beta


Hypoxia-inducible factor 1-alpha


Heat shock transcription factor 1


Heat shock proteins


Inhibitor of apoptosis protein


Integrin-linked kinase


Mitogen-activated protein kinase


Macrophage migration inhibitory factor


Matrix metalloproteinases


Mammalian target of rapamycin


Nuclear factor κ B


Protein kinase C-alpha/beta


Protein tyrosine kinase 2


Rapidly accelerated fibrosarcoma


Secreted frizzled related protein


Steroid receptor co-activator


v-src sarcoma (Schmidt–Ruppin A-2) viral oncogene homolog (avian)


Signal Transducers and Activators of Transcription


Triple negative breast cancer


TNF-related activation protein


Wingless type MMTV integration site family member 1



the authors acknowledge Department of Biotechnology, Ministry of Science and Technology (Grant ID: BT/PR6434/GBD/27/414/2012) for carrying out research on diagnostic implication of Hsp90 on mammary tumors.


  1. Agyeman AS, Jun WJ, Conzen SD (2016) HSP90 inhibition results in GR, AR and JAK protein degradation, decreased triple-negative breast cancer proliferation and increased paclitaxel sensitivity [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research, 2016 Apr 16–20, New Orleans, LA. Philadelphia (PA): AACR. Cancer Res 76(14 Suppl):3100. Abstract nr 3100Google Scholar
  2. Aligue R, Akhaven-Niak H, Russell P (1994) A role for HSP90 in cell cycle control: wee 1 tyrosine kinase activity requires interaction with HSP90. EMBO J 13(24):6099–6106CrossRefPubMedPubMedCentralGoogle Scholar
  3. Altieri DC (2008) Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer 8(1):61–70CrossRefPubMedPubMedCentralGoogle Scholar
  4. Aoyagi Y, Fujita N, Tsuruo T (2005) Stabilization of integrin-linked kinase by binding to Hsp90. Biochem Biophys Res Commun 331:1061–1068CrossRefPubMedPubMedCentralGoogle Scholar
  5. Badowska-Kozakiewicz AM, Malicka E (2012) Immunohistochemical evaluation of expression of heat shock proteins HSP70 and HSP90 in mammary gland neoplasms in bitches. Pol J Vet Sci 15(2):209–214CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bagatell R, Khan O, Paine-Murrieta G, Taylor CW, Akinaga S, Whitesell L (2001) Destabilization of steroid receptors by heat shock protein 90-binding drugs: a ligand-independent approach to hormonal therapy of breast cancer. Clin Cancer Res 7:2076–2084PubMedPubMedCentralGoogle Scholar
  7. Basso AD, Solit DB, Chiosis G, Giri B, Tsichlis P, Rosen N (2002a) Akt forms an intracellular complex with heat shock protein 90 (HSP90) and Cdc37 and is destabilized by inhibitors of HSP90 function. J Biol Chem 277(42):39858–39866CrossRefPubMedPubMedCentralGoogle Scholar
  8. Basso AD, Solit DB, Munster PN, Rosen N (2002b) Ansamycin antibiotics inhibit Akt activation and cyclin D expression in breast cancer cells that overexpress HER2. Oncogene 21:1159–1166CrossRefPubMedPubMedCentralGoogle Scholar
  9. Blagosklonny MV, Toretsky J, Neckers L (1995) Geldanamycin selectively destabilizes conformationally altered mutated p53. Oncogene 11(5):933–939PubMedPubMedCentralGoogle Scholar
  10. Bongiovanni L, Romanucci M, Malatesta D, D’Andrea A, Ciccarelli A, Della Salda L (2015) Survivin and related proteins in canine mammary tumors: immunohistochemical expression. Vet Pathol 52(2):269–275CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bowman T, Garcia R, Turkson J, Jove R (2000) STATs in oncogenesis. Oncogene 19:2474–2488CrossRefPubMedPubMedCentralGoogle Scholar
  12. Brooks SA, Lomax-Browne HJ, Carter TM, Kinch CE, Hall DM (2010) Molecular interactions in cancer cell metastasis. Acta Histochem 112:3–25CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125:443–451CrossRefPubMedPubMedCentralGoogle Scholar
  14. Caldas-Lopes E, Cerchietti L, Ahn JH, Clement CC, Robles AI, Rodina A, Moulick K, Taldone T, Gozman A, Guo Y, Wu N, de Stanchina E, White J, Gross SS, Ma Y, Varticovski L, Melnick A, Chiosis G (2009) Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc Natl Acad Sci U S A 106:8368–8373CrossRefPubMedPubMedCentralGoogle Scholar
  15. Calderwood SK (2010) Heat shock proteins in breast cancer progression—a suitable case for treatment? Int J Hyperth 26:681–685CrossRefGoogle Scholar
