Heat Shock Protein 90 in Severe Trauma

  • Yan Zhao
  • Yuan-Guo ZhouEmail author
Part of the Heat Shock Proteins book series (HESP, volume 19)


Trauma is an important health problem in modern society. Its serious consequences, such as sepsis and multiple organ dysfunction, are the leading causes of high morbidity and mortality. The heat shock proteins (HSP) increase rapidly under a wide variety of stressful conditions to protect cell from damage. Overexpression of HSP is associated with apoptosis inhibition, inflammatory response and immunomodulation in severe trauma. Therefore, the changes in expression levels of various heat shock proteins or the differences in genetic background will affect the processes and medical outcomes of patients or animal models of diseases. Most importantly, HSP play differential and complex roles in the regulation of inflammation and immunity at different pathological stages and locations after severe trauma. In addition to the traditional therapeutic methods, strategies by the control of HSP expression and consideration of individual genetic background will pave the way for the better treatment and prediction of serious complications caused by severe trauma. In this chapter, the recent progresses of HSP in severe trauma and its complications and the possibilities of HSP as therapeutic targets will be discussed.


Gene polymorphism Multiple organ dysfunction syndrome Sepsis Severe trauma Shock 



Disseminated intravascular coagulation


Heat shock proteins




Multiple organ dysfunction syndrome



The authors thank the State Key Laboratory of Trauma, Burn and Combined Injury. This work was supported in part by the National Natural Science Foundation of China [Grant 30470988].


  1. Ackermann M, Reuter M, Flohe S, Bahrami S, Redl H, Schade FU (2001) Cytokine synthesis in the liver of endotoxin-tolerant and normal rats during hemorrhagic shock. J Endotoxin Res 7:105–112PubMedCrossRefPubMedCentralGoogle Scholar
  2. Ambade A, Catalano D, Lim A, Mandrekar P (2012) Inhibition of heat shock protein (molecular weight 90 kDa) attenuates proinflammatory cytokines and prevents lipopolysaccharide-induced liver injury in mice. Hepatology 55:1585–1595PubMedPubMedCentralCrossRefGoogle Scholar
  3. Antonov A, Snead C, Gorshkov B, Antonova GN, Verin AD, Catravas JD (2008) Heat shock protein 90 inhibitors protect and restore pulmonary endothelial barrier function. Am J Respir Cell Mol Biol 39:551–559PubMedPubMedCentralCrossRefGoogle Scholar
  4. Arya R, Mallik M, Lakhotia SC (2007) Heat shock genes – integrating cell survival and death. J Biosci 32:595–610PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bedet A, Razazi K, Boissier F, Surenaud M, Hue S, Giraudier S, Brun-Buisson C, Mekontso Dessap A (2018) Mechanisms of thrombocytopenia during septic shock: a multiplex cluster analysis of endogenous sepsis mediators. Shock 49:641–648PubMedCrossRefPubMedCentralGoogle Scholar
  6. Beere HM (2005) Death versus survival: functional interaction between the apoptotic and stress-inducible heat shock protein pathways. J Clin Invest 115:2633–2639PubMedPubMedCentralCrossRefGoogle Scholar
  7. Calderwood SK, Mambula SS, Gray PJ Jr, Theriault JR (2007) Extracellular heat shock proteins in cell signaling. FEBS Lett 581:3689–3694PubMedCrossRefPubMedCentralGoogle Scholar
