Advertisement

Hsp90: Is There an Unknown Role in Pain Neurobiology

  • João Dias-Ferreira
  • Fani L. Moreira NetoEmail author
Chapter
Part of the Heat Shock Proteins book series (HESP, volume 19)

Abstract

Heat shock protein 90 (Hsp90) is a highly conserved molecular chaperone that is essential in protein homeostasis and normal cell growth and survival, assisting protein folding, protein degradation and being highly recruited in cellular stress conditions. The implication of Hsp90 in several pathological conditions is being increasingly recognized, particularly in cancer, an area of intense research on the use of different Hsp90 inhibitors as a possible therapeutic approach, as well as on the associated mechanisms of action. There is also strong indication that the Hsp90 chaperone is involved in inflammation and neuroinflammation, and neurodegeneration events. Here we summarize some scientific evidence suggesting that Hsp90, and possibly its mitochondrial-compartimentalized homologue Tumour Necrosis Factor Receptor-Associated Protein 1 (TRAP-1), participate also in pain processing mechanisms.

Keywords

Hsp90 Mitochondrial homologue Neuroinflammation Neuropathic pain Oxidative stress Pain neurobiology 

Abbreviations

17-AAG

17-demethoxygeldanamycin

17-DMAG

17-Dimethylaminoethylamino-17-demethoxygeldanamycin

ATF3

Activating transcription factor 3

CCI

Chronic constriction injury

CGRP

Calcitonin-gene-related peptide

CHIP

Carboxyl terminus of Hsp70-interacting protein

CypD

Cyclophilin D

DAMP

Danger-associated molecular pattern

ERK

Extracellular signal-regulated kinases

GFAP

Glial fibrillary acidic protein

GHKL

Gyrase, Hsp90, Histidine Kinase and MutL

HSE

Heat shock element

HSF1

Heat shock factor 1

HSP

Heat shock proteins

Hsp70

Heat shock protein 70

Hsp90

Heat shock protein 90

IKK

Inhibitor of κB (IκB) Kinase complex

IL-10

Interleukin 10

IL-1β

Interleukin 1 beta

IL-6

Interleukin 6

IκB

Inhibitor of κB

JAK2

JAK/Signal Transducer and Activator of Transcription (STATs)

