Screening Technique for Heat Shock Protein 90 Inhibitors from Natural Products

  • Yue Hu
  • Xiao J. Zhang
  • Xiao T. Yang
  • Ying Y. Tang
  • Lin Y. Hu
  • Dong ZhuEmail author
Part of the Heat Shock Proteins book series (HESP, volume 19)


Heat shock protein 90 (Hsp90) has emerged as an important target in cancer therapy, in which case screening inhibitors targeted Hsp90 attracted special attention on anti-cancer research. Recent progress in the development of screening technique for Hsp90 inhibitors has taken place. Particular emphasis is focused on ligand fishing screening assay based on protein affinity such as fluorescent ligand fishing that serve as a screening platform show case. This context will focus on strategies to screen and validate potential Hsp90 inhibitors from natural products and the development of screening techniques that are currently applied for the discovery of bioactive compounds from complex mixtures.


High-throughput screening Hsp90 Hsp90 inhibitors Ligand fishing Virtual screening 



Automated flow injection ESI-MS


Activator of Hsp90 ATPase homologue 1


Cell division cycle 37 homologue


C-terminal dimerisation domain


Capillary electrophoresis


Fragment screening technology based on capillary electrophoresis


Carboxy-terminal domain


Cy3B-labeled geldanamycin


Epigallocatechin gallate


Electrospray ionization mass spectrometry


Fragment-based drug discovery


Fluorescence polarization



Grp94, HSPC4

glucose-regulated protein 94


Hsc70/Hsp90-organizing protein


Heat shock factor 1


Heat shock protein 90








High-throughput screening


Middle domain






Nuclear magnetic resonance


Amino-terminal domain


Prostaglandin E synthase 3


Post-translational modifications


Quantum dots


Quantitative structure-activity relationship


Rapid overlay of chemical structures;

S. elongates

Synechococcus elongates


Small-cell lung carcinoma


Surface plasmon resonance


Tetratricopeptide repeat

Trap-1, HSPC5

Tumor necrosis factor receptor-associated protein 1



This work was supported by the Project of National Natural Science Foundation of China (81573388). This work was also sponsored by ‘Qing Lan Project of Jiangsu province’ and ‘Six talent peaks project of Jiangsu Province (YY-032)’. We also greatly appreciate the sponsorship of ‘A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions’ (PAPD).