  16. Cambiazo V, Gonzalez M, Isamit C, Maccioni RB (1999) The β-isoform of heat shock protein hsp-90 is structurally related with human microtubule-interacting protein Mip-90. FEBS Lett 457:343–347CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cancer Genome Atlas N (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70CrossRefGoogle Scholar
  18. Cawthorn TR, Moreno JC, Dharsee M, Tran-Thanh D, Ackloo S, Zhu PH, Sardana G, Chen J, Kupchak P, Jacks LM, Miller NA, Youngson BJ, Iakovlev V, Guidos CJ, Vallis KA, Evans KR, McCready D, Leong WL, Done SJ (2012) Proteomic analyses reveal high expression of decorin and endoplasmin (HSP90B1) are associated with breast cancer metastasis and decreased survival. PLoS One 7(2):e30992CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chen G, Cao P, Goeddel DV (2002) TNF-induced recruitment and activation of the IKK complex require Cdc37 and HSP90. Mol Cell 9:401–410CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cheung CH, Chen HH, Cheng LT, Lyu KW, Kanwar JR, Chang JY (2010) Targeting Hsp90 with small molecule inhibitors induces the over-expression of the anti-apoptotic molecule, survivin, in human A549, HONE-1 and HT-29 cancer cells. Mol Cancer 9:77CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive and treatment implications. Cell Stress Chap 10(2):86–103CrossRefGoogle Scholar
  22. Clarke PA, Hostein I, Banerji U, Stefano FD, Maloney A, Walton M, Judson I, Workman P (2000) Gene expression profiling of human colon cancer cells following inhibition of signal transduction by 17-allylamino-17-demethoxygeldanamycin, an inhibitor of the hsp90 molecular chaperone. Oncogene 19:4125–4133CrossRefPubMedPubMedCentralGoogle Scholar
  23. Cohen Y, Xing M, Mambo E, Guo Z, Wu G, Trink B, Beller U, Westra WH, Ladenson PW, Sidransky D (2003) BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst 95(8):625–627CrossRefPubMedPubMedCentralGoogle Scholar
  24. Collu GM, Meurette M, Brennan K (2009) Is there more to Wnt signaling in breast cancer than stabilisation of β catenin? Breast Cancer Res 11:105CrossRefPubMedPubMedCentralGoogle Scholar
  25. Dai K, Kobayashi R, Beach D (1996) Physical interaction of mammalian CDC37 with CDK4. J Biol Chem 271(36):22030–22034CrossRefPubMedPubMedCentralGoogle Scholar
  26. Dalerba P, Cho RW, Clarke MF (2007) Cancer stem cells: models and concepts. Ann Rev Med 58:267–284CrossRefPubMedPubMedCentralGoogle Scholar
  27. Darnell JE, Kerr IM, Stark GR (1994) JAK-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415–1421CrossRefPubMedPubMedCentralGoogle Scholar
  28. Dasgupta G, Momand J (1997) Geldanamycin prevents nuclear translocation of mutant p53. Exp Cell Res 237(1):29–37CrossRefPubMedPubMedCentralGoogle Scholar
  29. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954CrossRefGoogle Scholar
  30. De Maio A (1999) Heat shock proteins: facts, thoughts dreams. Shock 11(1):1–12CrossRefPubMedPubMedCentralGoogle Scholar
  31. De Maio A (2011) Extracellular heat shock proteins, cellular export vesicles, and the stress observation system: a form of communication during injury, infection, and cell damage. Cell Stress Chap 16:235–249CrossRefGoogle Scholar
  32. Den RB, Lu B (2012) Heat shock protein 90 inhibition: rationale and clinical potential. Ther Adv Med Oncol 4(4):211–218CrossRefPubMedPubMedCentralGoogle Scholar
  33. Eccles SA, Massey A, Raynaud FI, Sharp SY, Box G, Valenti M, Patterson L, de Haven Brandon A, Gowan S, Boxall F, Aherne W, Rowlands M, Hayes A, Martins V, Urban F et al (2008) NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis. Cancer Res 68(8):2850–2860CrossRefPubMedPubMedCentralGoogle Scholar
  34. Edwards MJ (1989) Hyperthermia and the developing central nervous system. Ann Res Inst Environ Med Nagoya Univ 40:355–364Google Scholar
  35. Endicott JA, Noble ME, Tucker JA (1999) Cyclin-dependent kinases: inhibition and substrate recognition. Curr Opin Struct Biol 9:738–744CrossRefPubMedPubMedCentralGoogle Scholar
  36. Epling-Burnette PK, Liu JH, Catlett-Falcone R, Turkson J, Oshiro M, Kothapalli R, Li Y, Wang JM, Yang-Yen HF, Karras J et al (2001) Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. J Clin Invest 107:351–362CrossRefPubMedPubMedCentralGoogle Scholar
