Advertisement

Therapeutic Potential of Heat Shock Protein 90 Inhibitors in Colorectal Cancer

  • Reyhaneh Moradi-Marjaneh
  • Seyed Mahdi Hassanian
  • Gordon A. Ferns
  • Amir AvanEmail author
  • Majid KhazaeiEmail author
Chapter
Part of the Heat Shock Proteins book series (HESP, volume 19)

Abstract

Colorectal cancer (CRC) is one of the most common causes of cancer- related death globally. Despite recent advances in diagnosis and treatment, CRC remains one of the leading cause mortality, with 5 years survival rate of approximately 60%. Hence, there is an urgent need for new therapeutic approaches. A large number of Hsp90 client proteins have importance in the stability and function of crucial oncogenic proteins and play critical roles in the development of CRC. Hence, Hsp90 inhibitors may have therapeutic benefits in the treatment of CRC, and they are currently in clinical trials for various malignancies. In this chapter, we have reviewed the potential role of Hsp90 in the pathogenesis of CRC, and have summarized recent preclinical and clinical studies of Hsp90 inhibitors as a potential therapeutic in CRC.

Keywords

Cancer Clinical Colorectal Hsp90 inhibitors Treatment 

Abbreviations

15-PGDH

15-hydroxyprostaglandin dehydrogenase

Akt

Protein kinase B

BIM

Bcl-2 interacting mediator of cell death

Cdk2

Cyclin-dependent kinase 2

COX-2

Cyclooxygenase-2

ECM

Cell-extracellular matrix

ERK

Extracellular signal–regulated kinases

FDG

Fluorodeoxyglucose

FGFR

Fibroblast growth factor receptor

HER2/neu

Human epidermal growth factor receptor 2

IKK

IκB kinase

LRP-1

Lipoprotein receptor-related protein 1

MMP9

Matrix metalloproteinase 9

NF-κB

Nuclear factor kappa-light-chain-enhancer of activated B cells

NNM

Non-neoplastic mucosa

PET

Positron emission tomography

PGE2

Prostaglandin E2

PI3K

Phosphoinositide 3 – kinase

PKC

Protein kinase C

RIG-I

Retinoic acid-inducible gene I

STK33

Serine/threonine kinase 33

TCF12

Transcription factor 12

TRAP1

Tumor necrosis factor associated protein

Tyk2

Tyrosine kinase 2

Notes

Acknowledgements

This research was partly supported by grants awarded by the Mashhad University of Medical Sciences, grant No. 940908 and National Institute for Medical research Development, grant No. 958349.