  1. Aloy P, Russell RB (2002) Potential artefacts in protein-interaction networks. FEBS Lett 530:253–254CrossRefGoogle Scholar
  2. Ashtari K, Khajeh K, Fasihi J, Ashtari P, Ramazani A, Vali H (2012) Silica-encapsulated magnetic nanoparticles: enzyme immobilization and cytotoxic study. Int J Biol Macromol 50:1063–1069CrossRefGoogle Scholar
  3. Austin C, Pettit SN, Magnolo SK et al (2012) Fragment screening using capillary electrophoresis (CEfrag) for hit identification of heat shock protein 90 ATPase inhibitors. J Biomol Screen 17:868–876CrossRefGoogle Scholar
  4. Banerji U, O’Donnell A, Scurr M, Pacey S, Stapleton S, Asad Y, Simmons L, Maloney A, Raynaud F et al (2005) Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. J Clin Oncol 23:4152–4161CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barnes-Seeman D, Park SB, Koehler AN, Schreiber SL (2003) Expanding the functional group compatibility of small-molecule microarrays: discovery of novel calmodulin ligands. Angew Chem Int Ed 42:2376–2379CrossRefGoogle Scholar
  6. Barril X, Brough P, Drysdale M et al (2005) Structure-based discovery of a new class of Hsp90 inhibitors. Bioorg Med Chem Lett 15:5187–5191CrossRefGoogle Scholar
  7. Baykov AA, Evtushenko OA, Avaeva SM (1998) A malachite green procedure for orthophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay. Anal Biochem 171:266–270CrossRefGoogle Scholar
  8. Beaudet L, Bédard J, Breton B, Mercuri RJ, Budarf ML (2001) Homogeneous assays for single-nucleotide polymorphism typing using AlphaScreen. Genome Res 11:600–608CrossRefPubMedPubMedCentralGoogle Scholar
  9. Belenky A, Hughes D, Korneev A, Dunayevskiy Y (2004) Capillary electrophoretic approach to screen for enzyme inhibitors in natural extracts. J Chromatogr A 1053:247–251CrossRefGoogle Scholar
  10. Biamonte MA, Van de Water R, Arndt JW, Scannevin RH, Perret D, Lee WC (2010) Heat shock protein 90: inhibitors in clinical trials. J Med Chem 53:3–17CrossRefPubMedPubMedCentralGoogle Scholar
  11. Brandt GE, Schmidt MD, Prisinzano TE, Blagg BS (2008) Gedunin, a novel hsp90 inhibitor: semisynthesis of derivatives and preliminary structure-activity relationships. J Med Chem 51:6495–6502CrossRefPubMedPubMedCentralGoogle Scholar
  12. Brasca MG, Casale E, Ferguson R, Polucci P, Zuccotto F (2015) Resorcinol derivatives as Hsp90 inhibitors. U.S. patent 8993556 B2, p, 2015-03-31Google Scholar
  13. Brough PA, Barril X, Borgognoni J et al (2009) Combining hit identification strategies: fragment-based and in silico approaches to orally active 2-aminothieno[2,3-d]pyrimidine inhibitors of the Hsp90 molecular chaperone. J Med Chem 52:4794–4809CrossRefPubMedPubMedCentralGoogle Scholar
  14. Brune M, Hunter JL, Corrie JE, Webb MR (1994) Direct, real-time measurement of rapid inorganic phosphate release using a novel fluorescent probe and its application to actomyosin subfragment 1 ATPase. Biochemistry 33:8262–8271CrossRefPubMedPubMedCentralGoogle Scholar
  15. Brune M, Hunter JL, Howell SA, Martin SR, Hazlett TL, Corrie JE, Webb MR (1998) Mechanism of inorganic phosphate interaction with phosphate binding protein from Escherichia coli. Biochemistry 37:10370–10380CrossRefPubMedPubMedCentralGoogle Scholar
  16. Buchner J (1999) Hsp90 & co. —a holding for folding. Trends Biochem Sci 24:136–141CrossRefPubMedPubMedCentralGoogle Scholar
  17. Burger M, Zimmermann TJ, Kondoh Y, Stege P, Watanabe N, Osada H, Waldmann H, Vetter IR (2012) Crystal structure of the predicted phospholipase LYPLAL1 reveals unexpected functional plasticity in spite of close relationship to acyl protein thioesterases. J Lipid Res 53:43–50CrossRefPubMedPubMedCentralGoogle Scholar
  18. Caroli A, Ballante F, Wickersham RB, Corelli F, Ragno R (2014) Hsp90 inhibitors, part 2: combining ligand-based and structure-based approaches for virtual screening application. J Chem Inf Model 54:970–977CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chen G, Bradford WD, Seidel CW, Li R (2012) Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy. Nature 482:246–250CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chen WQ, Zheng RS, Baade PD, Zhang SW, Zeng HM, Bray F, Jemal A, Yu XQ, He J (2016) Cancer statistics in China, 2015. Ca Cancer J Clin 66:115–132CrossRefPubMedPubMedCentralGoogle Scholar
