Advertisement

Heat Shock Protein 90 in Kidney Stone Disease

  • Visith Thongboonkerd
Chapter
Part of the Heat Shock Proteins book series (HESP, volume 19)

Abstract

Since early 2000s, proteomics has been applied to kidney stone research by its capability to uncover the previously unexplored or unknown proteins that are involved in kidney stone pathogenesis but had been previously hidden by the limitation of tools for protein science in the past. Using proteomics approach, several novel findings have been generated and a list of proteins involved in kidney stone formation or development has been expanded tremendously. One of such proteins is heat shock protein 90 (HSP90), which is generally known as a molecular chaperone. Its common roles are stress response and regulation of folding and conformation of many other proteins. However, new findings from recent proteomics studies have shown that HSP90 is also involved in kidney stone formation and disease mechanisms as summarized and discussed in this chapter.

Keywords

Calcium oxalate Inflammation Macrophage Monocyte Nephrolithiasis Proteomics 

Abbreviations

AP-MS

Affinity purification followed by mass spectrometry

COM

Calcium oxalate monohydrate

ECM

Extracellular matrix

HSP90

Heat shock protein 90

IFN-α

Interferon-α

IL-6

Interleukin-6

MCP-1

Monocyte chemoattractant protein-1

MS

Mass spectrometry

MS/MS

Tandem MS

Q-TOF

Quadrupole time-of-flight

siHSP90

Small interfering RNA targeting to HSP90

siRNA

Small interfering RNA

TAP

Tandem affinity purification

TNF-α

Tumor necrosis factor-α

Notes

Acknowledgements

This work was supported by Mahidol University research grant and the Thailand Research Fund (IRN60W0004 and IRG5980006).