References

  1. Agnew EB, Wilson RH, Grem JL, Neckers L, Bi D, Takimoto CH (2001) Measurement of the novel antitumor agent 17-(allylamino)-17-demethoxygeldanamycin in human plasma by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 755:237–243CrossRefGoogle Scholar
  2. Akce M, Alese OB, Shaib WL, Wu CS-Y, Lesinski GB, El-Rayes BF (2018) Phase Ib trial of pembrolizumab and XL888 in patients with advanced gastrointestinal malignancies. J Clin Oncol 36:1–15Google Scholar
  3. Amerizadeh F, Rezaei N, Rahmani F et al (2018) Crocin synergistically enhances the antiproliferative activity of 5-flurouracil through Wnt/PI3K pathway in a mouse model of colitis-associated. J Cell Biochem 119:10250–10261CrossRefGoogle Scholar
  4. Archie NT, Klimstra DS, Gonen M et al (2008) A phase 1 dose-escalation study of irinotecan in combination with 17-allylamino-17-demethoxygeldanamycin in patients with solid tumors. Clin Cancer Res 14:6704–6711CrossRefGoogle Scholar
  5. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F (2016) Global patterns and trends in colorectal cancer incidence and mortality. Gut 66:683–691CrossRefGoogle Scholar
  6. Azoitei N, Hoffmann CM, Ellegast JM et al (2012) Targeting of KRAS mutant tumors by HSP90 inhibitors involves degradation of STK33. J Exp Med 209:697–711CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bao R, Lai C-J, Qu H et al (2009) CUDC-305, a novel synthetic HSP90 inhibitor with unique pharmacologic properties for cancer therapy. Clin Cancer Res 15:4046–4057CrossRefGoogle Scholar
  8. Bedin M, Gaben AM, Saucier C, Mester J (2004) Geldanamycin, an inhibitor of the chaperone activity of HSP90, induces MAPK-independent cell cycle arrest. Int J Cancer 109:643–652CrossRefGoogle Scholar
  9. Bedin M, Catelli MG, Cabanie L, Gaben AM, Mester J (2009) Indirect participation of Hsp90 in the regulation of the cyclin E turnover. Biochem Pharmacol 77:151–158CrossRefGoogle Scholar
  10. Bendell JC, Jones SF, Hart L et al (2015) A phase I study of the Hsp90 inhibitor AUY922 plus capecitabine for the treatment of patients with advanced solid tumors. Cancer Investig 33:477–482CrossRefGoogle Scholar
  11. Bendell JC, Bauer TM, Lamar R et al (2016) A phase 2 study of the Hsp90 inhibitor AUY922 as treatment for patients with refractory gastrointestinal stromal tumors. Cancer Investig 34:265–270CrossRefGoogle Scholar
  12. Bussenius J, Blazey CM, Aay N et al (2012) Discovery of XL888: a novel tropane-derived small molecule inhibitor of HSP90. Bioorg Med Chem Lett 22:5396–5404CrossRefPubMedPubMedCentralGoogle Scholar
  13. Caldas-Lopes E, Cerchietti L, Ahn JH et al (2009) Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc Natl Acad Sci U S A 106:8368–8373PubMedPubMedCentralGoogle Scholar
  14. Canella A, Xu J, Meisen WH et al (2015) DEBIO0932, an Hsp90 inhibitor downregulates key signaling pathways and sensitizes glioma cells to temozolomide. AACR 75:1–10Google Scholar
  15. Cavenagh J, Oakervee H, Baetiong-Caguioa P et al (2017) A phase I/II study of KW-2478, an Hsp90 inhibitor, in combination with bortezomib in patients with relapsed/refractory multiple myeloma. Br J Cancer 117:1295–1302CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cercek A, Shia J, Gollub M et al (2014) Ganetespib, a novel Hsp90 inhibitor in patients with KRAS mutated and wild type, refractory metastatic colorectal cancer. Clin Colorectal Cancer 13:207–212CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chandarlapaty S, Sawai A, Ye Q et al (2008) SNX2112, a synthetic heat shock protein 90 inhibitor, has potent antitumor activity against HER kinase–dependent cancers. Clin Cancer Res 14:240–248CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chen JS, Hsu YM, Chen CC, Chen LL, Lee CC, Huang TS (2010) Secreted heat shock protein 90alpha induces colorectal cancer cell invasion through CD91/LRP-1 and NF-kappaB-mediated integrin alphaV expression. J Biol Chem 285:25458–25466CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chen WS, Lee CC, Hsu YM, Chen CC, Huang TS (2011) Identification of heat shock protein 90alpha as an IMH-2 epitope-associated protein and correlation of its mRNA overexpression with colorectal cancer metastasis and poor prognosis. Int J Color Dis 26:1009–1017CrossRefGoogle Scholar