JNK

c-Jun N-terminal kinase

MAPKs

Mitogen-activated protein kinases

MOR

Mu-opioid receptor

mPTP

Mitochondrial permeability transition pore

NADPH

Nicotinamide adenine dinucleotide phosphate

NF-κB

Nuclear factor-kappa B

NO

Nitric oxide

NOS

NO synthases

NOX

Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases

PINK-1

PTEN-induced Putative Kinase 1

PRRs

Pattern recognition receptors

RIP

Receptor interacting kinase

RNS

Reactive nitrogen species

ROS

Reactive oxygen species

siRNA

Small interference RNA

SP

Substance P

STATs

Signal transducer and activator of transcription

TAK-1/IKK

TGF-β-activated kinase-1/Inhibitor of κB (IκB) Kinase complex

TLR2

Toll-like-receptor 2

TLR4

Toll like-receptor 4

TNFα

Tumour necrosis factor alpha

TRAP-1

Tumour necrosis factor receptor-associated protein 1

β-HIVS

β-hydroxyisovalerylshikonin

References

  1. Abul-Husn NS, Annangudi SP, Ma’ayan A et al (2011) Chronic morphine alters the presynaptic protein profile: identification of novel molecular targets using proteomics and network analysis. PLoS One 6:e25535CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adaes S, Ferreira-Gomes J, Mendonca M et al (2015) Injury of primary afferent neurons may contribute to osteoarthritis induced pain: an experimental study using the collagenase model in rats. Osteoarthr Cartil 23:914–924CrossRefPubMedPubMedCentralGoogle Scholar
  3. Adaes S, Almeida L, Potes CS et al (2017) Glial activation in the collagenase model of nociception associated with osteoarthritis. Mol Pain 13:1744806916688219CrossRefPubMedPubMedCentralGoogle Scholar
  4. Afzal E, Ebrahimi M, Najafi SM et al (2011) Potential role of heat shock proteins in neural differentiation of murine embryonal carcinoma stem cells (P19). Cell Biol Int 35:713–720CrossRefPubMedPubMedCentralGoogle Scholar
  5. Agliarulo I, Matassa DS, Amoroso MR et al (2015) TRAP1 controls cell migration of cancer cells in metabolic stress conditions: correlations with AKT/p70S6K pathways. Biochim Biophys Acta (BBA) Mol Cell Res 1853:2570–2579CrossRefGoogle Scholar
  6. Alfonso Romero-Sandoval E, Sweitzer S (2015) Nonneuronal central mechanisms of pain: glia and immune response. Prog Mol Biol Transl Sci 131:325–358CrossRefPubMedPubMedCentralGoogle Scholar
  7. Altieri DC (2013) Hsp90 regulation of mitochondrial protein folding from organelle integrity to cellular homeostasis. Cell Mol Life Sci 70:2463–2472CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ardura-Fabregat A, Boddeke E, Boza-Serrano A et al (2017) Targeting neuroinflammation to treat Alzheimer’s disease. CNS Drugs 31:1057–1082CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bagatell R, Whitesell L (2004) Altered Hsp90 function in cancer: a unique therapeutic opportunity. Mol Cancer Ther 3:1021–1030CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bartsch K, Hombach-Barrigah A, Clos J (2017) Hsp90 inhibitors radicicol and geldanamycin have opposing effects on Leishmania Aha1-dependent proliferation. Cell Stress Chaperones 22:729–742CrossRefPubMedPubMedCentralGoogle Scholar
  11. Basit F, Van Oppen LM, Schockel L et al (2017) Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells. Cell Death Dis 8:e2716CrossRefPubMedPubMedCentralGoogle Scholar
  12. Beck R, Verrax J, Gonze T et al (2009) Hsp90 cleavage by an oxidative stress leads to its client proteins degradation and cancer cell death. Biochem Pharmacol 77:375–383CrossRefPubMedPubMedCentralGoogle Scholar
  13. Benitez MJ, Sanchez-Ponce D, Garrido JJ et al (2014) Hsp90 activity is necessary to acquire a proper neuronal polarization. Biochim Biophys Acta 1843:245–252CrossRefPubMedPubMedCentralGoogle Scholar
  14. Berta T, Qadri YJ, Chen G et al (2016) Microglial signaling in chronic pain with a special focus on caspase 6, p38 MAP kinase, and sex dependence. J Dent Res 95:1124–1131CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bharadwaj S, Ali A, Ovsenek N (1999) Multiple components of the HSP90 chaperone complex function in regulation of heat shock factor 1 in vivo. Mol Cell Biol 19:8033–8041CrossRefPubMedPubMedCentralGoogle Scholar
  16. Boczek EE, Reefschläger LG, Dehling M et al (2015) Conformational processing of oncogenic v-Src kinase by the molecular chaperone Hsp90. Proc Nat Acad Sci 112:E3189–E3E98CrossRefPubMedPubMedCentralGoogle Scholar
  17. Boles RG, Hornung HA, Moody AE et al (2015) Hurt, tired and queasy: specific variants in the ATPase domain of the TRAP1 mitochondrial chaperone are associated with common, chronic “functional” symptomatology including pain, fatigue and gastrointestinal dysmotility. Mitochondrion 23:64–70CrossRefPubMedPubMedCentralGoogle Scholar
  18. Brown KK, Heitmeyer SA, Hookfin EB et al (2008) P38 MAP kinase inhibitors as potential therapeutics for the treatment of joint degeneration and pain associated with osteoarthritis. J Inflamm (Lond) 5:22CrossRefGoogle Scholar
  19. Buchner J (1999) Hsp90 & Co. – a holding for folding. Trends Biochem Sci 24:136–141CrossRefPubMedPubMedCentralGoogle Scholar
  20. Calderwood SK (2018) Heat shock proteins and cancer: intracellular chaperones or extracellular signalling ligands? Philos Trans R Soc Lond Ser B Biol Sci 373Google Scholar
  21. Carrasco C, Naziroglu M, Rodriguez AB et al (2018) Neuropathic pain: delving into the oxidative origin and the possible implication of transient receptor potential channels. Front Physiol 9:95CrossRefPubMedPubMedCentralGoogle Scholar
  22. Castro-Lopes JM, Neto F (2014) Neurobiology of nociceptors. In: Raja SN, Sommer CL (eds) Pain 2014 refresher courses. 15th World Congress on Pain. IASP Press, Washington, DC, pp 407–418Google Scholar
  23. Chatterjee A, Dimitropoulou C, Drakopanayiotakis F et al (2007) Heat shock protein 90 inhibitors prolong survival, attenuate inflammation, and reduce lung injury in murine sepsis. Am J Respir Crit Care Med 176:667–675CrossRefPubMedPubMedCentralGoogle Scholar