References

  1. Akcay A, Nguyen Q, Edelstein CL (2009) Mediators of inflammation in acute kidney injury. Mediat Inflamm 2009:137072CrossRefGoogle Scholar
  2. Bauer A, Kuster B (2003) Affinity purification-mass spectrometry. Powerful tools for the characterization of protein complexes. Eur J Biochem 270:570–578PubMedCrossRefPubMedCentralGoogle Scholar
  3. Chaiyarit S, Singhto N, Thongboonkerd V (2016) Calcium oxalate monohydrate crystals internalized into renal tubular cells are degraded and dissolved by endolysosomes. Chem Biol Interact 246:30–35PubMedCrossRefPubMedCentralGoogle Scholar
  4. de Water R, Noordermeer C, van der Kwast TH, Nizze H, Boeve ER, Kok DJ, Schroder FH (1999) Calcium oxalate nephrolithiasis: effect of renal crystal deposition on the cellular composition of the renal interstitium. Am J Kidney Dis 33:761–771PubMedCrossRefPubMedCentralGoogle Scholar
  5. de Water R, Noordermeer C, Houtsmuller AB, Nigg AL, Stijnen T, Schroder FH, Kok DJ (2000) Role of macrophages in nephrolithiasis in rats: an analysis of the renal interstitium. Am J Kidney Dis 36:615–625PubMedCrossRefPubMedCentralGoogle Scholar
  6. de Water R, Leenen PJ, Noordermeer C, Nigg AL, Houtsmuller AB, Kok DJ, Schroder FH (2001) Cytokine production induced by binding and processing of calcium oxalate crystals in cultured macrophages. Am J Kidney Dis 38:331–338PubMedCrossRefPubMedCentralGoogle Scholar
  7. Dominguez-Gutierrez PR, Kusmartsev S, Canales BK, Khan SR (2018) Calcium oxalate differentiates human monocytes into inflammatory M1 macrophages. Front Immunol 9:1863PubMedPubMedCentralCrossRefGoogle Scholar
  8. Flannagan RS, Cosio G, Grinstein S (2009) Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat Rev Microbiol 7:355–366PubMedCrossRefPubMedCentralGoogle Scholar
  9. Fong-ngern K, Peerapen P, Sinchaikul S, Chen ST, Thongboonkerd V (2011) Large-scale identification of calcium oxalate monohydrate crystal-binding proteins on apical membrane of distal renal tubular epithelial cells. J Proteome Res 10:4463–4477PubMedCrossRefPubMedCentralGoogle Scholar
  10. Fong-ngern K, Sueksakit K, Thongboonkerd V (2016) Surface heat shock protein 90 serves as a potential receptor for calcium oxalate crystal on apical membrane of renal tubular epithelial cells. J Biol Inorg Chem 21:463–474PubMedCrossRefPubMedCentralGoogle Scholar
  11. Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964PubMedCrossRefPubMedCentralGoogle Scholar
  12. Habibzadegah-Tari P, Byer KG, Khan SR (2006) Reactive oxygen species mediated calcium oxalate crystal-induced expression of MCP-1 in HK-2 cells. Urol Res 34:26–36PubMedCrossRefPubMedCentralGoogle Scholar
  13. Holdsworth SR, Tipping PG (2007) Leukocytes in glomerular injury. Semin Immunopathol 29:355–374PubMedCrossRefPubMedCentralGoogle Scholar
  14. Jin S, Song YC, Emili A, Sherman PM, Chan VL (2003) JlpA of Campylobacter jejuni interacts with surface-exposed heat shock protein 90alpha and triggers signalling pathways leading to the activation of NF-kappaB and p38 MAP kinase in epithelial cells. Cell Microbiol 5:165–174PubMedCrossRefPubMedCentralGoogle Scholar
  15. Khan SR (2004) Crystal-induced inflammation of the kidneys: results from human studies, animal models, and tissue-culture studies. Clin Exp Nephrol 8:75–88PubMedCrossRefPubMedCentralGoogle Scholar
  16. Kinchen JM, Ravichandran KS (2008) Phagosome maturation: going through the acid test. Nat Rev Mol Cell Biol 9:781–795PubMedPubMedCentralCrossRefGoogle Scholar
  17. Kumar V, Farell G, Deganello S, Lieske JC (2003) Annexin II is present on renal epithelial cells and binds calcium oxalate monohydrate crystals. J Am Soc Nephrol 14:289–297PubMedCrossRefPubMedCentralGoogle Scholar
  18. Kusmartsev S, Dominguez-Gutierrez PR, Canales BK, Bird VG, Vieweg J, Khan SR (2016) Calcium oxalate stone fragment and crystal phagocytosis by human macrophages. J Urol 195:1143–1151PubMedCrossRefPubMedCentralGoogle Scholar
  19. Li Y (2010) Commonly used tag combinations for tandem affinity purification. Biotechnol Appl Biochem 55:73–83PubMedCrossRefPubMedCentralGoogle Scholar
  20. Manissorn J, Singhto N, Thongboonkerd V (2018) Characterizations of HSP90-interacting complex in renal cells using tandem affinity purification and its potential role in kidney stone formation. Proteomics 18:XXXGoogle Scholar
  21. Okada A, Yasui T, Hamamoto S, Hirose M, Kubota Y, Itoh Y, Tozawa K, Hayashi Y, Kohri K (2009) Genome-wide analysis of genes related to kidney stone formation and elimination in the calcium oxalate nephrolithiasis model mouse: detection of stone-preventive factors and involvement of macrophage activity. J Bone Miner Res 24:908–924PubMedCrossRefPubMedCentralGoogle Scholar
  22. Okada A, Yasui T, Fujii Y, Niimi K, Hamamoto S, Hirose M, Kojima Y, Itoh Y, Tozawa K, Hayashi Y et al (2010) Renal macrophage migration and crystal phagocytosis via inflammatory-related gene expression during kidney stone formation and elimination in mice: detection by association analysis of stone-related gene expression and microstructural observation. J Bone Miner Res 25:2701–2711PubMedCrossRefPubMedCentralGoogle Scholar