  8. Chang CK, Chang CP, Chiu WT, Lin MT (2006) Prevention and repair of circulatory shock and cerebral ischemia/injury by various agents in experimental heatstroke. Curr Med Chem 13:3145–3154PubMedCrossRefPubMedCentralGoogle Scholar
  9. Chatterjee A, Dimitropoulou C, Drakopanayiotakis F, Antonova G, Snead C, Cannon J, Venema RC, Catravas JD (2007a) Heat shock protein 90 inhibitors prolong survival, attenuate inflammation, and reduce lung injury in murine sepsis. Am J Respir Crit Care Med 176:667–675PubMedPubMedCentralCrossRefGoogle Scholar
  10. Chatterjee S, Premachandran S, Shukla J, Poduval TB (2007b) Synergistic therapeutic potential of dexamethasone and L-arginine in lipopolysaccharide-induced septic shock. J Surg Res 140:99–108PubMedCrossRefPubMedCentralGoogle Scholar
  11. Chatterjee A, Snead C, Yetik-Anacak G, Antonova G, Zeng J, Catravas JD (2008) Heat shock protein 90 inhibitors attenuate LPS-induced endothelial hyperpermeability. Am J Physiol Lung Cell Mol Physiol 294:L755–L763PubMedCrossRefPubMedCentralGoogle Scholar
  12. Chebotareva N, Bobkova I, Shilov E (2017) Heat shock proteins and kidney disease: perspectives of HSP therapy. Cell Stress Chaperones 22:319–343PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chen G, Cao P, Goeddel DV (2002) TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Mol Cell 9:401–410PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chen Y, Voegeli TS, Liu PP, Noble EG, Currie RW (2007) Heat shock paradox and a new role of heat shock proteins and their receptors as anti-inflammation targets. Inflamm Allergy Drug Targets 6:91–100PubMedCrossRefPubMedCentralGoogle Scholar
  15. Echeverria PC, Mazaira G, Erlejman A, Gomez-Sanchez C, Piwien Pilipuk G, Galigniana MD (2009) Nuclear import of the glucocorticoid receptor-hsp90 complex through the nuclear pore complex is mediated by its interaction with Nup62 and importin beta. Mol Cell Biol 29:4788–4797PubMedPubMedCentralCrossRefGoogle Scholar
  16. Egorina EM, Sovershaev MA, Kondratiev TV, Olsen JO, Tveita T, Osterud B (2006) Induction of monocytic tissue factor expression after rewarming from hypothermia in vivo is counteracted by heat shock in c-Jun-dependent manner. Arterioscler Thromb Vasc Biol 26:2401–2406PubMedCrossRefPubMedCentralGoogle Scholar
  17. Fitrolaki MD, Dimitriou H, Venihaki M, Katrinaki M, Ilia S, Briassoulis G (2016) Increased extracellular heat shock protein 90alpha in severe sepsis and SIRS associated with multiple organ failure and related to acute inflammatory-metabolic stress response in children. Medicine (Baltimore) 95:e4651CrossRefGoogle Scholar
  18. Flohe SB, Bangen JM, Flohe S, Agrawal H, Bergmann K, Schade FU (2007) Origin of immunomodulation after soft tissue trauma: potential involvement of extracellular heat-shock proteins. Shock 27:494–502PubMedCrossRefPubMedCentralGoogle Scholar
  19. Gabai VL, Mabuchi K, Mosser DD, Sherman MY (2002) Hsp72 and stress kinase c-jun N-terminal kinase regulate the bid-dependent pathway in tumor necrosis factor-induced apoptosis. Mol Cell Biol 22:3415–3424PubMedPubMedCentralCrossRefGoogle Scholar
  20. Gu Y, Chen J, Wang T, Zhou C, Liu Z, Ma L (2016) Hsp70 inducer, 17-allylamino-demethoxygeldanamycin, provides neuroprotection via anti-inflammatory effects in a rat model of traumatic brain injury. Exp Ther Med 12:3767–3772PubMedPubMedCentralCrossRefGoogle Scholar