  21. Chini MG, Malafronte N, Vaccaro MC et al (2016) Identification of limonol derivatives as heat shock protein 90 (Hsp90) inhibitors through a multidisciplinary approach. Chemistry 22:13236–13250CrossRefPubMedPubMedCentralGoogle Scholar
  22. Chiosis G, Caldas Lopes E, Solit D (2006) Hsp90 inhibitors: a chronicle from geldanamycin to today’s agents. Curr Opin Investig Drugs 6:534–541Google Scholar
  23. Crevel G, Bates H, Huikeshoven H, Cotterill S (2001) The Drosophila Dpit47 protein is a nuclear Hsp90 co-chaperone that interacts with DNA polymerase alpha. J Cell Sci 114:2015–2025PubMedPubMedCentralGoogle Scholar
  24. Driggers EM, Hale SP, Lee J, Terrett NK (2008) The exploration of macrocycles for drug discovery – an underexploited structural class. Nat Rev Drug Discov 7:608–624CrossRefPubMedPubMedCentralGoogle Scholar
  25. Du Y, Moulick K, Rodina A, Aguirre J, Felts S, Dingledine R, Fu H, Chiosis G (2007) High-throughput screening fluorescence polarization assay for tumor-specific Hsp90. J Biomol Screen 12:915–924CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ferrarini M, Heltai S, Zocchi MR, Rugarli C (1992) Unusual expression and localization of heat-shock proteins in human tumor cells. Int J Cancer 19:613–619CrossRefGoogle Scholar
  27. Fielding L (2003) NMR methods for the determination of protein-ligand dissociation constants. Curr Top Med Chem 3:39–53CrossRefPubMedPubMedCentralGoogle Scholar
  28. Garcia E, Hasenbank MS, Finlayson B, Yager P (2007) High-throughput screening of enzyme inhibition using an inhibitor gradient generated in a microchannel. Lab Chip 7:249–255CrossRefPubMedPubMedCentralGoogle Scholar
  29. Garg G, Khandelwal A, Blagg BS (2016) Anticancer inhibitors of Hsp90 function: beyond the usual suspects. Adv Cancer Res 129:51–88CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hadden MK, Galam L, Gestwicki JE, Matts RL, Blagg BSJ (2007) Derrubone, an inhibitor of the Hsp90 protein folding machinery. J Nat Prod 70:2014–2018CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hagiwara K, Kondoh Y, Ueda A, amada K, Goto H, Watanabe T, Nakata T, Osada H, Aida Y (2010) Discovery of novel antiviral agents directed against the influenza a virus nucleoprotein using photo-cross-linked chemical arrays. Biochem Biophys Res Commun 394:721–727CrossRefGoogle Scholar
  32. Hämäläinen MD, Zhukov A, Ivarsson M, Fex T, Gottfries J, Karlsson R, Björsne M (2008) Label-free primary screening and affinity ranking of fragment libraries using parallel analysis of protein panels. J Biomol Screen 13:202–209CrossRefGoogle Scholar
  33. Hamamoto R, Furukawa Y, Morita M, Iimura Y, Silva FP, Li M, Yagyu R, Nakamura Y (2004) SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol 6:731–740CrossRefGoogle Scholar
  34. Hamamoto R, Silva FP, Tsuge M, Nishidate T, Katagiri T, Nakamura Y, Furukawa Y (2006) Enhanced SMYD3 expression is essential for the growth of breast cancer cells. Cancer Sci 97:113–118CrossRefGoogle Scholar
  35. Harder KW, Owen P, Wong LK, Aebersold R, Clark-Lewis I, Jirik FR (1994) Characterization and kinetic analysis of the intracellular domain of human protein tyrosine phosphatase beta (HPTP beta) using synthetic phosphopeptides. Biochem J 298:395–401CrossRefPubMedPubMedCentralGoogle Scholar
  36. Heck AJ, Van Den Heuvel RH (2004) Investigation of intact protein complexes by mass spectrometry. Mass Spectrom Rev 23:368–389CrossRefGoogle Scholar
  37. Hergenrother PJ, Depew KM, Schreiber SL (2000) Small-molecule microarrays: covalent attachment and screening of alcohol-containing small molecules on glass slides. J Am Chem Soc 122:7849–7850CrossRefGoogle Scholar