  24. Chen B, Zhong D, Monteiro A (2006) Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. BMC Genomics 7:156–156CrossRefPubMedPubMedCentralGoogle Scholar
  25. Chio A, Mora G, Lauria G (2017) Pain in amyotrophic lateral sclerosis. Lancet Neurol 16:144–157CrossRefPubMedPubMedCentralGoogle Scholar
  26. Christians ES, Zhou Q, Renard J et al (2003) Heat shock proteins in mammalian development. Semin Cell Dev Biol 14:283–290CrossRefPubMedPubMedCentralGoogle Scholar
  27. Citri A, Harari D, Shohat G et al (2006) Hsp90 recognizes a common surface on client kinases. J Biol Chem 281:14361–14369CrossRefPubMedPubMedCentralGoogle Scholar
  28. Clark AK, Yip PK, Grist J et al (2007) Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc Natl Acad Sci U S A 104:10655–10660CrossRefPubMedPubMedCentralGoogle Scholar
  29. Clark AK, Old EA, Malcangio M (2013) Neuropathic pain and cytokines: current perspectives. J Pain Res 6:803–814PubMedPubMedCentralGoogle Scholar
  30. Connor RE, Marnett LJ, Liebler DC (2011) Protein-selective capture to analyze electrophile adduction of hsp90 by 4-hydroxynonenal. Chem Res Toxicol 24:1275–1282CrossRefPubMedPubMedCentralGoogle Scholar
  31. Costigan M, Mannion RJ, Kendall G et al (1998) Heat shock protein 27: developmental regulation and expression after peripheral nerve injury. J Neurosci 18:5891–5900CrossRefPubMedPubMedCentralGoogle Scholar
  32. Craig EA (1993) Chaperones: helpers along the pathways to protein folding. Science 260:1902–1903CrossRefPubMedPubMedCentralGoogle Scholar
  33. Csermely P, Schnaider T, Soti C et al (1998) The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 79:129–168CrossRefPubMedPubMedCentralGoogle Scholar
  34. Cui Y, Liao XX, Liu W et al (2008) A novel role of minocycline: attenuating morphine antinociceptive tolerance by inhibition of p38 MAPK in the activated spinal microglia. Brain Behav Immun 22:114–123CrossRefPubMedPubMedCentralGoogle Scholar
  35. Das V (2015) Chapter One – An introduction to pain pathways and pain “targets”. In: Price TJ, Dussor G (eds) Prog Mol Biol Transl Sci 131:1–30. ElsevierGoogle Scholar
  36. Dello Russo C, Polak PE, Mercado PR et al (2006) The heat-shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin suppresses glial inflammatory responses and ameliorates experimental autoimmune encephalomyelitis. J Neurochem 99:1351–1362CrossRefGoogle Scholar
  37. Didelot C, Schmitt E, Brunet M et al (2006) Heat shock proteins: endogenous modulators of apoptotic cell death. Handb Exp Pharmacol 172:171–198CrossRefGoogle Scholar
  38. Didenko T, Duarte AMS, Karagöz GE et al (2012) Hsp90 structure and function studied by NMR spectroscopy. Biochim Biophys Acta 1823:636–647CrossRefPubMedPubMedCentralGoogle Scholar
  39. Dobrowsky RT (2016) Targeting the diabetic chaperome to improve peripheral neuropathy. Curr Diab Rep 16:71CrossRefPubMedPubMedCentralGoogle Scholar
  40. Duval M, Le Bœuf F, Huot J et al (2007) Src-mediated phosphorylation of Hsp90 in response to Vascular Endothelial Growth Factor (VEGF) is required for VEGF Receptor-2 signaling to endothelial NO synthase. Mol Biol Cell 18:4659–4668CrossRefPubMedPubMedCentralGoogle Scholar
  41. Eckl JM, Richter K (2013) Functions of the Hsp90 chaperone system: lifting client proteins to new heights. Int J Biochem Mol Biol 4:157–165PubMedPubMedCentralGoogle Scholar
  42. Ellis A, Bennett DLH (2013) Neuroinflammation and the generation of neuropathic pain. Br J Anaesth 111:26–37CrossRefPubMedPubMedCentralGoogle Scholar
  43. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516CrossRefPubMedPubMedCentralGoogle Scholar
  44. Felts SJ, Owen BL, Nguyen P et al (2000) The hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J Biol Chem 275:3305–3312CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ferreira-Gomes J, Adaes S, Sousa RM et al (2012) Dose-dependent expression of neuronal injury markers during experimental osteoarthritis induced by monoiodoacetate in the rat. Mol Pain 8:50CrossRefPubMedPubMedCentralGoogle Scholar
  46. Fujikake N, Nagai Y, Popiel HA et al (2008) Heat shock transcription factor 1-activating compounds suppress polyglutamine-induced neurodegeneration through induction of multiple molecular chaperones. J Biol Chem 283:26188–26197CrossRefPubMedPubMedCentralGoogle Scholar
  47. Fulda S, Debatin KM (2006) Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25:4798CrossRefPubMedPubMedCentralGoogle Scholar
  48. Gallo KA (2006) Targeting HSP90 to halt neurodegeneration. Chem Biol 13:115–116CrossRefPubMedPubMedCentralGoogle Scholar
  49. Gangadharan V, Kuner R (2013) Pain hypersensitivity mechanisms at a glance. Dis Model Mech 6:889–895CrossRefPubMedPubMedCentralGoogle Scholar
  50. García-Descalzo L, Alcazar A, Baquero F et al (2011) Identification of in vivo HSP90-interacting proteins reveals modularity of HSP90 complexes is dependent on the environment in psychrophilic bacteria. Cell Stress Chaperones 16:203–218CrossRefPubMedPubMedCentralGoogle Scholar
  51. Gaudet AD, Popovich PG, Ramer MS (2011) Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation 8:110CrossRefPubMedPubMedCentralGoogle Scholar
  52. Georgakis GV, Younes A (2005) Heat-shock protein 90 inhibitors in cancer therapy: 17AAG and beyond. Future Oncol 1:273–281CrossRefPubMedPubMedCentralGoogle Scholar
  53. Gey M, Wanner R, Schilling C et al (2016) Atf3 mutant mice show reduced axon regeneration and impaired regeneration-associated gene induction after peripheral nerve injury. Open Biol 6Google Scholar
  54. Grace PM, Gaudet AD, Staikopoulos V et al (2016) Nitroxidative signaling mechanisms in pathological pain. Trends Neurosci 39:862–879CrossRefPubMedPubMedCentralGoogle Scholar
  55. Gu Y, Chen Y, Zhang X et al (2010) Neuronal soma-satellite glial cell interactions in sensory ganglia and the participation of purinergic receptors. Neuron Glia Biol 6:53–62CrossRefPubMedPubMedCentralGoogle Scholar