  21. Guisasola MC, Ortiz A, Chana F, Alonso B, Vaquero J (2015) Early inflammatory response in polytraumatized patients: cytokines and heat shock proteins. A pilot study. Orthop Traumatol Surg Res 101:607–611PubMedCrossRefPubMedCentralGoogle Scholar
  22. Guisasola MC, Alonso B, Bravo B, Vaquero J, Chana F (2018) An overview of cytokines and heat shock response in polytraumatized patients. Cell Stress Chaperones 23:483–489PubMedCrossRefPubMedCentralGoogle Scholar
  23. Heydari AR, Takahashi R, Gutsmann A, You S, Richardson A (1994) Hsp70 and aging. Experientia 50:1092–1098PubMedCrossRefPubMedCentralGoogle Scholar
  24. Jabandziev P, Smerek M, Michalek J, Fedora M, Kosinova L, Hubacek JA, Michalek J (2014) Multiple gene-to-gene interactions in children with sepsis: a combination of five gene variants predicts outcome of life-threatening sepsis. Crit Care 18:R1PubMedPubMedCentralCrossRefGoogle Scholar
  25. Kardynska M, Paszek A, Smieja J, Spiller D, Widlak W, White MRH, Paszek P, Kimmel M (2018) Quantitative analysis reveals crosstalk mechanisms of heat shock-induced attenuation of NF-kappaB signaling at the single cell level. PLoS Comput Biol 14:e1006130PubMedPubMedCentralCrossRefGoogle Scholar
  26. Kim K, Kim W, Rhee JE, Jo YH, Lee JH, Kim KS, Kwon WY, Suh GJ, Lee CC, Singer AJ (2010) Induced hypothermia attenuates the acute lung injury in hemorrhagic shock. J Trauma 68:373–381PubMedCrossRefPubMedCentralGoogle Scholar
  27. Leijte GP, Custers H, Gerretsen J, Heijne A, Roth J, Vogl T, Scheffer GJ, Pickkers P, Kox M (2018) Increased plasma levels of danger-associated molecular patterns are associated with immune suppression and postoperative infections in patients undergoing cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Front Immunol 9:663PubMedPubMedCentralCrossRefGoogle Scholar
  28. Li CY, Lee JS, Ko YG, Kim JI, Seo JS (2000) Heat shock protein 70 inhibits apoptosis downstream of cytochrome c release and upstream of caspase-3 activation. J Biol Chem 275:25665–25671PubMedCrossRefPubMedCentralGoogle Scholar
  29. Li X, Yu Y, Gorshkov B, Haigh S, Bordan Z, Weintraub D, Rudic RD, Chakraborty T, Barman SA, Verin AD, Su Y, Lucas R, Stepp DW, Chen F, Fulton DJR (2018) Hsp70 suppresses mitochondrial reactive oxygen species and preserves pulmonary microvascular barrier integrity following exposure to bacterial toxins. Front Immunol 9:1309PubMedPubMedCentralCrossRefGoogle Scholar
  30. Lin KC, Lin HJ, Chang CP, Lin MT (2015) Decreasing or increasing heat shock protein 72 exacerbates or attenuates heat-induced cell death, respectively, in rat hypothalamic cells. FEBS Open Biol 5:724–730CrossRefGoogle Scholar
  31. MacLean MJ, Llordella MM, Bot N, Picard D (2005) A yeast-based assay reveals a functional defect of the Q488H polymorphism in human Hsp90alpha. Biochem Biophys Res Commun 337:133–137PubMedCrossRefPubMedCentralGoogle Scholar
  32. Madach K, Molvarec A, Rigo J Jr, Nagy B, Penzes I, Karadi I, Prohaszka Z (2008) Elevated serum 70 kDa heat shock protein level reflects tissue damage and disease severity in the syndrome of hemolysis, elevated liver enzymes, and low platelet count. Eur J Obstet Gynecol Reprod Biol 139:133–138PubMedCrossRefPubMedCentralGoogle Scholar
  33. Mazloomi E, Jazani NH, Sohrabpour M, Ilkhanizadeh B, Shahabi S (2011) Synergistic effects of glutamine and ciprofloxacin in reduction of Pseudomonas aeruginosa-induced septic shock severity. Int Immunopharmacol 11:2214–2219PubMedCrossRefPubMedCentralGoogle Scholar