  38. Hessling M, Richter K, Buchner J (2009) Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90. Nat Struct Mol Biol 16:287–293CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hieronymus H, Lamb J, Ross KN, Peng XP, Clement C, Rodina A, Nieto M, Du J, Stegmaier K, Raj SM, Maloney KN, Clardy J, Hahn WC, Chiosis G, Golub TR (2006) Gene expression signature-based chemical genomic prediction identifies a novel class of Hsp90 pathway modulators. Cancer Cell 10:321–330CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hofstadler SA, Sannes-Lowery KA (2006) Applications of ESI-MS in drug discovery: interrogation of noncovalent complexes. Nat Rev Drug Discov 5:585–595CrossRefGoogle Scholar
  41. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493CrossRefGoogle Scholar
  42. Hong DS, Banerji U, Tavana B (2013) Targeting the molecular chaperone heat shock protein 90 (Hsp90): lessons learned and future directions. Cancer Treat Rev 39:375–387CrossRefGoogle Scholar
  43. Howes R, Barril X, Dymock BW, Grant K, Northfield CJ, Robertson AG, Surgenor A, Wayne J, Wright L, James K, Matthews T, Cheung KM, McDonald E, Workman P, Drysdale MJ (2006) A fluorescence polarization assay for inhibitors of Hsp90. Anal Biochem 350:202–213CrossRefGoogle Scholar
  44. Hu Y, Fu AC, Miao ZY, Zhang XJ, Wang TL, Kang A, Shan JJ, Zhu D, Li W (2018a) Fluorescent ligand fishing combination with in-situ imaging and characterizing to screen Hsp 90 inhibitors from Curcuma longa L. based on InP/ZnS quantum dots embedded mesoporous nanoparticles. Talanta 178:258–267CrossRefGoogle Scholar
  45. Hu Y, Miao ZY, Zhang XJ, Yang XT, Tang YY, Yu S, Shan CX, Wen HM, Zhu D (2018b) Preparation of microkernel-based mesoporous (SiO2−CdTe−SiO2)@SiO2 fluorescent nanoparticles for imaging screening and enrichment of heat shock protein 90 inhibitors from Tripterygium Wilfordii. Anal Chem 90:5678–5686CrossRefGoogle Scholar
  46. Hu Y, Shan CX, Wang J, Zhu JM, Gu CQ, Ni WT, Zhu D, Zhang AH (2015) Fabrication of functionalized SiO2/TiO2 nanocomposites via amidation for the fast and selective enrichment of phosphopeptides. New J Chem 39:6540–6547CrossRefGoogle Scholar
  47. Huang R, Ayine-Tora DM, Muhammad Rosdi MN, Li Y, Reynisson J, Leung IKH (2016) Virtual screening and biophysical studies lead to HSP90 inhibitors. Bioorg Med Chem Lett 27:277–281CrossRefGoogle Scholar
  48. Jahnke W, Widmer H (2004) Protein NMR in biomedical research. Cell Mol Life Sci 61:580–599CrossRefGoogle Scholar
  49. Jhaveri K, Taldone T, Modi S, Chiosis G (2012) Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochim Biophys Acta 1823:742–755CrossRefPubMedPubMedCentralGoogle Scholar
  50. Jia J, Xu X, Liu F et al (2013) Identification, design and bio-evaluation of novel Hsp90 inhibitors by ligand-based virtual screening. PloS One 8:e59315CrossRefPubMedPubMedCentralGoogle Scholar
  51. Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperon 14:105–111CrossRefGoogle Scholar
  52. Kanoh N, Asami A, Kawatani M, Honda K, Kumashiro S, Takayama H, Simizu S, Amemiya T, Kondoh Y, Hatakeyama S, Tsuganezawa K, Utata R, Tanaka A, Yokoyama S, Tashiro H, Osada H (2006) Photo-cross-linked small molecule microarrays as chemical genomic tools for dissecting protein-ligand interactions. Chem Asian J 1:789–797CrossRefGoogle Scholar
  53. Kanoh N, Kumashiro S, Simizu S, Kondoh Y, Hatakeyama S, Tashiro H, Osada H (2003) Immobilization of natural products on glass slides by using a photoaffinity reaction and the detection of protein-small-molecule interactions. Angew Chem Int Ed 42:5584–5587CrossRefGoogle Scholar
  54. Kaur G, Belotti D, Burger AM, Fisher-Nielson K, Borsotti P, Riccardi E, Thillainathan J, Hollingshead M, Sausville EA, Giavazzi R (2004) Antiangiogenic properties of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin: an orally bioavailable heat shock protein 90 modulator. Clin Cancer Res 10:4813–4821CrossRefGoogle Scholar
  55. Kim J, Felts S, Llauger L, He H, Huezo H, Rosen N, Chiosis G (2004) Development of a fluorescence polarization assay for the molecular chaperone Hsp90. J Biomol Screen 9:375–381CrossRefGoogle Scholar