  56. Hadden MK, Lubbers DJ, Blagg BS (2006) Geldanamycin, radicicol, and chimeric inhibitors of the Hsp90 N-terminal ATP binding site. Curr Top Med Chem 6:1173–1182CrossRefPubMedPubMedCentralGoogle Scholar
  57. Han J, Goldstein LA, Hou W et al (2018) HSP90 inhibition targets autophagy and induces a CASP9-dependent resistance mechanism in NSCLC. Autophagy 14:958–971PubMedPubMedCentralGoogle Scholar
  58. Hansen RR, Malcangio M (2013) Astrocytes—multitaskers in chronic pain. Eur J Pharmacol 716:120–128CrossRefPubMedPubMedCentralGoogle Scholar
  59. Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579CrossRefPubMedPubMedCentralGoogle Scholar
  60. Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858CrossRefPubMedPubMedCentralGoogle Scholar
  61. Hensold JO, Hunt CR, Calderwood SK et al (1990) DNA binding of heat shock factor to the heat shock element is insufficient for transcriptional activation in murine erythroleukemia cells. Mol Cell Biol 10:1600–1608CrossRefPubMedPubMedCentralGoogle Scholar
  62. Hessling M, Richter K, Buchner J (2009) Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90. Nat Struct Mol Biol 16:287–293CrossRefPubMedPubMedCentralGoogle Scholar
  63. Horwich AL (2014) Molecular chaperones in cellular protein folding: the birth of a field. Cell 157:285–288CrossRefPubMedPubMedCentralGoogle Scholar
  64. Houlihan JL, Metzler JJ, Blum JS (2009) HSP90α and HSP90β isoforms selectively modulate MHC class II antigen presentation in B cells. J Immunol 182:7451–7458CrossRefPubMedPubMedCentralGoogle Scholar
  65. Huang J, Zhang X, Mcnaughton PA (2006) Inflammatory pain: the cellular basis of heat hyperalgesia. Curr Neuropharmacol 4:197–206CrossRefPubMedPubMedCentralGoogle Scholar
  66. Humphries F, Yang S, Wang B et al (2015) RIP kinases: key decision makers in cell death and innate immunity. Cell Death Differ 22:225–236CrossRefPubMedPubMedCentralGoogle Scholar
  67. Hunt D, Raivich G, Anderson PN (2012) Activating transcription factor 3 and the nervous system. Front Mol Neurosci 5:7CrossRefPubMedPubMedCentralGoogle Scholar
  68. Hutchinson MR, Ramos KM, Loram LC et al (2009) Evidence for a role of heat shock protein-90 in toll like receptor 4 mediated pain enhancement in rats. Neuroscience 164:1821–1832CrossRefPubMedPubMedCentralGoogle Scholar
  69. Hutchinson MR, Northcutt AL, Hiranita T et al (2012) Opioid activation of toll-like receptor 4 contributes to drug reinforcement. J Neurosci 32:11187–11200CrossRefPubMedPubMedCentralGoogle Scholar
  70. Ikwegbue PC, Masamba P, Oyinloye BE et al (2017) Roles of heat shock proteins in apoptosis, oxidative stress, human inflammatory diseases, and cancer. Pharmaceuticals (Basel) 11Google Scholar
  71. Israel A (2010) The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb Perspect Biol 2:a000158CrossRefPubMedPubMedCentralGoogle Scholar
  72. Jackson SE (2013) Hsp90: structure and function. Top Curr Chem 328:155–240CrossRefGoogle Scholar
  73. Ji RR (2004) Peripheral and central mechanisms of inflammatory pain, with emphasis on MAP kinases. Curr Drug Targets Inflamm Allergy 3:299–303CrossRefPubMedPubMedCentralGoogle Scholar
  74. Ji RR, Gereau RWT, Malcangio M et al (2009) MAP kinase and pain. Brain Res Rev 60:135–148CrossRefPubMedPubMedCentralGoogle Scholar
  75. Ji RR, Berta T, Nedergaard M (2013) Glia and pain: is chronic pain a gliopathy? Pain 154(Suppl 1):S10–S28CrossRefPubMedPubMedCentralGoogle Scholar
  76. Ji RR, Chamessian A, Zhang YQ (2016) Pain regulation by non-neuronal cells and inflammation. Science 354:572–577CrossRefPubMedPubMedCentralGoogle Scholar
  77. Johnson JL (2012) Evolution and function of diverse Hsp90 homologs and cochaperone proteins. Biochim Biophys Acta 1823:607–613CrossRefPubMedPubMedCentralGoogle Scholar
  78. Kacimi R, Yenari MA (2015) Pharmacologic heat shock protein 70 induction confers cytoprotection against inflammation in gliovascular cells. Glia 63:1200–1212CrossRefPubMedPubMedCentralGoogle Scholar
  79. Kang BH, Siegelin MD, Plescia J et al (2010) Preclinical characterization of mitochondria-targeted small molecule Hsp90 inhibitors, Gamitrinibs, in advanced prostate cancer. Clin Cancer Res 16:4779–4788CrossRefPubMedPubMedCentralGoogle Scholar
  80. Kang BH, Tavecchio M, Goel HL et al (2011) Targeted inhibition of mitochondrial Hsp90 suppresses localised and metastatic prostate cancer growth in a genetic mouse model of disease. Br J Cancer 104:629CrossRefPubMedPubMedCentralGoogle Scholar
  81. Kijima T, Prince TL, Tigue ML et al (2018) HSP90 inhibitors disrupt a transient HSP90-HSF1 interaction and identify a noncanonical model of HSP90-mediated HSF1 regulation. Sci Rep 8:6976CrossRefPubMedPubMedCentralGoogle Scholar
  82. Kim HY, Chung JM, Chung K (2008) Increased production of mitochondrial superoxide in the spinal cord induces pain behaviors in mice: the effect of mitochondrial electron transport complex inhibitors. Neurosci Lett 447:87–91CrossRefPubMedPubMedCentralGoogle Scholar
  83. Kim D, You B, Jo EK et al (2010) NADPH oxidase 2-derived reactive oxygen species in spinal cord microglia contribute to peripheral nerve injury-induced neuropathic pain. Proc Natl Acad Sci U S A 107:14851–14856CrossRefPubMedPubMedCentralGoogle Scholar
  84. Kim N, Kim JY, Yenari MA (2012) Anti-inflammatory properties and pharmacological induction of Hsp70 after brain injury. Inflammopharmacology 20:177–185CrossRefPubMedPubMedCentralGoogle Scholar
  85. Kim N, Kim JY, Yenari MA (2015) Pharmacological induction of the 70-kDa heat shock protein protects against brain injury. Neuroscience 284:912–919CrossRefPubMedPubMedCentralGoogle Scholar
  86. Koshimizu TA, Tsuchiya H, Tsuda H et al (2010) Inhibition of heat shock protein 90 attenuates adenylate cyclase sensitization after chronic morphine treatment. Biochem Biophys Res Commun 392:603–607CrossRefPubMedPubMedCentralGoogle Scholar
  87. Krukenberg KA, Street TO, Lavery LA et al (2011) Conformational dynamics of the molecular chaperone Hsp90. Q Rev Biophys 44:229–255CrossRefPubMedPubMedCentralGoogle Scholar