  37. Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411:342–348CrossRefPubMedPubMedCentralGoogle Scholar
  38. Fabian A, Barok M, Vereb G, Szollosi J (2009) Die hard: are cancer stem cells the Bruce Willises of tumor biology. Cytometry Part A: J Int Soc Anal Cytol 75:67–74CrossRefGoogle Scholar
  39. Fusella F, Ferretti R, Recupero D, Rocca S, Di Savino A, Tornillo G, Silengo L, Turco E, Cabodi S, Provero P, Pandolfi PP, Sapino A, Tarone G, Brancaccio M (2014) Morgana acts as a proto-oncogene through inhibition of a ROCK-PTEN pathway. J Pathol 234:152–163PubMedPubMedCentralGoogle Scholar
  40. Fusella F, Seclì L, Busso E, Krepelova A et al (2017) The IKK/NF-κB signaling pathway requires morgana to drive breast cancer metastasis. Nat Commun 8(1):1636–1642CrossRefPubMedPubMedCentralGoogle Scholar
  41. Galea-Lauri J, Latchman DS, Katz DR (1996) The role of the 90-kDa heat shock protein in cell cycle control and differentiation of the monoblastoid cell line U937. Exp Cell Res 226:243–254CrossRefPubMedPubMedCentralGoogle Scholar
  42. Gano JJ, Simon JA (2010) A proteomic investigation of ligand-dependent HSP90 complexes reveals CHORDC1 as a novel ADP-dependent HSP90-interacting protein. Mol Cell Proteomics 9:255–270CrossRefPubMedPubMedCentralGoogle Scholar
  43. Garcia R, Yu CL, Catlett R, Nelson KL, Smithgall T, Fujita DJ, Ethier SP, Jove R (1997) Constitutive activation of Stat3 in fibroblasts transformed by diverse oncoproteins and in breast carcinoma cells. Cell Growth Differ 8:1267–1276PubMedPubMedCentralGoogle Scholar
  44. Giffard R, Han R, Emery J, Duan M, Pittet J (2008) Regulation of apoptotic and inflammatory cell signaling in cerebral ischemia: the complex roles of heat shock protein 70. Anesthesiology 109:339–348CrossRefPubMedPubMedCentralGoogle Scholar
  45. Goetz MP, Toft DO, Ames MM, Erlichman C (2003) The Hsp90 chaperone complex as a novel target for cancer therapy. Ann Oncol 14:1169–1176CrossRefGoogle Scholar
  46. Grammatikakis N, Vultur A, Ramana CV, Siganou A, Schweinfest CW, Watson DK, Raptis L (2002) The role of Hsp90N, a new member of the Hsp90 family, in signal transduction and neoplastic transformation. J Biol Chem 277:8312–8320CrossRefPubMedPubMedCentralGoogle Scholar
  47. Gupta RS (1995) Phylogenetic analysis of the 90 kD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species. Mol Biol Evol 12:1063–1073PubMedPubMedCentralGoogle Scholar
  48. Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16:574–581CrossRefPubMedPubMedCentralGoogle Scholar
  49. Heikkila JJ, Krone PH, Ovsenek N (1991) Regulation of heat shock gene expression during Xenopus. Development 17:120–137Google Scholar
  50. Helmbrecht K, Zeise E, Rensing L (2000) Chaperones in cell cycle regulation and mitogenc signal transduction: a review. Cell Prolif 33:341–365CrossRefGoogle Scholar
  51. Hightower L, Nover L (1991) Heat shock and development, vol 17. Springer, Berlin, p 229CrossRefGoogle Scholar
  52. Hong TJ, Kim S, Wi AR, Lee P, Kang M, Jeong JH, Hahn JS (2013) Dynamic nucleotide-dependent interactions of cysteine- and histidine-rich domain (CHORD)-containing HSP90 cochaperones Chp-1 and melusin with cochaperones PP5 and Sgt1. J Biol Chem 288(1):215–222CrossRefGoogle Scholar
  53. Hutchison KA, Brott BK, De Leon JH, Pedrew GH, Jove R, Pratt WB (1992) Reconstitution of the multiprotein complex of pp 60src, HSP90 and p50 in a cell-free system. J Biol Chem 267(5):2902–2908PubMedPubMedCentralGoogle Scholar
  54. Iozzo RV, Eichstetter I, Danielson KG (1995) Aberrant expression of the growth factor Wnt-5A in human malignancy. Cancer Res 55:3495–3499PubMedPubMedCentralGoogle Scholar
  55. Jha K, Shukla M, Pandey M (2012) Survivin expression and targeting in breast cancer. Surg Oncol 21(2):125–131CrossRefPubMedPubMedCentralGoogle Scholar
  56. Kakarala M, Wicha MS (2008) Implications of the cancer stem-cell hypothesis for breast cancer prevention and therapy. J Clin Oncol 26:2813–2820CrossRefPubMedPubMedCentralGoogle Scholar
  57. Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC, Burrows FJ (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425:407–410CrossRefPubMedPubMedCentralGoogle Scholar
  58. Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18:621–663CrossRefPubMedPubMedCentralGoogle Scholar