  20. Chen WS, Chen CC, Chen LL, Lee CC, Huang TS (2013) Secreted heat shock protein 90alpha (HSP90alpha) induces nuclear factor-kappaB-mediated TCF12 protein expression to down-regulate E-cadherin and to enhance colorectal cancer cell migration and invasion. J Biol Chem 288:9001–9010CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cho D, Heath E, Cleary J et al (2011) A phase I dose-escalation study of the Hsp90 inhibitor ganetespib (STA-9090) administered twice weekly in patients with solid tumors: updated report. J Clin Oncol 29:3051–3051CrossRefGoogle Scholar
  22. Courtin A, Smyth T, Hearn K, Lyons J, Thompson N, Wallis NG (2015) The HSP90 inhibitor, onalespib (AT13387), delays the emergence of resistance to erlotinib in an EGFR-driven xenograft model. AACR 75:1–10Google Scholar
  23. de la Mare JA, Jurgens T, Edkins AL (2017) Extracellular Hsp90 and TGFbeta regulate adhesion, migration and anchorage independent growth in a paired colon cancer cell line model. BMC Cancer 17:202CrossRefPubMedPubMedCentralGoogle Scholar
  24. Demetri G, Heinrich M, Chmielowski B et al (2011) An open-label phase II study of the Hsp90 inhibitor ganetespib (STA-9090) in patients (pts) with metastatic and/or unresectable GIST. J Clin Oncol 29:10011–10011CrossRefGoogle Scholar
  25. Dickson M, Okuno S, Keohan M et al (2012) Phase II study of the HSP90-inhibitor BIIB021 in gastrointestinal stromal tumors. Ann Oncol 24:252–257CrossRefPubMedPubMedCentralGoogle Scholar
  26. Djuzenova CS, Blassl C, Roloff K et al (2012) Hsp90 inhibitor NVP-AUY922 enhances radiation sensitivity of tumor cell lines under hypoxia. Cancer Biol Ther 13:425–434CrossRefPubMedPubMedCentralGoogle Scholar
  27. Do K, Speranza G, Chang L-C et al (2015) Phase I study of the heat shock protein 90 (Hsp90) inhibitor onalespib (AT13387) administered on a daily for 2 consecutive days per week dosing schedule in patients with advanced solid tumors. Investig New Drugs 33:921–930CrossRefGoogle Scholar
  28. Doddareddy MR, Thorat DA, Seo SH et al (2011) Structure based design of heat shock protein 90 inhibitors acting as anticancer agents. Bioorg Med Chem 19:1714–1720CrossRefPubMedPubMedCentralGoogle Scholar
  29. Doi T, Onozawa Y, Fuse N et al (2014) Phase I dose-escalation study of the HSP90 inhibitor AUY922 in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol 74:629–636CrossRefPubMedPubMedCentralGoogle Scholar
  30. Egorin MJ, Rosen DM, Wolff JH, Callery PS, Musser SM, Eiseman JL (1998) Metabolism of 17-(allylamino)-17-demethoxygeldanamycin (NSC 330507) by murine and human hepatic preparations. Cancer Res 58:2385–2396PubMedGoogle Scholar
  31. Egorin MJ, Zuhowski EG, Rosen DM, Sentz DL, Covey JM, Eiseman JL (2001) Plasma pharmacokinetics and tissue distribution of 17-(allylamino)-17-demethoxygeldanamycin (NSC 330507) in CD2F1 mice1. Cancer Chemother Pharmacol 47:291–302CrossRefGoogle Scholar
  32. Elfiky A, Saif M, Beeram M et al (2008) BIIB021, an oral, synthetic non-ansamycin Hsp90 inhibitor: phase I experience. J Clin Oncol 26:2503–2503CrossRefGoogle Scholar
  33. El-Rayes BF, Staley CA, Diaz R, Sullivan PS, Shaib WL, Landry JC (2015) Phase I study of ganetespib (G), capecitabine (C), and radiation (RT) in rectal cancer. J Clin Oncol 33:3596–3596CrossRefGoogle Scholar
  34. Eroglu Z, Gibney GT, Weber JS et al (2016) Phase I study of vemurafenib and heat shock protein 90 (HSP90) inhibitor XL888 in metastatic BRAF V600 mutant melanoma. J Clin Oncol 34:9544–9544CrossRefGoogle Scholar
  35. Fu J, Koul D, Yao J et al (2013) Novel HSP90 inhibitor NVP-HSP990 targets cell cycle regulators to ablate Olig2-positive glioma tumor initiating cells. Cancer Res 15:3062–3074CrossRefGoogle Scholar
