Advertisement

HSP90 et al.: Chaperome and Proteostasis Deregulation in Human Disease

  • Cindy Voisine
  • Marc BrehmeEmail author
Chapter
Part of the Heat Shock Proteins book series (HESP, volume 19)

Abstract

HSP90 action as a conserved chaperone is fundamental to the folding and maturation of a large fraction of structurally and functionally diverse proteins. Through its wide spectrum of clients and their connectivity within the proteome, HSP90 is a key factor in the processes that maintain cellular proteostasis, referred to as the proteostasis network (PN). Besides HSP90, hundreds of additional molecular chaperones and co-chaperones act together in complexes and intricate networks to maintain the cellular native folding environment, avoid misfolding, and redirect non-native folding intermediates back to their native state or towards clearance. The ensemble of all cellular chaperones and co-chaperones constitute the chaperome, which acts to regulate and maintain proteome functionality. Recent insights derived from systematic studies have revealed vast imbalances to cellular proteostasis reflected by chaperome deregulation from aging, to neurodegenerative diseases, and cancers. Deregulation states along with specific chaperome connectivity can represent biomarkers for certain diseases. HSP90 is not acting in isolation but as a component of a comprehensive and dynamic chaperome interactome network. Therefore, a detailed understanding of systems-level alterations of chaperome biology is fundamental towards a better understanding of HSP90 action and its therapeutic targeting in health and disease.

Keywords

Chaperome Chaperone Co-chaperone Heat shock protein HSP90 Proteostasis Proteostasis network (PN) 

Abbreviations

HSP

Heat shock protein

HSP90

Heat shock protein 90

PN

Proteostasis network

Notes

Acknowledgements

The authors would like to acknowledge Richard Morimoto, Marc Vidal, Andreas Schuppert, Julio Saez-Rodriguez, Angelina Sverchkova, and Ali Hadizadeh-Esfahani for their support and contributions to the authors’ research referenced in this chapter. Figure 27.1 reproduced from Brehme and Voisine, Disease Models & Mechanisms (2016) 9, 823–838,  https://doi.org/10.1242/dmm.024703 with permission of Disease Models & Mechanisms.