  88. Kundrat L, Regan L (2010) Identification of residues on Hsp70 and Hsp90 ubiquitinated by the cochaperone CHIP. J Mol Biol 395:587–594CrossRefPubMedPubMedCentralGoogle Scholar
  89. Lacagnina MJ, Watkins LR, Grace PM (2018) Toll-like receptors and their role in persistent pain. Pharmacol Ther 184:145–158CrossRefPubMedPubMedCentralGoogle Scholar
  90. Lackie RE, Maciejewski A, Ostapchenko VG et al (2017) The Hsp70/Hsp90 chaperone machinery in neurodegenerative diseases. Front Neurosci 11:254CrossRefPubMedPubMedCentralGoogle Scholar
  91. Latremoliere A, Woolf CJ (2009) Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain 10:895–926CrossRefPubMedPubMedCentralGoogle Scholar
  92. Lei W, Mullen N, Mccarthy S et al (2017) Heat-shock protein 90 (Hsp90) promotes opioid-induced anti-nociception by an ERK mitogen-activated protein kinase (MAPK) mechanism in mouse brain. J Biol Chem 292:10414–10428CrossRefPubMedPubMedCentralGoogle Scholar
  93. Lemasters JJ (2005) Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 8:3–5CrossRefPubMedPubMedCentralGoogle Scholar
  94. Lewis SS, Hutchinson MR, Rezvani N et al (2010) Evidence that intrathecal morphine-3-glucuronide may cause pain enhancement via toll-like receptor 4/MD-2 and interleukin-1beta. Neuroscience 165:569–583CrossRefPubMedPubMedCentralGoogle Scholar
  95. Lewis SS, Loram LC, Hutchinson MR et al (2012) (+)-naloxone, an opioid-inactive toll-like receptor 4 signaling inhibitor, reverses multiple models of chronic neuropathic pain in rats. J Pain 13:498–506CrossRefPubMedPubMedCentralGoogle Scholar
  96. Li J, Soroka J, Buchner J (2012) The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. Biochim Biophys Acta 1823:624–635CrossRefPubMedPubMedCentralGoogle Scholar
  97. Li W, Tsen F, Sahu D et al (2013) Chapter Five – Extracellular Hsp90 (eHsp90) as the actual target in clinical trials: Intentionally or unintentionally. In: Jeon KW (ed) Int Rev Cell Mol Biol 303:203–35. AcademicGoogle Scholar
  98. Li J, Yang F, Guo J et al (2015) 17-AAG post-treatment ameliorates memory impairment and hippocampal CA1 neuronal autophagic death induced by transient global cerebral ischemia. Brain Res 1610:80–88CrossRefPubMedPubMedCentralGoogle Scholar
  99. Lindberg I, Shorter J, Wiseman RL et al (2015) Chaperones in neurodegeneration. J Neurosci 35:13853–13859CrossRefPubMedPubMedCentralGoogle Scholar
  100. Lopez-Hernandez FJ, Ortiz MA, Piedrafita FJ (2006) The extrinsic and intrinsic apoptotic pathways are differentially affected by temperature upstream of mitochondrial damage. Apoptosis 11:1339–1347CrossRefPubMedPubMedCentralGoogle Scholar
  101. Luo W, Sun W, Taldone T et al (2010) Heat shock protein 90 in neurodegenerative diseases. Mol Neurodegener 5:24CrossRefPubMedPubMedCentralGoogle Scholar
  102. Luo Q, Boczek EE, Wang Q et al (2017) Hsp90 dependence of a kinase is determined by its conformational landscape. Sci Rep 7:43996CrossRefPubMedPubMedCentralGoogle Scholar
  103. Madrigal-Matute J, Lopez-Franco O, Blanco-Colio LM et al (2010) Heat shock protein 90 inhibitors attenuate inflammatory responses in atherosclerosis. Cardiovasc Res 86:330–337CrossRefGoogle Scholar
  104. Mahalingam D, Swords R, Carew JS et al (2009) Targeting HSP90 for cancer therapy. Br J Cancer 100:1523CrossRefPubMedPubMedCentralGoogle Scholar
  105. Martini R, Willison H (2016) Neuroinflammation in the peripheral nerve: cause, modulator, or bystander in peripheral neuropathies? Glia 64:475–486CrossRefPubMedPubMedCentralGoogle Scholar
  106. Marzec M, Eletto D, Argon Y (2012) GRP94: an HSP90-like protein specialized for protein folding and quality control in the endoplasmic reticulum. Biochim Biophys Acta 1823:774–787CrossRefPubMedPubMedCentralGoogle Scholar
  107. Masgras I, Sanchez-Martin C, Colombo G et al (2017) The chaperone TRAP1 as a modulator of the mitochondrial adaptations in cancer cells. Front Oncol 7:58CrossRefPubMedPubMedCentralGoogle Scholar
  108. Masuda Y, Shima G, Aiuchi T et al (2004) Involvement of tumor necrosis factor receptor-associated protein 1 (TRAP1) in apoptosis induced by beta-hydroxyisovalerylshikonin. J Biol Chem 279:42503–42515CrossRefPubMedPubMedCentralGoogle Scholar
  109. Matassa DS, Amoroso MR, Maddalena F et al (2012) New insights into TRAP1 pathway. Am J Cancer Res 2:235–248PubMedPubMedCentralGoogle Scholar
  110. Mayer MP, Bukau B (1999) Molecular chaperones: the busy life of Hsp90. Curr Biol 9:R322–RR25CrossRefPubMedPubMedCentralGoogle Scholar
  111. Miao W, Li L, Wang Y (2018) Identification of helicase proteins as clients for HSP90. Anal Chem 90:11751–11755CrossRefPubMedPubMedCentralGoogle Scholar
  112. Milligan ED, Watkins LR (2009) Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci 10:23–36CrossRefPubMedPubMedCentralGoogle Scholar
  113. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741CrossRefPubMedPubMedCentralGoogle Scholar
  114. Mollapour M, Neckers L (2011) Detecting HSP90 phosphorylation. Methods Mol Biol 787:67–74CrossRefPubMedPubMedCentralGoogle Scholar
  115. Mollapour M, Neckers L (2012) Post-translational modifications of Hsp90 and their contributions to chaperone regulation. Biochim Biophys Acta 1823:648–655CrossRefPubMedPubMedCentralGoogle Scholar
  116. Montesano Gesualdi N, Chirico G, Pirozzi G et al (2007) Tumor necrosis factor-associated protein 1 (TRAP-1) protects cells from oxidative stress and apoptosis. Stress 10:342–350CrossRefPubMedPubMedCentralGoogle Scholar
  117. Muralidharan S, Mandrekar P (2013) Cellular stress response and innate immune signaling: integrating pathways in host defense and inflammation. J Leukoc Biol 94:1167–1184CrossRefPubMedPubMedCentralGoogle Scholar
  118. Nahleh Z, Tfayli A, Najm A et al (2012) Heat shock proteins in cancer: targeting the ‘chaperones’. Future Med Chem 4:927–935CrossRefPubMedPubMedCentralGoogle Scholar