  59. Karin M, Delhase M (2000) The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling. Semin Immunol 12:85–98CrossRefPubMedPubMedCentralGoogle Scholar
  60. Karlseder J, Wissing D, Holzer G, Orel L, Sliutz G, Auer H, Jäättelä M, Simon MM (1996) HSP70 overexpression mediates the escape of a doxorubicin-induced G2 cell cycle arrest. Biochem Biophys Res Comm 220(1):153–159CrossRefPubMedPubMedCentralGoogle Scholar
  61. Katoh M, Katoh M (2007) STAT3 induced WNT5A signaling loop in embryonic stem cells, adult normal tissues, chronic persistent inflammation, rheumatoid arthritis and cancer (review). Int J Mol Med 19:273–278PubMedPubMedCentralGoogle Scholar
  62. Kelleher FC, Fennelly D, Rafferty M (2006) Common critical pathways in embryogenesis and cancer. Acta Oncol 45:375–388CrossRefPubMedPubMedCentralGoogle Scholar
  63. Khandijian EW, Tuѐrler H (1983) Simian virus 40 and polyoma virus induce synthesis of heat shock proteins in permissive cells. Mol Cell Biol 3(1):1–8CrossRefGoogle Scholar
  64. Kumaraguruparan R, Karunagaran D, Balachandran C, Manohar BM, Nagini S (2006) Of humans and canines: a comparative evaluation of heat shock and apoptosis-associated proteins in mammary tumors. Clin Chim Acta 365:168–176CrossRefPubMedPubMedCentralGoogle Scholar
  65. Kurashina R, Ohyashiki JH, Kobayashi C, Hamamura R, Zhang Y, Hirano T, Ohyashiki K (2009) Anti-proliferative activity of heat shock protein (HSP) 90 inhibitors via beta-catenin/TCF7L2 pathway in adult T cell leukemia cells. Cancer Lett 284(1):62–70CrossRefPubMedPubMedCentralGoogle Scholar
  66. Kwon B, Kumar P, Lee HH, Zeng L, Walsh K, Fu Q, Barakat A, Querfurth HW (2014) Aberrant cell cycle re-entry in human and experimental inclusion body myositis and polymyositis. Hum Mol Genet 23:3681–3694CrossRefPubMedPubMedCentralGoogle Scholar
  67. Lang SA, Moser C, Gaumann A, Klein D, Glockzin G, Popp FC, Dahkle MH, Piso P, Schlitt HJ, Geissler EK, Stoeltzing O (2007) Targeting heat shock protein 90 in pancreatic cancer impairs insulin-like growth factor-1 receptor signaling, disrupting an interleukin 6/ signal transducer and activator of transcription 3/ hypoxia inducible factor 1 (alpha) autocrine loop and reduces orthotopic tumour growth. Clin Cancer Res 13:6459–6468CrossRefGoogle Scholar
  68. Lee AS (2014) Glucose regulated proteins in cancer: molecular mechanisms and therapeutic potential. Nat Rev Cancer 14(4):263–276CrossRefPubMedPubMedCentralGoogle Scholar
  69. Li W, Sahu D, Tsen F (2012) Secreted heat shock protein-90 (Hsp90) in wound healing and cancer. Biochim Biophys Acta 1823(3):730–741CrossRefGoogle Scholar
  70. Lin SY, Xia W, Wang JC, Kwong KY, Spohn B, Wen Y, Pestell RG, Hung MC (2000) β-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proc Natl Acad Sci U S A 97:4262–4266CrossRefPubMedPubMedCentralGoogle Scholar
  71. Lin TY, Bear M, Du Z, Foley KP, Ying W, Barsoum J, London C (2008) The novel HSP90 inhibitor STA-9090 exhibits activity against kit-dependent and -independent malignant mast cell tumors. Exp Hematol 36:1266–1277CrossRefPubMedPubMedCentralGoogle Scholar
  72. Martin E (2011) A dictionary of biology, 6th edn. Oxford University Press, Oxford, pp 315–316Google Scholar
  73. McCready J, Sims JD, Chan D, Jay DG (2010) Secretion of extracellular hsp90α via exosomes increases cancer cell motility: a role for plasminogen activation. BMC Cancer 10:294–303CrossRefPubMedPubMedCentralGoogle Scholar
  74. Mendillo ML, Santagata S, Koeva M, Bell GW, Hu R, Tamimi RM, Fraenkel E, Ince TA, Whitesell L, Lindquist S (2012) HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 150:549–562CrossRefPubMedPubMedCentralGoogle Scholar
  75. Milarski KL, Welch WJ, Morimoto RI (1989) Cell cycle-dependent association of HSP70 with specific cellular proteins. J Cell Biol 108:413–423CrossRefPubMedPubMedCentralGoogle Scholar
  76. Milovanovic T, Planutis K, Nguyen A, Marsh JL, Lin F, Hope C, Holcombe RF (2004) Expression of Wnt genes and frizzled 1 and 2 receptors in normal breast epithelium and infiltrating breast carcinoma. Int J Oncol 25:1337–1342PubMedPubMedCentralGoogle Scholar