References

  1. Ahn YY, Bagrow JP, Lehmann S (2010) Link communities reveal multiscale complexity in networks. Nature 466:761–764PubMedCrossRefGoogle Scholar
  2. Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM (2002) Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science (New York, NY) 295:865–868CrossRefGoogle Scholar
  3. Balch WE, Morimoto RI, Dillin A, Kelly JW (2008) Adapting proteostasis for disease intervention. Science (New York, NY) 319:916–919CrossRefGoogle Scholar
  4. Balchin D, Hayer-Hartl M, Hartl FU (2016) In vivo aspects of protein folding and quality control. Science (New York, NY) 353:aac4354CrossRefGoogle Scholar
  5. Bilen J, Bonini NM (2007) Genome-wide screen for modifiers of ataxin-3 neurodegeneration in Drosophila. PLoS Genet 3:1950–1964PubMedCrossRefGoogle Scholar
  6. Brehme M, Voisine C (2016) Model systems of protein-misfolding diseases reveal chaperone modifiers of proteotoxicity. Dis Model Mech 9:823–838PubMedPubMedCentralCrossRefGoogle Scholar
  7. Brehme M, Voisine C, Rolland T et al (2014) A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease. Cell Rep 9:1135–1150PubMedPubMedCentralCrossRefGoogle Scholar
  8. Brownridge P, Lawless C, Payapilly AB et al (2013) Quantitative analysis of chaperone network throughput in budding yeast. Proteomics 13:1276–1291PubMedPubMedCentralCrossRefGoogle Scholar
  9. Butler EK, Voigt A, Lutz AK et al (2012) The mitochondrial chaperone protein TRAP1 mitigates alpha-Synuclein toxicity. PLoS Genet 8:e1002488PubMedPubMedCentralCrossRefGoogle Scholar
  10. Calamini B, Silva MC, Madoux F et al (2011) Small-molecule proteostasis regulators for protein conformational diseases. Nat Chem Biol 8:185–196PubMedPubMedCentralCrossRefGoogle Scholar
  11. Chan HY, Warrick JM, Andriola I, Merry D, Bonini NM (2002) Genetic modulation of polyglutamine toxicity by protein conjugation pathways in Drosophila. Hum Mol Genet 11:2895–2904PubMedCrossRefGoogle Scholar
  12. Duennwald ML, Echeverria A, Shorter J (2012) Small heat shock proteins potentiate amyloid dissolution by protein disaggregases from yeast and humans. PLoS Biol 10:e1001346PubMedPubMedCentralCrossRefGoogle Scholar
  13. Fernandez-Funez P, Nino-Rosales ML, de Gouyon B et al (2000) Identification of genes that modify ataxin-1-induced neurodegeneration. Nature 408:101–106PubMedCrossRefGoogle Scholar
  14. Fonte V, Kapulkin WJ, Taft A, Fluet A, Friedman D, Link CD (2002) Interaction of intracellular beta amyloid peptide with chaperone proteins. Proc Natl Acad Sci U S A 99:9439–9444PubMedPubMedCentralCrossRefGoogle Scholar
  15. Gong Y, Kakihara Y, Krogan N et al (2009) An atlas of chaperone-protein interactions in Saccharomyces cerevisiae: implications to protein folding pathways in the cell. Mol Syst Biol 5:275PubMedPubMedCentralCrossRefGoogle Scholar
  16. Hadizadeh Esfahani A, Sverchkova A, Saez-Rodriguez J, Schuppert AA, Brehme M (2018) A systematic atlas of chaperome deregulation topologies across the human cancer landscape. PLoS Comput Biol 14:e1005890PubMedPubMedCentralCrossRefGoogle Scholar
  17. van Ham TJ, Thijssen KL, Breitling R, Hofstra RM, Plasterk RH, Nollen EA (2008) C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging. PLoS Genet 4:e1000027PubMedPubMedCentralCrossRefGoogle Scholar
  18. Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science (New York, NY) 295:1852–1858CrossRefGoogle Scholar
  19. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332PubMedCrossRefGoogle Scholar
  20. Horwich AL, Fenton WA, Chapman E, Farr GW (2007) Two families of chaperonin: physiology and mechanism. Annu Rev Cell Dev Biol 23:115–145PubMedCrossRefGoogle Scholar
  21. Jarosz DF, Lindquist S (2010) Hsp90 and environmental stress transform the adaptive value of natural genetic variation. Science (New York, NY) 330:1820–1824CrossRefGoogle Scholar
  22. Jimenez-Sanchez M, Lam W, Hannus M et al (2015) siRNA screen identifies QPCT as a druggable target for Huntington’s disease. Nat Chem Biol 11:347–354PubMedPubMedCentralCrossRefGoogle Scholar