  36. Garcia-Carbonero R, Carnero A, Paz-Ares L (2013) Inhibition of HSP90 molecular chaperones: moving into the clinic. Lancet Oncol 14:e358–e369CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ge H, Yan Y, Guo L, Tian F, Wu D (2018) Prognostic role of HSPs in human gastrointestinal cancer: a systematic review and meta-analysis. Onco Targets Ther 15:351–359CrossRefGoogle Scholar
  38. Gerecitano JF, Modi S, Gajria D et al (2013) Using 124I-PU-H71 PET imaging to predict intratumoral concentration in patients on a phase I trial of PU-H71. J Clin Oncol 31(Suppl): Abstract 11076Google Scholar
  39. Goetz MP, Toft D, Reid J et al (2005) Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. J Clin Oncol 23:1078–1087CrossRefGoogle Scholar
  40. Goldman JW, Raju RN, Gordon GA et al (2013) A first in human, safety, pharmacokinetics, and clinical activity phase I study of once weekly administration of the Hsp90 inhibitor ganetespib (STA-9090) in patients with solid malignancies. BMC Cancer 13:152CrossRefPubMedPubMedCentralGoogle Scholar
  41. Gopalakrishnan R, Matta H, Chaudhary PM (2013) A purine scaffold HSP90 inhibitor BIIB021 has selective activity against KSHV-associated primary effusion lymphoma and blocks vFLIP K13-induced NF-Κb. Clin Cancer Res 15:5016–5026Google Scholar
  42. Grammatikakis N, Vultur A, Ramana CV et al (2002) The role of Hsp90N, a new member of the Hsp90 family, in signal transduction and neoplastic transformation. J Biol Chem 277:8312–8320CrossRefPubMedPubMedCentralGoogle Scholar
  43. Gutierrez M, Giaccone G, Liu SV et al (2017) A phase 1B study of SNX-5422 plus carboplatin (C) and paclitaxel (P) in patients with advanced non-small-cell lung cancer (NSCLC). J Clin Oncol 35:e20622CrossRefGoogle Scholar
  44. Haarberg HE, Paraiso KH, Wood E et al (2013) Inhibition of Wee1, AKT and CDK4 underlies the efficacy of the HSP9o inhibitor XL888 in an in vivo model of NRAS mutant melanoma. Mol Can Ther 12:901–912CrossRefGoogle Scholar
  45. Hamamoto R, Furukawa Y, Morita M et al (2004) SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol 6:731–740CrossRefGoogle Scholar
  46. Hanson BE, Vesole DH (2009) Retaspimycin hydrochloride (IPI-504): a novel heat shock protein inhibitor as an anticancer agent. Expert Opin Investig Drugs 18:1375–1383CrossRefGoogle Scholar
  47. Hashemzehi M, Behnam-Rassouli R, Hassanian SM et al (2018) Phytosomal-curcumin antagonizes cell growth and migration, induced by thrombin through AMP-kinase in breast cancer. J Cell Biochem 119:5996–6007CrossRefGoogle Scholar
  48. He W, Ye X, Huang X et al (2016) Hsp90 inhibitor, BIIB021, induces apoptosis and autophagy by regulating mTOR-Ulk1 pathway in imatinib-sensitive and-resistant chronic myeloid leukemia cells. Int J Oncol 48:1710–1720CrossRefGoogle Scholar
  49. Hendrickson AEW, Oberg AL, Glaser G et al (2012) A phase II study of gemcitabine in combination with tanespimycin in advanced epithelial ovarian and primary peritoneal carcinoma. Gynecol Oncol 124:210–215CrossRefGoogle Scholar
  50. Hertlein E, Wagner AJ, Jones J et al (2010) 17-DMAG targets the nuclear factor-κB family of proteins to induce apoptosis in chronic lymphocytic leukemia: clinical implications of HSP90 inhibition. Blood 116:45–53CrossRefPubMedPubMedCentralGoogle Scholar
  51. Hubbard J, Erlichman C, Toft DO et al (2011) Phase I study of 17-allylamino-17 demethoxygeldanamycin, gemcitabine and/or cisplatin in patients with refractory solid tumors. Invest New Drugs 29:473–480CrossRefGoogle Scholar
  52. Infante J, Weiss G, Jones S et al (2010) 375 A Phase 1 dose escalation study of the oral heat shock protein 90 (Hsp90) inhibitor PF-04929113/SNX-5422 (PF-113) and its associated ocular toxicity. EJC Suppl 7:119CrossRefGoogle Scholar
  53. Infante JR, Weiss GJ, Jones S et al (2014) Phase I dose-escalation studies of SNX-5422, an orally bioavailable heat shock protein 90 inhibitor, in patients with refractory solid tumours. Eur J Cancer 50:2897–2904CrossRefGoogle Scholar