  119. Nascimento D, Pozza DH, Castro-Lopes JM et al (2011) Neuronal injury marker ATF-3 is induced in primary afferent neurons of monoarthritic rats. Neurosignals 19:210–221CrossRefPubMedPubMedCentralGoogle Scholar
  120. Nascimento DS, Castro-Lopes JM, Moreira Neto FL (2014) Satellite glial cells surrounding primary afferent neurons are activated and proliferate during monoarthritis in rats: is there a role for ATF3? PLoS One 9:e108152CrossRefPubMedPubMedCentralGoogle Scholar
  121. Nascimento DSM, Potes CS, Soares ML et al (2017) Drug-induced HSP90 inhibition alleviates pain in monoarthritic rats and alters the expression of new putative pain players at the DRG. Mol Neurobiol.  https://doi.org/10.1007/s12035-017-0628-x
  122. Neckers L, Kern A, Tsutsumi S (2007) Hsp90 inhibitors disrupt mitochondrial homeostasis in cancer cells. Chem Biol 14:1204–1206CrossRefPubMedPubMedCentralGoogle Scholar
  123. Neto F (2018) Commentary on paper “drug-induced HSP90 inhibition alleviates pain in monoarthritic rats and alters the expression of new putative pain players at the DRG”. J Immunol Sci 2:17–21CrossRefGoogle Scholar
  124. Neuer A, Mele C, Liu HC et al (1998) Monoclonal antibodies to mammalian heat shock proteins impair mouse embryo development in vitro. Hum Reprod 13:987–990CrossRefPubMedPubMedCentralGoogle Scholar
  125. Ohara PT, Vit JP, Bhargava A et al (2009) Gliopathic pain: when satellite glial cells go bad. Neuroscientist 15:450–463CrossRefPubMedPubMedCentralGoogle Scholar
  126. Old EA, Clark AK, Malcangio M (2015) The role of glia in the spinal cord in neuropathic and inflammatory pain. Handb Exp Pharmacol 227:145–170CrossRefPubMedPubMedCentralGoogle Scholar
  127. Ou J-R, Tan M-S, Xie A-M et al (2014) Heat shock protein 90 in Alzheimer’s disease. BioMed Res Intern 2014:7CrossRefGoogle Scholar
  128. Pearl LH (2016) Review: the HSP90 molecular chaperone—an enigmatic ATPase. Biopolymers 105:594–607CrossRefPubMedPubMedCentralGoogle Scholar
  129. Piao Y, Gwon DH, Kang DW et al (2018) TLR4-mediated autophagic impairment contributes to neuropathic pain in chronic constriction injury mice. Mol Brain 11:11CrossRefPubMedPubMedCentralGoogle Scholar
  130. Pinho-Ribeiro FA, Verri WA, Chiu IM (2017) Nociceptor sensory neuron-immune interactions in pain and inflammation. Trends Immunol 38:5–19CrossRefPubMedPubMedCentralGoogle Scholar
  131. Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 228:111–133CrossRefGoogle Scholar
  132. Price BD, Calderwood SK (1991) Ca2+ is essential for multistep activation of the heat shock factor in permeabilized cells. Mol Cell Biol 11:3365–3368CrossRefPubMedPubMedCentralGoogle Scholar
  133. Pridgeon JW, Olzmann JA, Chin L-S et al (2007) PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol 5:e172CrossRefPubMedPubMedCentralGoogle Scholar
  134. Prodromou C, Siligardi G, O’brien R et al (1999) Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones. EMBO J 18:754–762CrossRefPubMedPubMedCentralGoogle Scholar
  135. Pullen L, Bolon DN (2011) Enforced N-domain proximity stimulates Hsp90 ATPase activity and is compatible with function in vivo. J Biol Chem 286:11091–11098CrossRefPubMedPubMedCentralGoogle Scholar
  136. Qi J, Han X, Liu HT et al (2014) 17-Dimethylaminoethylamino-17-demethoxygeldanamycin attenuates inflammatory responses in experimental stroke. Biol Pharm Bull 37:1713–1718CrossRefPubMedPubMedCentralGoogle Scholar
  137. Rabindran SK, Giorgi G, Clos J et al (1991) Molecular cloning and expression of a human heat shock factor, HSF1. Proc Natl Acad Sci U S A 88:6906–6910CrossRefPubMedPubMedCentralGoogle Scholar
  138. Rabindran SK, Haroun RI, Clos J et al (1993) Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science 259:230–234CrossRefPubMedPubMedCentralGoogle Scholar
  139. Raghavendra V, Rutkowski MD, Deleo JA (2002) The role of spinal neuroimmune activation in morphine tolerance/hyperalgesia in neuropathic and sham-operated rats. J Neurosci 22:9980–9989CrossRefPubMedPubMedCentralGoogle Scholar
  140. Raghavendra V, Tanga FY, Deleo JA (2004) Attenuation of morphine tolerance, withdrawal-induced hyperalgesia, and associated spinal inflammatory immune responses by propentofylline in rats. Neuropsychopharmacology 29:327–334CrossRefPubMedPubMedCentralGoogle Scholar
  141. Rauch JN, Tse E, Freilich R et al (2017) BAG3 is a modular, scaffolding protein that physically links heat shock protein 70 (Hsp70) to the small heat shock proteins. J Mol Biol 429:128–141CrossRefPubMedPubMedCentralGoogle Scholar
  142. Ren K, Dubner R (2016) Activity-triggered tetrapartite neuron-glial interactions following peripheral injury. Curr Opin Pharmacol 26:16–25CrossRefPubMedPubMedCentralGoogle Scholar
  143. Rice JW, Veal JM, Fadden RP et al (2008) Small molecule inhibitors of Hsp90 potently affect inflammatory disease pathways and exhibit activity in models of rheumatoid arthritis. Arthritis Rheum 58:3765–3775CrossRefGoogle Scholar
  144. Ritossa F (1962) A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia 18:571–573CrossRefGoogle Scholar
  145. Rondanin R, Lettini G, Oliva P et al (2018) New TRAP1 and Hsp90 chaperone inhibitors with cationic components: preliminary studies on mitochondrial targeting. Bioorg Med Chem Lett 28:2289–2293CrossRefPubMedPubMedCentralGoogle Scholar
  146. Sager RA, Woodford MR, Neckers L et al (2018) Detecting posttranslational modifications of Hsp90. Methods Mol Biol 1709:209–219CrossRefPubMedPubMedCentralGoogle Scholar
  147. Sajic M, Ida KK, Canning R et al (2018) Mitochondrial damage and “plugging” of transport selectively in myelinated, small-diameter axons are major early events in peripheral neuroinflammation. J Neuroinflammation 15:61CrossRefPubMedPubMedCentralGoogle Scholar
  148. Salminen A, Paimela T, Suuronen T et al (2008) Innate immunity meets with cellular stress at the IKK complex: regulation of the IKK complex by HSP70 and HSP90. Immunol Lett 117:9–15CrossRefPubMedPubMedCentralGoogle Scholar