  23. Puig O, Caspary F, Rigaut G, Rutz B, Bouveret E, Bragado-Nilsson E, Wilm M, Seraphin B (2001) The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24:218–229PubMedCrossRefPubMedCentralGoogle Scholar
  24. Reyes-Del Valle J, Chavez-Salinas S, Medina F, Del Angel RM (2005) Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol 79:4557–4567PubMedPubMedCentralCrossRefGoogle Scholar
  25. Schubert G (2006) Stone analysis. Urol Res 34:146–150PubMedCrossRefPubMedCentralGoogle Scholar
  26. Sean EK, Cockwell P (2005) Macrophages and progressive tubulointerstitial disease. Kidney Int 68:437–455CrossRefGoogle Scholar
  27. Segerer S (2003) The role of chemokines and chemokine receptors in progressive renal diseases. Am J Kidney Dis 41:S15–S18PubMedCrossRefPubMedCentralGoogle Scholar
  28. Singhto N, Sintiprungrat K, Thongboonkerd V (2013) Alterations in macrophage cellular proteome induced by calcium oxalate crystals: the association of HSP90 and F-actin is important for phagosome formation. J Proteome Res 12:3561–3572PubMedCrossRefPubMedCentralGoogle Scholar
  29. Sintiprungrat K, Singhto N, Thongboonkerd V (2016) Characterization of calcium oxalate crystal-induced changes in the secretome of U937 human monocytes. Mol BioSyst 12:879–889PubMedCrossRefPubMedCentralGoogle Scholar
  30. Sorokina EA, Wesson JA, Kleinman JG (2004) An acidic peptide sequence of nucleolin-related protein can mediate the attachment of calcium oxalate to renal tubule cells. J Am Soc Nephrol 15:2057–2065PubMedCrossRefPubMedCentralGoogle Scholar
  31. Swaminathan S, Griffin MD (2008) First responders: understanding monocyte-lineage traffic in the acutely injured kidney. Kidney Int 74:1509–1511PubMedCrossRefPubMedCentralGoogle Scholar
  32. Taguchi K, Okada A, Hamamoto S, Unno R, Moritoki Y, Ando R, Mizuno K, Tozawa K, Kohri K, Yasui T (2016) M1/M2-macrophage phenotypes regulate renal calcium oxalate crystal development. Sci Rep 6:35167PubMedPubMedCentralCrossRefGoogle Scholar
  33. Thongboonkerd V (2004) Proteomics in nephrology: current status and future directions. Am J Nephrol 24:360–378PubMedCrossRefPubMedCentralGoogle Scholar
  34. Thongboonkerd V (2005) Proteomic analysis of renal diseases: unraveling the pathophysiology and biomarker discovery. Expert Rev Proteomics 2:349–366PubMedCrossRefPubMedCentralGoogle Scholar
  35. Thongboonkerd V (2007a) Practical points in urinary proteomics. J Proteome Res 6:3881–3890PubMedCrossRefPubMedCentralGoogle Scholar
  36. Thongboonkerd V (2007b) Recent progress in urinary proteomics. Proteomics Clin Appl 1:780–791PubMedCrossRefPubMedCentralGoogle Scholar
  37. Thongboonkerd V (2008) Proteomics and kidney stone disease. Contrib Nephrol 160:142–158PubMedCrossRefPubMedCentralGoogle Scholar
  38. Thongboonkerd V, Malasit P (2005) Renal and urinary proteomics: current applications and challenges. Proteomics 5:1033–1042PubMedCrossRefPubMedCentralGoogle Scholar
  39. Umekawa T, Tsuji H, Uemura H, Khan SR (2009) Superoxide from NADPH oxidase as second messenger for the expression of osteopontin and monocyte chemoattractant protein-1 in renal epithelial cells exposed to calcium oxalate crystals. BJU Int 104:115–120PubMedPubMedCentralCrossRefGoogle Scholar
  40. Verkoelen CF, Verhulst A (2007) Proposed mechanisms in renal tubular crystal retention. Kidney Int 72:13–18PubMedCrossRefPubMedCentralGoogle Scholar
  41. Verkoelen CF, van der Boom BG, Kok DJ, Romijn JC (2000a) Sialic acid and crystal binding. Kidney Int 57:1072–1082PubMedCrossRefPubMedCentralGoogle Scholar
  42. Verkoelen CF, van der Boom BG, Romijn JC (2000b) Identification of hyaluronan as a crystal-binding molecule at the surface of migrating and proliferating MDCK cells. Kidney Int 58:1045–1054PubMedCrossRefPubMedCentralGoogle Scholar
  43. Vinaiphat A, Thongboonkerd V (2017) Prospects for proteomics in kidney stone disease. Expert Rev Proteomics 14:185–187PubMedCrossRefPubMedCentralGoogle Scholar
  44. Vinaiphat A, Aluksanasuwan S, Manissorn J, Sutthimethakorn S, Thongboonkerd V (2017) Response of renal tubular cells to differential types and doses of calcium oxalate crystals: integrative proteome network analysis and functional investigations. Proteomics 17:1700192CrossRefGoogle Scholar
  45. Wilson HM, Walbaum D, Rees AJ (2004) Macrophages and the kidney. Curr Opin Nephrol Hypertens 13:285–290PubMedCrossRefPubMedCentralGoogle Scholar
  46. Xu X, Song Y, Li Y, Chang J, Zhang H, An L (2010) The tandem affinity purification method: an efficient system for protein complex purification and protein interaction identification. Protein Expr Purif 72:149–156PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Visith Thongboonkerd
    • 1
  1. 1.Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand

Personalised recommendations