  54. Isambert N, Delord J-P, Soria J-C et al (2015) Debio0932, a second-generation oral heat shock protein (HSP) inhibitor, in patients with advanced cancer—result of a first-in-man dose-escalation study with a fixed-dose extension phase. Ann Oncol 26:1005–1011CrossRefGoogle Scholar
  55. Jhaveri K, Miller K, Rosen L et al (2012) A phase I dose-escalation trial of trastuzumab and alvespimycin hydrochloride (KOS-1022; 17 DMAG) in the treatment of advanced solid tumors. Clin Cancer Res 15:5090–5098CrossRefGoogle Scholar
  56. Johnston A (2009) Infinity halts RING trial in advanced gastrointestinal stromal tumorsGoogle Scholar
  57. Kamal A, Thao L, Sensintaffar J et al (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425:407–410PubMedPubMedCentralGoogle Scholar
  58. Kauh JS, Harvey RD, Owonikoko TK et al (2012) A phase I and pharmacokinetic study of multiple schedules of ganetespib (STA-9090), a heat shock protein 90 inhibitor, in combination with docetaxel for subjects with advanced solid tumor malignancies. Int J Oncol 15:3094–3094Google Scholar
  59. Kinzel L, Ernst A, Orth M et al (2016) A novel HSP90 inhibitor with reduced hepatotoxicity synergizes with radiotherapy to induce apoptosis, abrogate clonogenic survival, and improve tumor control in models of colorectal cancer. Oncotarget 7:43199–43219CrossRefPubMedPubMedCentralGoogle Scholar
  60. Koga F, Kihara K, Neckers L (2009) Inhibition of cancer invasion and metastasis by targeting the molecular chaperone heat-shock protein 90. Anticancer Res 29:797–807PubMedGoogle Scholar
  61. Kotha S, Sreevani G (2018) Cyclotrimerization with propargyl halides as copartners: formal total synthesis of the antitumor Hsp90 inhibitor AT13387. ACS Omega 3:1850–1855CrossRefPubMedPubMedCentralGoogle Scholar
  62. Kurokawa Y, Sawaki A, Komatsu Y et al (2017) 1479PD Phase II study of TAS-116, an oral inhibitor of heat shock protein 90 (HSP90), in metastatic or unresectable gastrointestinal stromal tumor refractory to imatinib, sunitinib and regorafenib. Ann Oncol 28:521–538CrossRefGoogle Scholar
  63. Lee DH, Sung KS, Bartlett DL, Kwon YT, Lee YJ (2015) HSP90 inhibitor NVP-AUY922 enhances TRAIL-induced apoptosis by suppressing the JAK2-STAT3-Mcl-1 signal transduction pathway in colorectal cancer cells. Cell Signal 27:293–305CrossRefGoogle Scholar
  64. Li M, Zhang X, Zhou W-J et al (2013) Hsp90 inhibitor BIIB021 enhances triptolide-induced apoptosis of human T-cell acute lymphoblastic leukemia cells in vitro mainly by disrupting p53-MDM2 balance. Acta Pharmacol Sin 34:1545–1553CrossRefPubMedPubMedCentralGoogle Scholar
  65. Lundgren K, Zhang H, Brekken J et al (2009) BIIB021, an orally available, fully synthetic small-molecule inhibitor of the heat shock protein Hsp90. Mol Cancer Ther 8:921–929CrossRefGoogle Scholar
  66. Mahadevan D, Rensvold DM, Kurtin SE et al (2012) First-in-human phase I study: results of a second-generation non-ansamycin heat shock protein 90 (HSP90) inhibitor AT13387 in refractory solid tumors. J Clin Oncol 30:3028Google Scholar
  67. Margineantu DH, Emerson CB, Diaz D, Hockenbery DM (2007) Hsp90 inhibition decreases mitochondrial protein turnover. PLoS One 2:e1066CrossRefPubMedPubMedCentralGoogle Scholar
  68. Marjaneh RM, Rahmani F, Hassanian SM et al (2018) Phytosomal curcumin inhibits tumor growth in colitis-associated colorectal cancer. J Cell Physiol 233:6785–6798CrossRefGoogle Scholar
  69. Matsumiya T, Imaizumi T, Yoshida H, Satoh K, Topham MK, Stafforini DM (2009) The levels of retinoic acid-inducible gene I are regulated by heat shock protein 90-alpha. J Immunol 182:2717–2725CrossRefPubMedPubMedCentralGoogle Scholar
  70. Mayor-López L, Tristante E, Carballo-Santana M et al (2014) Comparative study of 17-AAG and NVP-AUY922 in pancreatic and colorectal cancer cells: are there common determinants of sensitivity? Transl Oncol 7:590–604CrossRefPubMedPubMedCentralGoogle Scholar
  71. McBride CM, Levine B, Xia Y et al (2014) Design, structure–activity relationship, and in vivo characterization of the development candidate NVP-HSP990. J Med Chem 57:9124–9129CrossRefGoogle Scholar