  34. McConnell KW, Fox AC, Clark AT, Chang NY, Dominguez JA, Farris AB, Buchman TG, Hunt CR, Coopersmith CM (2011) The role of heat shock protein 70 in mediating age-dependent mortality in sepsis. J Immunol 186:3718–3725PubMedPubMedCentralCrossRefGoogle Scholar
  35. Nathan DF, Lindquist S (1995) Mutational analysis of Hsp90 function: interactions with a steroid receptor and a protein kinase. Mol Cell Biol 15:3917–3925PubMedPubMedCentralCrossRefGoogle Scholar
  36. O’Neill S, Humphries D, Tse G, Marson LP, Dhaliwal K, Hughes J, Ross JA, Wigmore SJ, Harrison EM (2015) Heat shock protein 90 inhibition abrogates TLR4-mediated NF-kappaB activity and reduces renal ischemia-reperfusion injury. Sci Rep 5:12958PubMedPubMedCentralCrossRefGoogle Scholar
  37. Ondruschka B, Rosinsky F, Trauer H, Schneider E, Dressler J, Franke H (2018) Drug- and/or trauma-induced hyperthermia? Characterization of HSP70 and myoglobin expression. PLoS One 13:e0194442PubMedPubMedCentralCrossRefGoogle Scholar
  38. Papadopoulos P, Pistiki A, Theodorakopoulou M, Christodoulopoulou T, Damoraki G, Goukos D, Briassouli E, Dimopoulou I, Armaganidis A, Nanas S, Briassoulis G, Tsiodras S (2017) Immunoparalysis: clinical and immunological associations in SIRS and severe sepsis patients. Cytokine 92:83–92PubMedCrossRefGoogle Scholar
  39. Passarino G, Cavalleri GL, Stecconi R, Franceschi C, Altomare K, Dato S, Greco V, Luca Cavalli Sforza L, Underhill PA, de Benedictis G (2003) Molecular variation of human HSP90alpha and HSP90beta genes in Caucasians. Hum Mutat 21:554–555PubMedCrossRefPubMedCentralGoogle Scholar
  40. Radons J, Multhoff G (2005) Immunostimulatory functions of membrane-bound and exported heat shock protein 70. Exerc Immunol Rev 11:17–33PubMedPubMedCentralGoogle Scholar
  41. Ramakrishna K, Pugazhendhi S, Kabeerdoss J, Peter JV (2014) Association between heat shock protein 70 gene polymorphisms and clinical outcomes in intensive care unit patients with sepsis. Indian J Crit Care Med 18:205–211PubMedPubMedCentralCrossRefGoogle Scholar
  42. Ranek MJ, Stachowski MJ, Kirk JA, Willis MS (2018) The role of heat shock proteins and co-chaperones in heart failure. Philos Trans R Soc Lond Ser B Biol Sci 373:20160530Google Scholar
  43. Rashed M, Bayraktar E, Helal G, Abd-Ellah MF, Amero P, Chavez-Reyes A, Rodriguez-Aguayo C (2017) Exosomes: from garbage bins to promising therapeutic targets. Int J Mol Sci 18:538Google Scholar
  44. Rozhkova E, Yurinskaya M, Zatsepina O, Garbuz D, Karpov V, Surkov S, Murashev A, Ostrov V, Margulis B, Evgen’ev M, Vinokurov M (2010) Exogenous mammalian extracellular HSP70 reduces endotoxin manifestations at the cellular and organism levels. Ann N Y Acad Sci 1197:94–107PubMedCrossRefPubMedCentralGoogle Scholar
  45. Saleh A, Srinivasula SM, Balkir L, Robbins PD, Alnemri ES (2000) Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2:476–483PubMedPubMedCentralCrossRefGoogle Scholar
  46. Santos-Junior VA, Lollo PCB, Cantero MA, Moura CS, Amaya-Farfan J, Morato PN (2018) Heat shock proteins: protection and potential biomarkers for ischemic injury of cardiomyocytes after surgery. Braz J Cardiovasc Surg 33:291–302PubMedPubMedCentralCrossRefGoogle Scholar