  23. Karras GI, Yi S, Sahni N et al (2017) HSP90 shapes the consequences of human genetic variation. Cell 168:856–866.e12PubMedPubMedCentralCrossRefGoogle Scholar
  24. Kazemi-Esfarjani P, Benzer S (2000) Genetic suppression of polyglutamine toxicity in Drosophila. Science (New York, NY) 287:1837–1840CrossRefGoogle Scholar
  25. Khabirova E, Moloney A, Marciniak SJ et al (2014) The TRiC/CCT chaperone is implicated in Alzheimer’s disease based on patient GWAS and an RNAi screen in Abeta-expressing Caenorhabditis elegans. PLoS One 9:e102985PubMedPubMedCentralCrossRefGoogle Scholar
  26. Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU (2013) Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82:323–355PubMedCrossRefGoogle Scholar
  27. Klaips CL, Jayaraj GG, Hartl FU (2018) Pathways of cellular proteostasis in aging and disease. J Cell Biol 217:51–63PubMedPubMedCentralCrossRefGoogle Scholar
  28. Kleizen B, Braakman I (2004) Protein folding and quality control in the endoplasmic reticulum. Curr Opin Cell Biol 16:343–349PubMedCrossRefGoogle Scholar
  29. Kraemer BC, Burgess JK, Chen JH, Thomas JH, Schellenberg GD (2006) Molecular pathways that influence human tau-induced pathology in Caenorhabditis elegans. Hum Mol Genet 15:1483–1496PubMedCrossRefGoogle Scholar
  30. Krobitsch S, Lindquist S (2000) Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc Natl Acad Sci U S A 97:1589–1594PubMedPubMedCentralCrossRefGoogle Scholar
  31. Labbadia J, Morimoto RI (2015) The biology of proteostasis in aging and disease. Annu Rev Biochem 84:435–464PubMedPubMedCentralCrossRefGoogle Scholar
  32. Liang J, Clark-Dixon C, Wang S et al (2008) Novel suppressors of alpha-synuclein toxicity identified using yeast. Hum Mol Genet 17:3784–3795PubMedPubMedCentralCrossRefGoogle Scholar
  33. Liberek K, Lewandowska A, Zietkiewicz S (2008) Chaperones in control of protein disaggregation. EMBO J 27:328–335PubMedPubMedCentralCrossRefGoogle Scholar
  34. Luck K, Sheynkman GM, Zhang I, Vidal M (2017) Proteome-scale human interactomics. Trends Biochem Sci 42:342–354PubMedPubMedCentralCrossRefGoogle Scholar
  35. Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684PubMedPubMedCentralCrossRefGoogle Scholar
  36. Niccoli T, Partridge L (2012) Ageing as a risk factor for disease. Curr Biol 22:R741–R752PubMedCrossRefGoogle Scholar
  37. Niccoli T, Partridge L, Isaacs AM (2017) Ageing as a risk factor for ALS/FTD. Hum Mol Genet 26:R105–RR13PubMedCrossRefGoogle Scholar
  38. Nollen EA, Garcia SM, van Haaften G et al (2004) Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. Proc Natl Acad Sci U S A 101:6403–6408PubMedPubMedCentralCrossRefGoogle Scholar
  39. Oromendia AB, Amon A (2014) Aneuploidy: implications for protein homeostasis and disease. Dis Model Mech 7:15–20PubMedPubMedCentralCrossRefGoogle Scholar
  40. Pearl LH, Prodromou C (2006) Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem 75:271–294PubMedCrossRefGoogle Scholar
  41. Phillipson OT (2014) Management of the aging risk factor for Parkinson’s disease. Neurobiol Aging 35:847–857PubMedCrossRefGoogle Scholar
  42. Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE (2009) Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 78:959–991PubMedCrossRefGoogle Scholar
  43. Queitsch C, Sangster TA, Lindquist S (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417:618–624PubMedCrossRefGoogle Scholar
  44. Rodina A, Wang T, Yan P et al (2016) The epichaperome is an integrated chaperome network that facilitates tumour survival. Nature 538:397–401PubMedPubMedCentralCrossRefGoogle Scholar
  45. Rolland T, Tasan M, Charloteaux B et al (2014) A proteome-scale map of the human interactome network. Cell 159:1212–1226PubMedPubMedCentralCrossRefGoogle Scholar
  46. Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396:336–342PubMedCrossRefGoogle Scholar
  47. Sadlish H, Rampelt H, Shorter J et al (2008) Hsp110 chaperones regulate prion formation and propagation in S. cerevisiae by two discrete activities. PLoS One 3:e1763PubMedPubMedCentralCrossRefGoogle Scholar