  72. Menezes D, Taverna P, Jensen MR et al (2012) The novel oral HSP90 inhibitor NVP-HSP90 exhibits potent and broad-spectrum anti-tumor activities in vitro and in vivo. Mol Cancer Ther: Molcanther 11:730–739CrossRefGoogle Scholar
  73. Messaoudi S, Peyrat J, Brion J, Alami M (2008) Recent advances in Hsp90 inhibitors as antitumor agents. Anti Cancer Agents Med Chem 8:761–782CrossRefGoogle Scholar
  74. Milicevic Z, Bogojevic D, Mihailovic M, Petrovic M, Krivokapic Z (2008) Molecular characterization of Hsp90 isoforms in colorectal cancer cells and its association with tumour progression. Int J Oncol 32:1169–1178Google Scholar
  75. Mimnaugh EG, Chavany C, Neckers L (1996) Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J Biol Chem 271:22796–22801CrossRefPubMedPubMedCentralGoogle Scholar
  76. Modi S, Stopeck AT, Linden HM et al (2011) HSP90 inhibition is effective in breast cancer: a phase 2 trial of tanespimycin (17AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. Clin Cancer Res 17:5132–5139CrossRefPubMedPubMedCentralGoogle Scholar
  77. Mohammadi A, Yaghoobi M, GholamhoseynianNajar A, Kalantari-Khandani B, Sharifi H, Saravani M (2016a) HSP90 inhibitor enhances anti-proliferative and apoptotic effects of celecoxib on HT-29 colorectal cancer cells via increasing BAX/BCL-2 ratio. Mol Cell Biol 62:62–67CrossRefGoogle Scholar
  78. Mohammadi A, Yaghoobi M, Najar AG, Kalantari-Khandani B, Sharifi H, Saravani M (2016b) HSP90 inhibition suppresses PGE2 production via modulating COX-2 and 15-PGDH expression in HT-29 colorectal cancer cells. Inflammation 39:1116–1123CrossRefGoogle Scholar
  79. Mohammadian M, Zeynali S, Azarbaijani AF, Ansari MHK, Kheradmand F (2017) Cytotoxic effects of the newly-developed chemotherapeutic agents 17-AAG in combination with oxaliplatin and capecitabine in colorectal cancer cell lines. Res Pharm Sci 12:517–525CrossRefPubMedPubMedCentralGoogle Scholar
  80. Moradi-Marjaneh R, Hassanian SM, Fiuji H et al (2018a) Toll like receptor signaling pathway as a potential therapeutic target in colorectal cancer. J Cell Physiol 233:5613–5622CrossRefGoogle Scholar
  81. Moradi-Marjaneh R, Hassanian SM, Ghobadi N et al (2018b) Targeting the death receptor signaling pathway as a potential therapeutic target in the treatment of colorectal cancer. J Cell Physiol 233:6538–6549CrossRefGoogle Scholar
  82. Moradi-Marjaneh R, Hassanian SM, Shahidsales S, Avan A, Khazaei M (2018c) Curcumin suppresses colorectal cancer progression through down-regulation of Wnt signaling in cancer stem cells. Basic Clin Cancer Res 10:33–38Google Scholar
  83. Moradi-Marjaneh R, Khazaei M, Seifi S, Hassanian SM, Ferns GA, Avan A (2018d) Pharmacogenetics of anticancer drug sensitivity and toxicity in colorectal cancer. Curr Pharm Des 24:2710–2718CrossRefGoogle Scholar
  84. Nagaraju GP, Alese OB, Landry J, Diaz R, El-Rayes BF (2014) HSP90 inhibition downregulates thymidylate synthase and sensitizes colorectal cancer cell lines to the effect of 5FU-based chemotherapy. Oncotarget 5:9980–9991CrossRefPubMedPubMedCentralGoogle Scholar
  85. Nakashima T, Ishii T, Tagaya H et al (2010) New molecular and biological mechanism of anti-tumor activities of KW-2478, a novel non-ansamycin Hsp90 inhibitor, in multiple myeloma cells. Clin Cancer Res 15:2792–2802CrossRefGoogle Scholar
  86. Nowakowski GS, McCollum AK, Ames MM et al (2006) A phase I trial of twice-weekly 17-allylamino-demethoxy-geldanamycin in patients with advanced cancer. Clin Cancer Res 12:6087–6093CrossRefGoogle Scholar
  87. Ohkubo S, Kodama Y, Muraoka H et al (2014) TAS-116, a highly selective inhibitor of heat shock protein 90alpha and beta, demonstrates potent antitumor activity and minimal ocular toxicity in preclinical models. Mol Cancer Ther 14:14–22CrossRefGoogle Scholar
  88. Pacey S, Wilson RH, Walton MI et al (2011) A phase I study of the heat shock protein 90 inhibitor alvespimycin (17-DMAG) given intravenously to patients with advanced, solid tumors. Clin Cancer Res 17:1561–1570CrossRefPubMedPubMedCentralGoogle Scholar