  77. Mimnaugh EG, Chavany C, Neckers L (1996) Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J Biol Chem 271(37):22796–22801CrossRefPubMedPubMedCentralGoogle Scholar
  78. Miyata Y (2005) Hsp90 inhibitor geldanamycin and its derivatives as novel cancer chemotherapeutic agents. Curr Pharm Des 11(9):1131–1138CrossRefPubMedPubMedCentralGoogle Scholar
  79. Münster PN, Basso A, Solit D, Norton L, Rosen N (2001) Modulation of HSP90 function by ansamycins sensitizes breast cancer cells to chemotherapy-induced apoptosis in an RB- and schedule-dependent manner. See: E. A. Sausville, Combining cytotoxics and 17-allylamino, 17-demethoxygeldanamycin: sequence and tumor biology matters, Clin. Cancer Res., 7: 2155–2158, 2001. Clin Cancer Res 7(8):2228–22236PubMedPubMedCentralGoogle Scholar
  80. Nagahata T, Shimada T, Harada A, Nagai H, Onda M, Yokoyama S, Shiba T, Jin E, Kawanami O, Emi M (2003) Amplification, up-regulation and over-expression of DVL-1, the human counterpart of the Drosophila disheveled gene, in primary breast cancers. Cancer Sci 94:515–518CrossRefPubMedPubMedCentralGoogle Scholar
  81. Nagaraju GP, Long TE, Park W, Landry JC, Taliaferro-Smith L, Farris AB, Diaz R, El-Rayes BF (2015) Heat shock protein 90 promotes epithelial to mesenchymal transition, invasion, and migration in colorectal cancer. Mol Carcinog 54:1147–1158CrossRefPubMedPubMedCentralGoogle Scholar
  82. Nakayama M, Hisatsune J, Yamasaki E, Isomoto H, Kurazono H, Hatakeyama M, Azuma T, Yamaoka Y, Yahiro K, Moss J, Hirayama T (2009) Helicobacter pylori VacA-induced inhibition of GSK3 through the PI3K/Akt signaling pathway. J Biol Chem 284(3):1612–1619CrossRefPubMedPubMedCentralGoogle Scholar
  83. Nakopoulou L, Mylona E, Papadaki I, Kavantzas N, Giannopoulou I, Markaki S, Keramopoulos A (2006) Study of phospho-β-catenin subcellular distribution in invasive breast carcinomas in relation to their phenotype and the clinical outcome. Mod Pathol 19:556–563CrossRefPubMedPubMedCentralGoogle Scholar
  84. Neckers L, Ivy SP (2003) Heat shock protein 90. Curr Opin Oncol 15(6):419–424CrossRefPubMedPubMedCentralGoogle Scholar
  85. Ochel HJ, Schulte TW, Nguyen P, Trepel J, Neckers L (1999) The benzoquinone ansamycin geldanamycin stimulates proteolytic degradation of focal adhesion kinase. Mol Genet Metabol 66:24–30CrossRefGoogle Scholar
  86. Owens P, Pickup MW, Novitskiy SV, Chytil A, Gorska AE, Aakre ME, West J, Moses HL (2012) Breast Cancer special feature: disruption of bone morphogenetic protein receptor 2 (BMPR2) in mammary tumors promotes metastases through cell autonomous and paracrine mediators. Proc Natl Acad Sci U S A 109(8):2814–2819CrossRefPubMedPubMedCentralGoogle Scholar
  87. Paik S, Hazan R, Fisher ER, Sass RE, Fisher B, Redmond C, Schlessinger J, Lippman ME, King CR (1990) Pathologic findings from the National Surgical Adjuvant Breast and Bowel Project: prognostic significance of erbB-2 protein overexpression in primary breast cancer. J Clin Oncol 8(1):103–112CrossRefPubMedPubMedCentralGoogle Scholar
  88. Pandey M, Sunil Kumar BV, Verma R (2015) Mammaglobin as a diagnostic serum marker of complex canine mammary carcinoma. Res Vet Sci 103:187–192CrossRefPubMedPubMedCentralGoogle Scholar
  89. Pepin K, Momose F, Ishida N, Nagata K (2001) Molecular cloning of horse Hsp90 cDNA and its comparative analysis with other vertebrate Hsp90 sequences. J Vet Med Sci 63:115–124CrossRefPubMedPubMedCentralGoogle Scholar
  90. Perdew GH, Wiegand H, Vanden Heuver JP, Mitchell C, Singh SS (1997) A 50 kilodalton protein associated with Raf and pp 60 (v-Src) protein kinases is a mammalian homolog of the cell cycle control protein Cdc37. Biochemistry 36(12):3600–3607CrossRefPubMedPubMedCentralGoogle Scholar
  91. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752CrossRefPubMedPubMedCentralGoogle Scholar
  92. Petersen, N.S. (1990) Effects of heat and chemical stress on development. Scandalios: Advances in genetics: responses to environmental stress. San Diego: Academic, 28Google Scholar
  93. Petersen NS, Mitchell HK (1991) Environmentally induced development defects in Drosophila. In: Hightower L, Nover L (eds) Heat shock and development, vol 17. Springer, Berlin, pp 29–43CrossRefGoogle Scholar