  48. Saibil HR (2008) Chaperone machines in action. Curr Opin Struct Biol 18:35–42PubMedCrossRefGoogle Scholar
  49. Sangster TA, Salathia N, Lee HN et al (2008) HSP90-buffered genetic variation is common in Arabidopsis thaliana. Proc Natl Acad Sci U S A 105:2969–2974PubMedPubMedCentralCrossRefGoogle Scholar
  50. Schmidt M, Finley D (2014) Regulation of proteasome activity in health and disease. Biochim Biophys Acta 1843:13–25PubMedCrossRefGoogle Scholar
  51. Schopf FH, Biebl MM, Buchner J (2017) The HSP90 chaperone machinery. Nat Rev Mol Cell Biol 18:345–360PubMedCrossRefGoogle Scholar
  52. Silva MC, Fox S, Beam M, Thakkar H, Amaral MD, Morimoto RI (2011) A genetic screening strategy identifies novel regulators of the proteostasis network. PLoS Genet 7:e1002438PubMedPubMedCentralCrossRefGoogle Scholar
  53. Sun Z, Diaz Z, Fang X et al (2011) Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS. PLoS Biol 9:e1000614PubMedPubMedCentralCrossRefGoogle Scholar
  54. Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11:515–528PubMedCrossRefGoogle Scholar
  55. Taipale M, Tucker G, Peng J et al (2014) A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways. Cell 158:434–448PubMedPubMedCentralCrossRefGoogle Scholar
  56. Tatsuta T, Model K, Langer T (2005) Formation of membrane-bound ring complexes by prohibitins in mitochondria. Mol Biol Cell 16:248–259PubMedPubMedCentralCrossRefGoogle Scholar
  57. Valastyan JS, Lindquist S (2014) Mechanisms of protein-folding diseases at a glance. Dis Model Mech 7:9–14PubMedPubMedCentralCrossRefGoogle Scholar
  58. Voisine C, Pedersen JS, Morimoto RI (2010) Chaperone networks: tipping the balance in protein folding diseases. Neurobiol Dis 40:12–20PubMedPubMedCentralCrossRefGoogle Scholar
  59. Vos MJ, Zijlstra MP, Kanon B et al (2010) HSPB7 is the most potent polyQ aggregation suppressor within the HSPB family of molecular chaperones. Hum Mol Genet 19:4677–4693PubMedCrossRefGoogle Scholar
  60. Walter GM, Smith MC, Wisen S et al (2011) Ordered assembly of heat shock proteins, Hsp26, Hsp70, Hsp90, and Hsp104, on expanded polyglutamine fragments revealed by chemical probes. J Biol Chem 286:40486–40493PubMedPubMedCentralCrossRefGoogle Scholar
  61. Wang Y, Meriin AB, Costello CE, Sherman MY (2007) Characterization of proteins associated with polyglutamine aggregates: a novel approach towards isolation of aggregates from protein conformation disorders. Prion 1:128–135PubMedPubMedCentralCrossRefGoogle Scholar
  62. Wang J, Farr GW, Hall DH et al (2009) An ALS-linked mutant SOD1 produces a locomotor defect associated with aggregation and synaptic dysfunction when expressed in neurons of Caenorhabditis elegans. PLoS Genet 5:e1000350PubMedPubMedCentralCrossRefGoogle Scholar
  63. Warrick JM, Chan HY, Gray-Board GL, Chai Y, Paulson HL, Bonini NM (1999) Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet 23:425–428PubMedCrossRefGoogle Scholar
  64. Weinstein JN, Collisson EA, Mills GB et al (2013) The cancer genome atlas pan-cancer analysis project. Nat Genet 45:1113–1120PubMedPubMedCentralCrossRefGoogle Scholar
  65. Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772PubMedCrossRefGoogle Scholar
  66. Young JC, Moarefi I, Hartl FU (2001) Hsp90: a specialized but essential protein-folding tool. J Cell Biol 154:267–273PubMedPubMedCentralCrossRefGoogle Scholar
  67. Zhang S, Binari R, Zhou R, Perrimon N (2010) A genomewide RNA interference screen for modifiers of aggregates formation by mutant huntingtin in Drosophila. Genetics 184:1165–1179PubMedPubMedCentralCrossRefGoogle Scholar
  68. Zhao R, Davey M, Hsu YC et al (2005) Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120:715–727PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of BiologyNortheastern Illinois UniversityChicagoUSA
  2. 2.CB - med Center for Biomarker Research in Medicine GmbHGrazAustria

Personalised recommendations