  89. Paraiso KH, Haarberg HE, Wood E et al (2012) The HSP90 inhibitor XL888 overcomes BRAF inhibitor resistance mediated through diverse mechanisms. Clin Cancer Res 18:2502–2514CrossRefPubMedPubMedCentralGoogle Scholar
  90. Pearl LH, Prodromou C (2001) Structure, function, and mechanism of the Hsp90 molecular chaperone. Adv Protein Chem 59:157–186CrossRefPubMedPubMedCentralGoogle Scholar
  91. Powers MV, Workman P (2007) Inhibitors of the heat shock response. Pharm Biol FEBS Lett 581:3758–3769CrossRefGoogle Scholar
  92. Ramalingam SS, Egorin MJ, Ramanathan RK et al (2008) A phase I study of 17-allylamino-17-demethoxygeldanamycin combined with paclitaxel in patients with advanced solid malignancies. Clin Cancer Res 14:3456–3461CrossRefPubMedPubMedCentralGoogle Scholar
  93. Ramanathan RK, Trump DL, Eiseman JL et al (2005) Phase I pharmacokinetic-pharmacodynamic study of 17-(allylamino)-17-demethoxygeldanamycin (17AAG, NSC 330507), a novel inhibitor of heat shock protein 90, in patients with refractory advanced cancers. Clin Cancer Res 11:3385–3391CrossRefPubMedPubMedCentralGoogle Scholar
  94. Riely G, Stoller R, Egorin M et al (2009) A phase Ib trial of IPI-504 (retaspimycin hydrochloride), a novel Hsp90 inhibitor, in combination with docetaxel. J Clin Oncol 27:3547–3547CrossRefGoogle Scholar
  95. Saif MW, Takimoto CH, Mita MM et al (2013) A phase 1, dose-escalation, pharmacokinetic and pharmacodynamic study of BIIB021 administered orally in patients with advanced solid tumors. Clin Cancer Res 20:445–455CrossRefPubMedPubMedCentralGoogle Scholar
  96. Samlowski WE, Papadopoulos K, Olszanski AJ et al (2011) Abstract A96: phase 1 study of HSP90 inhibitor MPC-3100 in subjects with refractory or recurrent cancer. AACR 10:12–16Google Scholar
  97. Sessa C, Shapiro GI, Bhalla KN et al (2013) First-in-human phase I dose-escalation study of the HSP90 inhibitor AUY922 in patients with advanced solid tumors. Clin Cancer Res 19:3671–3680CrossRefPubMedPubMedCentralGoogle Scholar
  98. Spreafico A, Delord J, De Mattos-Arruda L et al (2015) A first-in-human phase I, dose-escalation, multicentre study of HSP990 administered orally in adult patients with advanced solid malignancies. Br J Cancer 112:650–659CrossRefPubMedPubMedCentralGoogle Scholar
  99. Stuehmer T, Iskandarov K, Gao Z et al (2012) Preclinical activity of the novel orally bioavailable HSP90 inhibitor NVP-HSP990 against multiple myeloma cells. Anticancer Res 32:453–462Google Scholar
  100. Supko JG, Hickman RL, Grever MR, Malspeis L (1995) Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother Pharmacol 36:305–315CrossRefPubMedPubMedCentralGoogle Scholar
  101. Suzuki S, Kulkarni AB (2010) Extracellular heat shock protein Hsp90β secreted by MG63 osteosarcoma cells inhibits activation of latent TGF-β1. Biochem Biophys Res Commun 398:525–531CrossRefPubMedPubMedCentralGoogle Scholar
  102. Takahashi H, Wang JP, Zheng HC, Masuda S, Takano Y (2011) Overexpression of GRP78 and GRP94 is involved in colorectal carcinogenesis. Histol Histopathol 26:663–671PubMedPubMedCentralGoogle Scholar
  103. Taldone T, Sun W, Chiosis G (2009) Discovery and development of heat shock protein 90 inhibitors. Bioorg Med Chem 17:2225–2235CrossRefPubMedPubMedCentralGoogle Scholar
  104. Trendowski M (2015) PU-H71: an improvement on nature’s solutions to oncogenic Hsp90 addiction. Pharmacol Res 99:202–216CrossRefPubMedPubMedCentralGoogle Scholar
  105. Utsugi T (2013) New challenges and inspired answers for anticancer drug discovery and development. Jpn J Clin Oncol 43:945–953CrossRefPubMedPubMedCentralGoogle Scholar
  106. Vaishampayan UN, Burger AM, Sausville EA et al (2010) Safety, efficacy, pharmacokinetics and pharmacodynamics of the combination of sorafenib and tanespimycin. Clin Cancer Res 16:3795–3804CrossRefPubMedPubMedCentralGoogle Scholar
  107. van Ingen H, Purcea D, Brienza S, Paz-Ares L (2012) A phase I–II evaluation of the safety and efficacy of the oral HSP90 inhibitor Debio 0932 in combination with SOC in first-and second-line therapy of stage IIIB or IV NSCLC-the halo study (HSP90 inhibition and lung cancer outcomes). Paper presented at the J Thorac Oncol 2012Google Scholar