  149. Salter MW (2005) Cellular signalling pathways of spinal pain neuroplasticity as targets for analgesic development. Curr Top Med Chem 5:557–567CrossRefPubMedPubMedCentralGoogle Scholar
  150. Sarge KD, Murphy SP, Morimoto RI (1993) Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol 13:1392–1407CrossRefPubMedPubMedCentralGoogle Scholar
  151. Schwartz ES, Lee I, Chung K et al (2008) Oxidative stress in the spinal cord is an important contributor in capsaicin-induced mechanical secondary hyperalgesia in mice. Pain 138:514–524CrossRefPubMedPubMedCentralGoogle Scholar
  152. Schwartz ES, Kim HY, Wang J et al (2009) Persistent pain is dependent on spinal mitochondrial antioxidant levels. J Neurosci 29:159–168CrossRefPubMedPubMedCentralGoogle Scholar
  153. Seijffers R, Mills CD, Woolf CJ (2007) ATF3 increases the intrinsic growth state of DRG neurons to enhance peripheral nerve regeneration. J Neurosci 27:7911–7920CrossRefPubMedPubMedCentralGoogle Scholar
  154. Seo YH (2015) Organelle-specific Hsp90 inhibitors. Arch Pharm Res 38:1582–1590CrossRefPubMedPubMedCentralGoogle Scholar
  155. Sevin M, Girodon F, Garrido C et al (2015) HSP90 and HSP70: implication in inflammation processes and therapeutic approaches for myeloproliferative neoplasms. Mediat Inflamm 2015:970242CrossRefGoogle Scholar
  156. Sharp S, Workman P (2006) Inhibitors of the HSP90 molecular chaperone: current status. Adv Cancer Res 95:323–348CrossRefPubMedPubMedCentralGoogle Scholar
  157. Sofroniew MV (2014) Multiple roles for astrocytes as effectors of cytokines and inflammatory mediators. Neuroscientist 20:160–172CrossRefPubMedPubMedCentralGoogle Scholar
  158. Song P, Zhao ZQ (2001) The involvement of glial cells in the development of morphine tolerance. Neurosci Res 39:281–286CrossRefPubMedPubMedCentralGoogle Scholar
  159. Song X, Wang X, Zhuo W et al (2010) The regulatory mechanism of extracellular Hsp90{alpha} on matrix metalloproteinase-2 processing and tumor angiogenesis. J Biol Chem 285:40039–40049CrossRefPubMedPubMedCentralGoogle Scholar
  160. Stellas D, El Hamidieh A, Patsavoudi E (2010) Monoclonal antibody 4C5 prevents activation of MMP2 and MMP9 by disrupting their interaction with extracellular HSP90 and inhibits formation of metastatic breast cancer cell deposits. BMC Cell Biol 11:51CrossRefPubMedPubMedCentralGoogle Scholar
  161. Subbarao Sreedhar A, Kalmár É, Csermely P et al (2004) Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett 562:11–15CrossRefGoogle Scholar
  162. Sung N, Lee J, Kim JH et al (2016) Mitochondrial Hsp90 is a ligand-activated molecular chaperone coupling ATP binding to dimer closure through a coiled-coil intermediate. Proc Natl Acad Sci U S A 113:2952–2957CrossRefPubMedPubMedCentralGoogle Scholar
  163. Taipale M, Krykbaeva I, Koeva M et al (2012) Quantitative analysis of Hsp90-client interactions reveals principles of substrate recognition. Cell 150:987–1001CrossRefPubMedPubMedCentralGoogle Scholar
  164. Taves S, Berta T, Liu DL et al (2016) Spinal inhibition of p38 MAP kinase reduces inflammatory and neuropathic pain in male but not female mice: sex-dependent microglial signaling in the spinal cord. Brain Behav Immun 55:70–81CrossRefPubMedPubMedCentralGoogle Scholar
  165. Thakur M, Rahman W, Hobbs C et al (2012) Characterisation of a peripheral neuropathic component of the rat monoiodoacetate model of osteoarthritis. PLoS One 7:e33730CrossRefPubMedPubMedCentralGoogle Scholar
  166. Thomas M, Harrell JM, Morishima Y et al (2006) Pharmacologic and genetic inhibition of hsp90-dependent trafficking reduces aggregation and promotes degradation of the expanded glutamine androgen receptor without stress protein induction. Hum Mol Genet 15:1876–1883CrossRefPubMedPubMedCentralGoogle Scholar
  167. Toyama S, Shimoyama N, Szeto HH et al (2018) Protective effect of a mitochondria-targeted peptide against the development of chemotherapy-induced peripheral neuropathy in mice. ACS Chem Neurosci 9:1566–1571CrossRefPubMedPubMedCentralGoogle Scholar
  168. Triantafilou M, Triantafilou K (2004) Heat-shock protein 70 and heat-shock protein 90 associate with Toll-like receptor 4 in response to bacterial lipopolysaccharide. Biochem Soc Trans 32:636–639CrossRefPubMedPubMedCentralGoogle Scholar
  169. Triantafilou M, Sawyer D, Nor A et al (2008) Cell surface molecular chaperones as endogenous modulators of the innate immune response. Novartis Found Symp 291:74–79; discussion 79–85, 137–40CrossRefPubMedPubMedCentralGoogle Scholar
  170. Tsai RY, Cheng YC, Wong CS (2015) (+)-Naloxone inhibits morphine-induced chemotaxis via prevention of heat shock protein 90 cleavage in microglia. J Formos Med Assoc 114:446–455CrossRefPubMedPubMedCentralGoogle Scholar
  171. Tsuda M (2016) Microglia in the spinal cord and neuropathic pain. J Diabetes Investig 7:17–26CrossRefPubMedPubMedCentralGoogle Scholar
  172. Tsujino H, Kondo E, Fukuoka T et al (2000) Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motoneurons: a novel neuronal marker of nerve injury. Mol Cell Neurosci 15:170–182CrossRefPubMedPubMedCentralGoogle Scholar
  173. Tsutsumi S, Neckers L (2007) Extracellular heat shock protein 90: a role for a molecular chaperone in cell motility and cancer metastasis. Cancer Sci 98:1536–1539CrossRefPubMedPubMedCentralGoogle Scholar
  174. Tukaj S, Wegrzyn G (2016) Anti-Hsp90 therapy in autoimmune and inflammatory diseases: a review of preclinical studies. Cell Stress Chaperones 21:213–218CrossRefPubMedPubMedCentralGoogle Scholar
  175. Udono H, Ichiyanagi T, Mizukami S et al (2009) Heat shock proteins in antigen trafficking–implications on antigen presentation to T cells. Int J Hyperth 25:617–625CrossRefGoogle Scholar
  176. Urban MJ, Li C, Yu C et al (2010) Inhibiting heat-shock protein 90 reverses sensory hypoalgesia in diabetic mice. ASN Neuro 2:e00040CrossRefPubMedPubMedCentralGoogle Scholar