  47. Schroder O, Schulte KM, Ostermann P, Roher HD, Ekkernkamp A, Laun RA (2003) Heat shock protein 70 genotypes HSPA1B and HSPA1L influence cytokine concentrations and interfere with outcome after major injury. Crit Care Med 31:73–79PubMedCrossRefPubMedCentralGoogle Scholar
  48. Schroeder S, Lindemann C, Hoeft A, Putensen C, Decker D, von Ruecker AA, Stuber F (1999) Impaired inducibility of heat shock protein 70 in peripheral blood lymphocytes of patients with severe sepsis. Crit Care Med 27:1080–1084PubMedCrossRefPubMedCentralGoogle Scholar
  49. Shen HY, Zhao Y, Chen XY, Xiong RP, Lu JL, Chen JF, Chen LY, Zhou YG (2010) Differential alteration of heat shock protein 90 in mice modifies glucocorticoid receptor function and susceptibility to trauma. J Neurotrauma 27:373–381PubMedCrossRefPubMedCentralGoogle Scholar
  50. Shen HH, Huang SY, Cheng PY, Chu YJ, Chen SY, Lam KK, Lee YM (2017) Involvement of HSP70 and HO-1 in the protective effects of raloxifene on multiple organ dysfunction syndrome by endotoxemia in ovariectomized rats. Menopause 24:959–969PubMedCrossRefPubMedCentralGoogle Scholar
  51. Singh R, Kolvraa S, Bross P, Jensen UB, Gregersen N, Tan Q, Knudsen C, Rattan SI (2006) Reduced heat shock response in human mononuclear cells during aging and its association with polymorphisms in HSP70 genes. Cell Stress Chaperones 11:208–215PubMedPubMedCentralCrossRefGoogle Scholar
  52. Spanaki AM, Tavladaki T, Dimitriou H, Kozlov AV, Duvigneau JC, Meleti E, Weidinger A, Papakonstantinou E, Briassoulis G (2018) Longitudinal profiles of metabolism and bioenergetics associated with innate immune hormonal inflammatory responses and amino-acid kinetics in severe Sepsis and systemic inflammatory response syndrome in children. JPEN J Parenter Enteral Nutr 42:1061–1074PubMedCrossRefPubMedCentralGoogle Scholar
  53. Su F, Nguyen ND, Wang Z, Cai Y, Rogiers P, Vincent JL (2005) Fever control in septic shock: beneficial or harmful? Shock 23:516–520PubMedPubMedCentralGoogle Scholar
  54. Sucker C, Zacharowski K, Thielmann M, Hartmann M (2007) Heat shock inhibits lipopolysaccharide-induced tissue factor activity in human whole blood. Thromb J 5:13PubMedPubMedCentralCrossRefGoogle Scholar
  55. Sucker C, Paniczek S, Scharf RE, Litmathe J, Hartmann M (2013) Rotation thromboelastography for the detection and characterization of lipoteichoid acid-induced activation of haemostasis in an in vitro sepsis model. Perfusion 28:146–151PubMedCrossRefPubMedCentralGoogle Scholar
  56. Takahashi T, Suzuki T, Yamasaki A, Tsukiji T, Hirakawa M, Akagi R (1999) Heat shock response in a rat model of septic multiple organ dysfunction syndrome. Nihon Yakurigaku Zasshi 114:295–302PubMedCrossRefPubMedCentralGoogle Scholar
  57. Tunctan B, Korkmaz B, Sari AN, Kacan M, Unsal D, Serin MS, Buharalioglu CK, Sahan-Firat S, Cuez T, Schunck WH, Manthati VL, Falck JR, Malik KU (2013) Contribution of iNOS/sGC/PKG pathway, COX-2, CYP4A1, and gp91(phox) to the protective effect of 5,14-HEDGE, a 20-HETE mimetic, against vasodilation, hypotension, tachycardia, and inflammation in a rat model of septic shock. Nitric Oxide 33:18–41PubMedCrossRefPubMedCentralGoogle Scholar
  58. van Eden W, van der Zee R, Prakken B (2005) Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat Rev Immunol 5:318–330PubMedCrossRefPubMedCentralGoogle Scholar