  108. Vido MJ, Aplin AE (2015) The broad stroke of Hsp90 inhibitors: painting over the RAF inhibitor paradox. J Invest Dermatol 135:2355–2357CrossRefPubMedPubMedCentralGoogle Scholar
  109. Wagner AJ, Chugh R, Rosen LS et al (2013) A phase 1 study of the heat shock protein 90 inhibitor retaspimycin hydrochloride (IPI-504) in patients with gastrointestinal stromal tumors or soft tissue sarcomas. Clin Cancer Res 19:6020–6029CrossRefPubMedPubMedCentralGoogle Scholar
  110. Wagner AJ, Agulnik M, Heinrich MC et al (2016) Dose-escalation study of a second-generation non-ansamycin HSP90 inhibitor, onalespib (AT13387), in combination with imatinib in patients with metastatic gastrointestinal stromal tumour. Eur J Cancer 61:94–101CrossRefPubMedPubMedCentralGoogle Scholar
  111. Wainberg ZA, Anghel A, Rogers AM et al (2013) Inhibition of HSP90 with AUY922 induces synergy in HER2-amplified trastuzumab-resistant breast and gastric cancer. Mol Cancer Ther 12:509–519CrossRefPubMedPubMedCentralGoogle Scholar
  112. Wang X-T, Bao C-H, Jia Y-B et al (2014) BIIB021, a novel Hsp90 inhibitor, sensitizes esophageal squamous cell carcinoma to radiation. Biochem Biophys Res Commun 452:945–950CrossRefGoogle Scholar
  113. Wang CY, Guo ST, Wang JY et al (2016a) Inhibition of HSP90 by AUY922 preferentially kills mutant KRAS colon cancer cells by activating Bim through ER stress. Mol Cancer Ther 15:448–459CrossRefGoogle Scholar
  114. Wang CY, Guo ST, Wang JY et al (2016b) Reactivation of ERK and Akt confers resistance of mutant BRAF colon cancer cells to the HSP90 inhibitor AUY922. Oncotarget 7:49597–49610PubMedPubMedCentralGoogle Scholar
  115. Wrighton KH, Lin X, Feng X-H (2008) Critical regulation of TGFβ signaling by Hsp90. Proc Natl Acad Sci 105:9244–9249CrossRefGoogle Scholar
  116. Yan L, Zhang W, Zhang B, Xuan C, Wang D (2017) BIIB021: a novel inhibitor to heat shock protein 90–addicted oncology. Tumour Biol 39:1–5Google Scholar
  117. Yanagitani N, Horiike A, Kitazono S et al (2017) First-in-human phase I study of an oral HSP90 inhibitor, TAS-116, in advanced solid tumors. J Clin Oncol 35:2546–2546CrossRefGoogle Scholar
  118. Yong K, Cavet J, Johnson P et al (2016) Phase I study of KW-2478, a novel Hsp90 inhibitor, in patients with B-cell malignancies. Br J Cancer 114:7–13CrossRefGoogle Scholar
  119. Zhang WL, Gao XQ, Han JX, Wang GQ, Yue LT (2009) Expressions of heat shock protein (HSP) family HSP 60, 70 and 90alpha in colorectal cancer tissues and their correlations to pathohistological characteristics. Ai Zheng 28:612–618PubMedGoogle Scholar
  120. Zhang H, Neely L, Lundgren K et al (2010) BIIB021, a synthetic Hsp90 inhibitor, has broad application against tumors with acquired multidrug resistance. Int J Cancer 126:1226–1234CrossRefPubMedPubMedCentralGoogle Scholar
  121. Zhou J, Wang W, Deng J et al (2015) Co-inhibition effect of 17-DMAG and oxaliplatin on proliferation and invasion of colorectal cancer cells. Ai Zheng 18:370–375Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Reyhaneh Moradi-Marjaneh
    • 1
  • Seyed Mahdi Hassanian
    • 2
    • 3
  • Gordon A. Ferns
    • 4
  • Amir Avan
    • 2
    • 5
    • 6
    Email author
  • Majid Khazaei
    • 2
    • 7
    Email author
  1. 1.Torbat Heydariyeh University of Medical SciencesTorbat HeydariyehIran
  2. 2.Metabolic Syndrome Research CenterMashhad University of Medical SciencesMashhadIran
  3. 3.Department of Medical Biochemistry, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
  4. 4.Division of Medical EducationBrighton & Sussex Medical SchoolBrightonUK
  5. 5.Cancer Research CenterMashhad University of Medical SciencesMashhadIran
  6. 6.Department of Modern Sciences and Technologies, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
  7. 7.Department of Physiology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran

Personalised recommendations