  94. Petros AM, Olejniczak ET, Fesik SW (2004) Structural biology of the Bcl-2 family of proteins. Biochim Biophys Acta 1644:83–94CrossRefPubMedPubMedCentralGoogle Scholar
  95. Petterino C, Martini M, Castagnaro M (2001) Stat3 expression in canine mammary gland tumors and mammary gland hyperplasia. Eur J Vet Pathol 7(3):117–123Google Scholar
  96. Pick E, Kluger Y, Giltnane JM, Moeder C, Camp RL, Rimm DL, Kluger HM (2007) High HSP90 expression is associated with decreased survival in breast cancer. Cancer Res 67:2932–2937CrossRefPubMedPubMedCentralGoogle Scholar
  97. Pyle ME, Korbonits M, Gueorguiev M, Jordan S, Kola B, Morris DG, Meinhardt A, Powell MP, Claret FX, Zhang Q, Metz C, Bucala R, Grossman AB (2003) Macrophage migration inhibitory factor expression is increased in pituitary adenoma cell nuclei. J Endocrinol 176(1):103–110CrossRefPubMedPubMedCentralGoogle Scholar
  98. Queiroga FL, Raposo T, Carvalho MI, Prada J, Pires I (2011) Canine mammary tumours as a model to study human breast cancer: most recent findings. In Vivo 25:455–466PubMedPubMedCentralGoogle Scholar
  99. Reed JC (1999) Mechanisms of apoptosis avoidance in cancer. Curr Opin Oncol 1l:68–75CrossRefGoogle Scholar
  100. Ritossa F (1962) A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia 18(12):571–573CrossRefGoogle Scholar
  101. Roe SM, Prodromou C, O'Brien R, Ladbury JE, Piper PW, Pearl LH (1999) Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem 42:260–266CrossRefGoogle Scholar
  102. Rong B, Zhao C, Liu H, Ming Z, Cai X, Gao W, Yang S (2014) Identification and verification of Hsp90-beta as a potential serum biomarker for lung cancer. Am J Cancer Res 4(6):874–885PubMedPubMedCentralGoogle Scholar
  103. Sato S, Fujita N, Tsuruo T (2000) Modulation of Akt kinase activity by binding to HSP90. Proc Natl Acad Sci U S A 97:10832–10837CrossRefPubMedPubMedCentralGoogle Scholar
  104. Sato N, Yamamoto T, Sekine Y, Yumioka T, Junicho A, Fuse H, Matsuda T (2003) Involvement of heat-shock protein 90 in the interleukin-6-mediated signaling pathway through STAT3. Biochem Biophys Res Commun 300:847–852CrossRefPubMedPubMedCentralGoogle Scholar
  105. Schlange T, Matsuda Y, Lienhard S, Huber A, Hynes NE (2007) Autocrine WNT signaling contributes to breast cancer cell proliferation via the canonical WNT pathway and EGFR trans-activation. Breast Cancer Res 9:R63CrossRefPubMedPubMedCentralGoogle Scholar
  106. Schlesinger MJ (1990) Heat shock proteins. J Biol Chem 265(21):12111–12114PubMedPubMedCentralGoogle Scholar
  107. Schulz R, Dobbelstein M, Moll UM (2012a) HSP90 inhibitor antagonizing MIF: the specifics of pleiotropic cancer drug candidates. Oncoimmunology 1:1425–1426CrossRefPubMedPubMedCentralGoogle Scholar
  108. Schulz R, Marchenko N, Holembowski L, Fingerle-Rowson G, Pesic M, Zender L, Dobbelstein M, Moll UM (2012b) Inhibiting the HSP90 chaperone destabilizes macrophage migration inhibitory factor and thereby inhibits breast tumor progression. J Exp Med 209:275–289CrossRefPubMedPubMedCentralGoogle Scholar
  109. Sepp-Lorenzino L, Ma Z, Lebwohl DE, Vinitsky A, Rosen N (1995) Herbimycin A induces the 20 S proteasome- and ubiquitin-dependent degradation of receptor tyrosine kinases. J Biol Chem 270:16580–16587CrossRefPubMedPubMedCentralGoogle Scholar
  110. Sharma R, Kumar D, Jha NK, Jha SK, Ambasta RK, Kumar P (2017) Re-expression of cell cycle markers in aged neurons and muscles: whether cells should divide or die? Biochim Biophys Acta Mol basis Dis 1863(1):324–336CrossRefPubMedPubMedCentralGoogle Scholar
  111. Silverstein AM, Grammatikakis N, Cochran BH, Chinkers M, Pratt WB (1998) p50 (cdc37) binds directly to the catalytic domain of Raf as well as to a site on HSP90 that is topologically adjacent to the tetratricopeptide repeat binding site. J Biol Chem 273(32):20090–20095CrossRefPubMedPubMedCentralGoogle Scholar
  112. Simon MC, Kitchener K, Kao HT, Hickey E, Weber L, Voellmy R, Heintz N, Nevins JR (1987) Selective induction of human heat shock gene transcription by the adenovirus E1A gene products, including the 12S E1A product. Mol Cell Biol 7(8):2884–2890CrossRefPubMedPubMedCentralGoogle Scholar
  113. Sims JD, McCready J, Jay DG (2011) Extracellular Heat Shock Protein (Hsp) 70 and Hsp90α assist in matrix metalloproteinase-2 activation and breast cancer cell migration and invasion. PLoS One 6(4):e18848CrossRefPubMedPubMedCentralGoogle Scholar