  177. Urban MJ, Pan P, Farmer KL et al (2012) Modulating molecular chaperones improves sensory fiber recovery and mitochondrial function in diabetic peripheral neuropathy. Exp Neurol 235:388–396CrossRefPubMedPubMedCentralGoogle Scholar
  178. Vettoretti G, Moroni E, Sattin S et al (2016) Molecular dynamics simulations reveal the mechanisms of allosteric activation of Hsp90 by designed ligands. Sci Rep 6:23830CrossRefPubMedPubMedCentralGoogle Scholar
  179. Vlug AS, Teuling E, Haasdijk ED et al (2005) ATF3 expression precedes death of spinal motoneurons in amyotrophic lateral sclerosis-SOD1 transgenic mice and correlates with c-Jun phosphorylation, CHOP expression, somato-dendritic ubiquitination and Golgi fragmentation. Eur J Neurosci 22:1881–1894CrossRefPubMedPubMedCentralGoogle Scholar
  180. Voisine C, Orton K, Morimoto RI (2007) Protein Misfolding, chaperone networks, and the heat shock response in the nervous system. In: Waxman SG (ed) Mol neurol. Academic, San Diego, pp 59–76CrossRefGoogle Scholar
  181. Walsh D, Grantham J, Zhu XO et al (1999) The role of heat shock proteins in mammalian differentiation and development. Environ Med 43:79–87PubMedPubMedCentralGoogle Scholar
  182. Wang Y, Mcalpine SR (2015a) Heat-shock protein 90 inhibitors: will they ever succeed as chemotherapeutics? Future Med Chem 7:87–90CrossRefPubMedPubMedCentralGoogle Scholar
  183. Wang Y, Mcalpine SR (2015b) N-terminal and C-terminal modulation of Hsp90 produce dissimilar phenotypes. Chem Commun (Camb) 51:1410–1413CrossRefGoogle Scholar
  184. Wang B, Chen Z, Yu F et al (2016) Hsp90 regulates autophagy and plays a role in cancer therapy. Tumour Biol 37:1–6CrossRefPubMedPubMedCentralGoogle Scholar
  185. Wang Y, Koay YC, Mcalpine SR (2017) Redefining the phenotype of heat shock protein 90 (Hsp90) inhibitors. Chemistry 23:2010–2013CrossRefPubMedPubMedCentralGoogle Scholar
  186. Watkins LR, Hutchinson MR, Rice KC et al (2009) The “toll” of opioid-induced glial activation: improving the clinical efficacy of opioids by targeting glia. Trends Pharmacol Sci 30:581–591CrossRefPubMedPubMedCentralGoogle Scholar
  187. Wayne N, Mishra P, Bolon DN (2011) Hsp90 and client protein maturation. Methods Mol Biol 787:33–44CrossRefPubMedPubMedCentralGoogle Scholar
  188. Westwood JT, Wu C (1993) Activation of Drosophila heat shock factor: conformational change associated with a monomer-to-trimer transition. Mol Cell Biol 13:3481–3486CrossRefPubMedPubMedCentralGoogle Scholar
  189. Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772CrossRefGoogle Scholar
  190. Wiesgigl M, Clos J (2001) Heat shock protein 90 homeostasis controls stage differentiation in Leishmania donovani. Mol Biol Cell 12:3307–3316CrossRefPubMedPubMedCentralGoogle Scholar
  191. Wong DS, Jay DG (2016) Chapter Six – Emerging roles of extracellular Hsp90 in cancer. In: Isaacs J, Whitesell L (eds) Adv Cancer Res 129:141–63: AcademicGoogle Scholar
  192. Woolf CJ (2011) Central sensitization: implications for the diagnosis and treatment of pain. Pain 152:S2–S15CrossRefPubMedPubMedCentralGoogle Scholar
  193. Wu XB, Cao DL, Zhang X et al (2016) CXCL13/CXCR5 enhances sodium channel Nav1.8 current density via p38 MAP kinase in primary sensory neurons following inflammatory pain. Sci Rep 6:34836CrossRefPubMedPubMedCentralGoogle Scholar
  194. Xie Y, Chen C, Stevenson MA et al (2002) Heat shock factor 1 represses transcription of the IL-1beta gene through physical interaction with the nuclear factor of interleukin 6. J Biol Chem 277:11802–11810CrossRefPubMedPubMedCentralGoogle Scholar
  195. Young JC, Moarefi I, Hartl FU (2001) Hsp90: a specialized but essential protein-folding tool. J Cell Biol 154:267–274CrossRefPubMedPubMedCentralGoogle Scholar
  196. Yun TJ, Harning EK, Giza K et al (2011) EC144, a synthetic inhibitor of heat shock protein 90, blocks innate and adaptive immune responses in models of inflammation and autoimmunity. J Immunol 186:563–575CrossRefPubMedPubMedCentralGoogle Scholar
  197. Zhang H, Burrows F (2004) Targeting multiple signal transduction pathways through inhibition of Hsp90. J Mol Med (Berl) 82:488–499Google Scholar
  198. Zhang D, Lin J, Han J (2010) Receptor-interacting protein (RIP) kinase family. Cell Mol Immunol 7:243–249CrossRefPubMedPubMedCentralGoogle Scholar
  199. Zhang L, Zhao H, Blagg BS et al (2012) C-terminal heat shock protein 90 inhibitor decreases hyperglycemia-induced oxidative stress and improves mitochondrial bioenergetics in sensory neurons. J Proteome Res 11:2581–2593CrossRefPubMedPubMedCentralGoogle Scholar
  200. Zhang L, Karsten P, Hamm S et al (2013) TRAP1 rescues PINK1 loss-of-function phenotypes. Hum Mol Gen 22:2829–2841CrossRefPubMedPubMedCentralGoogle Scholar
  201. Zhao H, Alam A, Chen Q et al (2017) The role of microglia in the pathobiology of neuropathic pain development: what do we know? Br J Anaesth 118:504–516CrossRefPubMedPubMedCentralGoogle Scholar
  202. Zierer BK, Rubbelke M, Tippel F et al (2016) Importance of cycle timing for the function of the molecular chaperone Hsp90. Nat Struct Mol Biol 23:1020–1028CrossRefPubMedPubMedCentralGoogle Scholar
  203. Zou J, Guo Y, Guettouche T et al (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471–480CrossRefPubMedPubMedCentralGoogle Scholar
  204. Zuehlke AD, Moses MA, Neckers L (2018). Heat shock protein 90: its inhibition and function. Philos Trans R Soc Lond Ser B Biol Sci 373Google Scholar
  205. Zuo J, Rungger D, Voellmy R (1995) Multiple layers of regulation of human heat shock transcription factor 1. Mol Cell Biol 15:4319–4330CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • João Dias-Ferreira
    • 1
    • 2
    • 3
  • Fani L. Moreira Neto
    • 1
    • 2
    • 3
    Email author
  1. 1.i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
  2. 2.IBMC – Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
  3. 3.Departamento de Biomedicina – Unidade de Biologia Experimental, Faculdade de MedicinaUniversidade do PortoPortoPortugal

Personalised recommendations