  59. Van Molle W, Wielockx B, Mahieu T, Takada M, Taniguchi T, Sekikawa K, Libert C (2002) HSP70 protects against TNF-induced lethal inflammatory shock. Immunity 16:685–695PubMedCrossRefPubMedCentralGoogle Scholar
  60. Vardas K, Apostolou K, Briassouli E, Goukos D, Psarra K, Botoula E, Tsagarakis S, Magira E, Routsi C, Nanas S, Briassoulis G (2014) Early response roles for prolactin cortisol and circulating and cellular levels of heat shock proteins 72 and 90alpha in severe sepsis and SIRS. Biomed Res Int 2014:803561PubMedPubMedCentralCrossRefGoogle Scholar
  61. Vardas K, Ilia S, Sertedaki A, Charmandari E, Briassouli E, Goukos D, Apostolou K, Psarra K, Botoula E, Tsagarakis S, Magira E, Routsi C, Stratakis CA, Nanas S, Briassoulis G (2017) Increased glucocorticoid receptor expression in sepsis is related to heat shock proteins, cytokines, and cortisol and is associated with increased mortality. Intensive Care Med Exp 5:10PubMedPubMedCentralCrossRefGoogle Scholar
  62. Villar J, Ribeiro SP, Mullen JB, Kuliszewski M, Post M, Slutsky AS (1994) Induction of the heat shock response reduces mortality rate and organ damage in a sepsis-induced acute lung injury model. Crit Care Med 22:914–921PubMedCrossRefPubMedCentralGoogle Scholar
  63. Vinokurov M, Ostrov V, Yurinskaya M, Garbuz D, Murashev A, Antonova O, Evgen’ev M (2012) Recombinant human Hsp70 protects against lipoteichoic acid-induced inflammation manifestations at the cellular and organismal levels. Cell Stress Chaperones 17:89–101PubMedCrossRefPubMedCentralGoogle Scholar
  64. Wang Q, Hasselgren PO (2002) Heat shock response reduces intestinal permeability in septic mice: potential role of interleukin-10. Am J Physiol Regul Integr Comp Physiol 282:R669–R676PubMedCrossRefPubMedCentralGoogle Scholar
  65. Wang YL, Lam KK, Cheng PY, Lee YM (2015) Celastrol prevents circulatory failure via induction of heme oxygenase-1 and heat shock protein 70 in endotoxemic rats. J Ethnopharmacol 162:168–175PubMedCrossRefPubMedCentralGoogle Scholar
  66. Wang YL, Shen HH, Cheng PY, Chu YJ, Hwang HR, Lam KK, Lee YM (2016) 17-DMAG, an HSP90 inhibitor, ameliorates multiple organ dysfunction syndrome via induction of HSP70 in endotoxemic rats. PLoS One 11:e0155583PubMedPubMedCentralCrossRefGoogle Scholar
  67. Wang Y, Sedlacek AL, Pawaria S, Xu H, Scott MJ, Binder RJ (2018) Cutting edge: the heat shock protein gp96 activates inflammasome-signaling platforms in APCs. J Immunol 201:2209–2214PubMedPubMedCentralCrossRefGoogle Scholar
  68. Zhao Y, Shen HY, Chen XY, Xiong RP, Li P, Liu P, Yang N, Zhou YG (2010) Genetic variations of heat shock protein 84 in mice mediate cellular glucocorticoid response. Cell Physiol Biochem 25:359–366PubMedCrossRefPubMedCentralGoogle Scholar
  69. Zhao Y, Tao L, Jiang D, Chen X, Li P, Ning Y, Xiong R, Liu P, Peng Y, Zhou YG (2013) The -144C/A polymorphism in the promoter of HSP90beta is associated with multiple organ dysfunction scores. PLoS One 8:e58646PubMedPubMedCentralCrossRefGoogle Scholar
  70. Zhao Y, Xiong RP, Chen X, Li P, Ning YL, Yang N, Peng Y, Jiang YL, Zhou YG (2018) Hsp90 regulation affects the treatment of glucocorticoid for pancreatitis-induced lung injury. Mol Cell Biochem 440:189–197PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Molecular Biology Center, The State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping HospitalThird Military Medical UniversityChongqingChina

Personalised recommendations