  114. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogenes. Science 235(4785):177–182CrossRefPubMedPubMedCentralGoogle Scholar
  115. Soga S, Sharma SV, Shiotsu Y, Shimizu M, Tahara H, Yamaguchi K, Ikuina Y, Murakata C, Tamaoki T, Kurebayashi J, Schulte TW, Neckers LM, Akinaga S (2001) Stereospecific antitumor activity of radicicol oxime derivatives. Cancer Chemother Pharmacol 48:435–445CrossRefPubMedPubMedCentralGoogle Scholar
  116. Song CH, Park SY, Eom KY, Kim JH, Kim SW, Kim JS, Kim IA (2010) Potential prognostic value of heat-shock protein 90 in the presence of phosphatidylinositol-3-kinase overexpression or loss of PTEN, in invasive breast cancers. Breast Cancer Res 12(2):R20CrossRefPubMedPubMedCentralGoogle Scholar
  117. Sreedhar AS, Csermely P (2004) Heat shock proteins in the regulation of apoptosis: new strategies in tumour therapy: a comprehensive review. Pharmacol Ther 101:227–257CrossRefPubMedPubMedCentralGoogle Scholar
  118. Sreedhar AS, Kalmar E, Csermely P, Shen YF (2004) Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett 562:11–15CrossRefPubMedPubMedCentralGoogle Scholar
  119. Stancato LF, Chow YH, Hutchison KA, Pedrew GH, Jove R, Pratt WB (1993) Raf exists in a native heterocomplex with HSP90 and p50 that can be reconstituted in a cell-free system. J Biol Chem 268(29):21711–21716PubMedPubMedCentralGoogle Scholar
  120. Stepanova L, Leng X, Barker SB, Harper JW (1996) Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes Dev 10(12):1491–1502CrossRefPubMedPubMedCentralGoogle Scholar
  121. Stephanou A, Latchman DS (1999) Transcriptional regulation of the heat shock protein genes by STAT family transcription factors. Gene Expr 7:311–319PubMedPubMedCentralGoogle Scholar
  122. Stivarou T, Stellas D, Vartzi G, Thomaidou D, Patsavoudi E (2016) Targeting highly expressed extracellular HSP90 in breast cancer stem cells inhibits tumor growth in vitro and in vivo. Cancer Biol Ther 17(8):799–812CrossRefPubMedPubMedCentralGoogle Scholar
  123. Stock J (1999) Gyrating protein kinases. Curr Biol 9:R364CrossRefPubMedPubMedCentralGoogle Scholar
  124. Sunil Kumar BV, Kumar AK, Padmanath K, Sharma B, Kataria M (2013) Heterologous expression and functional characterization of matrix Metalloproteinase-11 from canine mammary tumor. Anim Biotechnol 24(1):31–43CrossRefPubMedPubMedCentralGoogle Scholar
  125. Sunil Kumar BV, Singh S, Verma R (2017) Anticancer potential of dietary vitamin D and ascorbic acid: a review. Crit Rev Food Sci Nutr 57(12):2623–2635CrossRefPubMedPubMedCentralGoogle Scholar
  126. Sunil Kumar BV, Bhardwaj R, Mahajan K, Kashyap N, Kumar A, Verma R (2018) The overexpression of HSP90B1 is associated with tumorigenesis of canine mammary glands. Mol Cell Biochem 440:23–31CrossRefPubMedPubMedCentralGoogle Scholar
  127. Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11(7):515–528CrossRefGoogle Scholar
  128. Trepel J, Mollapour M, Giaccone G, Neckers L (2010) Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10(8):537–549CrossRefPubMedPubMedCentralGoogle Scholar
  129. van ‘t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536CrossRefPubMedPubMedCentralGoogle Scholar
  130. Veeck J, Niederacher D, An H, Klopocki E, Wiesmann F, Betz B, Galm O, Camara O, Dürst M, Kristiansen G, Huszka C, Knüchel R, Dahl E (2006) Aberrant methylation of the Wnt antagonist SFRP1 in breast cancer is associated with unfavourable prognosis. Oncogene 25:3479–3488CrossRefGoogle Scholar
  131. Veeck J, Geisler C, Noetzel E, Alkaya S, Hartmann A, Knuchel R, Dahl E (2008) Epigenetic inactivation of the secreted frizzled-related protein-5 (SFRP5) gene in human breast cancer is associated with unfavorable prognosis. Carcinogenesis 29:991–998CrossRefGoogle Scholar
  132. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2:489–501CrossRefGoogle Scholar
  133. Wagner EF, Nebreda AR (2009) Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9:537–549CrossRefGoogle Scholar
  134. Walsh DA, Morris VB (1989) Heat shock affects cell cycling in the neural plate of cultured rat embryos: a flow cytometric study. Exp Teratol 40:583–592CrossRefGoogle Scholar
  135. Walsh D, Li K, Wass J, Dolnikov A, Zeng F, Zhe L, Edwards M (1993) Heat-shock gene expression and cell cycle changes during mammalian embryonic development. Dev Genet 14:127–136CrossRefPubMedPubMedCentralGoogle Scholar
  136. Wang Y, Theriault JR, He H, Gong J, Calderwood SK (2004) Expression of a dominant negative heat shock factor-1 construct inhibits aneuploidy in prostate carcinoma cells. J Biol Chem 279:32651–32659CrossRefPubMedPubMedCentralGoogle Scholar
  137. Wang X, Zhang Y, Zhao Y, Liang Y, Xiang C, Zhou H, Zhang H, Zhang Q, Qing H, Jiang B, Xiong H, Peng L (2016) CD24 promoted cancer cell angiogenesis via Hsp90-mediated STAT3/VEGF signalling pathway in colorectal cancer. Oncotarget 7:55663–55676PubMedPubMedCentralGoogle Scholar
  138. Wartmann M, Davis RJ (1994) The native structure of the activated Raf protein kinase is a membrane-bound multi-subunit complex. J Biol Chem 269(9):6695–6701Google Scholar
  139. Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5(10):761–772CrossRefGoogle Scholar
  140. Whitesell L, Sutphin P, An WG, Schulte T, Blagosklonny MV, Neckers L (1997) Geldanamycin-stimulated destabilization of mutated p53 is mediated by the proteasome in vivo. Oncogene 14(23):2809–2816CrossRefPubMedPubMedCentralGoogle Scholar
  141. Whitesell L, Sutphin PD, Pulcini EJ, Martinez JD, Cook PH (1998) The physical association of multiple molecular chaperone proteins with mutant p53 is altered by geldanamycin, a HSP90-binding agent. Mol Cell Biol 18(3):1517–1524CrossRefPubMedPubMedCentralGoogle Scholar
  142. Wilhelm CCS, Tang L, Rong H, Chen C, Zhang X, McHugh M, Wilkie D, McNabola A, Rowley B, Henderson A, Cao Y, Hofilena G, Housley T, Shujath J, Liu L, Adnane L, Lynch M, Eveleigh D, Gedrich R, Voznesensky A, Riedl B, Wang Q, Post L, Bollag G (2003) BAY 43-9006 exhibits broad spectrum antitumor activity and targets raf/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis (abstract A78). Presented at the AACR-NCI-EORTC International Conference Molecular Targets and Cancer Therapeutics, Boston, 17–21 NovemberGoogle Scholar
  143. Workman P, Burrows F, Neckers L, Rosen N (2007) Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann N Y Acad Sci 1113:202–216CrossRefPubMedPubMedCentralGoogle Scholar
  144. Wu J, Liu T, Rios Z, Mei Q, Lin X, Cao S (2017) Heat shock proteins and cancer. Trends Pharmacol Sci 38(3):226–256CrossRefPubMedPubMedCentralGoogle Scholar
  145. Xing H, Weng D, Chen G, Tao W, Zhu T, Yang X, Meng L, Wang S, Lu Y, Ma D (2008) Activation of fibronectin/PI-3K/Akt2 leads to chemoresistance to docetaxel by regulating survivin protein expression in ovarian and breast cancer cells. Cancer Lett 261(1):108–119CrossRefPubMedPubMedCentralGoogle Scholar
  146. Yamaguchi N, Ito T, Azuma S, Ito E, Honma R, Yanagjsawa Y, Nishikawa A, Kawamura M, Imai J, Watanabe S, Semba K, Inoue J (2009) Constitutive activation of nuclear factor-kappaB is preferentially involved in the proliferation of basal-like subtype breast cancer cell lines. Cancer Sci 100:1668–1674CrossRefPubMedPubMedCentralGoogle Scholar
  147. Yang ZQ, Geng X, Solit D, Pratilas CA, Rosen N, Danishefsky SJ (2004) New efficient synthesis of resorcinylic macrolides via ynolides: establishment of cycloproparadicicol as synthetically feasible preclinical anticancer agent based on Hsp90 as the target. J Am Chem Soc 126:7881–7889CrossRefPubMedPubMedCentralGoogle Scholar
  148. Yarden Y, Pines G (2012) The ERBB network: at last, cancer therapy meets systems biology. Nat Rev Cancer 12:553–563CrossRefPubMedPubMedCentralGoogle Scholar
  149. Zagouri F, Bournakis E, Koutsoukos K, Papadimitriou CA (2012) Heat shock protein 90 (Hsp90) expression and breast cancer. Pharmaceuticals 5:1008–1020CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • B. V. Sunil Kumar
    • 1
  • Priya K. Gopal
    • 2
    • 3
  • Ramneek Verma
    • 1
  1. 1.Department of Microbial and Environmental Biotechnology, School of Animal BiotechnologyGuru Angad Dev Veterinary and Animal Sciences UniversityLudhianaIndia
  2. 2.Department of Botany, Centre of Advanced StudiesUniversity of CalcuttaKolkataIndia
  3. 3.Department of MicrobiologyMuralidhar Girls’ CollegeKolkataIndia

Personalised recommendations