  56. Kim YS, Alarcon SV, Lee S (2009) Update on Hsp90 inhibitors in clinical trial. Curr Top Med Chem 9:1479–1492CrossRefGoogle Scholar
  57. Koehler AN, Shamji AF, Schreiber SL (2003) Discovery of an inhibitor of a transcription factor using small molecule microarrays and diversity-oriented synthesis. J Am Chem Soc 125:8420–8421CrossRefGoogle Scholar
  58. Kondoh Y, Osada H (2013) High-throughput screening identifies small molecule inhibitors of molecular chaperones. Curr Pharm Des 19:473–492Google Scholar
  59. Krukenberg KA, Street TO, Lavery LA, Agard DA (2011) Conformational dynamics of the molecular chaperone Hsp90. Q Rev Biophys 44:229–255CrossRefPubMedPubMedCentralGoogle Scholar
  60. Kuruvilla FG, Shamji AF, Sternson SM, Hergenrother PJ, Schreiber SL (2002) Dissecting glucose signalling with diversity-orienter synthesis and small-molecule microarrays. Nature 416:653–657CrossRefGoogle Scholar
  61. Lakowitz JR, Joseph R (eds) (1999) Principles of fluorescence spectroscopy, 2nd edn. Plenum, New York, pp 291–319Google Scholar
  62. Lee HY, Park SB (2011) Surface modification for small-molecule microarrays and its application to the discovery of a tyrosinase inhibitor. Mol Biosyst 7:304–310CrossRefGoogle Scholar
  63. Li Y, Zhang T, Jiang Y, Lee HF, Schwartz SJ, Sun D (2009) Epigallocatechin-3-gallate inhibits Hsp90 function by impairing Hsp90 association with cochaperones in pancreatic cancer cell line Mia Paca-2. Mol Pharm 6:1152–1159CrossRefPubMedPubMedCentralGoogle Scholar
  64. Liu LL, Shi SY, Chen XQ, Peng MJ (2013) Analysis of tyrosinase binders from Glycyrrhiza uralensis root: evaluation and comparison of tyrosinase immobilized magnetic fishing-HPLC and reverse ultrafiltration-HPLC. J Chromatogr B 932:19–25CrossRefGoogle Scholar
  65. Liu L, Bagal D, Kitova EN, Schnier PD, Klassen JS (2009) Hydrophobic proteinligand interactions preserved in the gas phase. J Am Chem Soc 131:15980–15981CrossRefGoogle Scholar
  66. Lo MC, Aulabaugh A, Jin G, Cowling R, Bard J, Malamas M, Ellestad G (2004) Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery. Anal Biochem 332:153–159CrossRefGoogle Scholar
  67. Lourenço VK, Jiang Z, Zhang X, Vieira LC, Corrêa AG, Cardoso CL, Cass QB, Moaddel R (2013) Acetylcholinesterase immobilized capillary reactors coupled to protein coated magnetic beads: a new tool for plant extract ligand screening. Talanta 116:647–652CrossRefGoogle Scholar
  68. Lundin A (2000) Use of firefly luciferace in ATP-related assays of biomass, enzymes and metabolites. Methods Enzymol 305:346–370CrossRefGoogle Scholar
  69. Ma H, Horiuchi KY (2006) Chemical microarray: a new tool for drug screening and discovery. Drug Discov Today 11:661–668CrossRefPubMedPubMedCentralGoogle Scholar
  70. MacBeath G, Koehler AN, Schreiber SL (1999) Printing small molecules as microarrays and detecting protein-ligand interactions en masse. J Am Chem Soc 121:7967–7968CrossRefGoogle Scholar
  71. Maehama T, Taylor GS, Slama JT, Dixon JE (2000) A sensitive assay for phosphoinositide phosphatases. Anal Biochem 279:248–250CrossRefGoogle Scholar
  72. Makhnevych T, Houry WA (2012) The role of Hsp90 in protein complex assembly. Biochim Biophys Acta Mol Cell Res 1823:674–682CrossRefGoogle Scholar
  73. Maple HJ, Garlish RA, Rigau-Roca L et al (2012) Automated protein-ligand interaction screening by mass spectrometry. J Med Chem 55:837–851CrossRefGoogle Scholar
  74. Marcu MG, Schulte TW, Neckers L (2000) Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins. J Natl Cancer Inst 92:242–248CrossRefPubMedPubMedCentralGoogle Scholar
  75. Marszałł MP, Moaddel R, Kole S, Gandhari M, Bernier M, Wainer IW (2008) Ligand and protein fishing with heat shock protein 90 coated magnetic beads. Anal Chem 80:7571–7575CrossRefPubMedPubMedCentralGoogle Scholar
  76. Mayer MP, Le Breton L (2015) Hsp90: breaking the symmetry. Mol Cell 58:8–20CrossRefPubMedPubMedCentralGoogle Scholar
  77. McCollum AK, TenEyck CJ, Stensgard B, Morlan BW, Ballman KV, Jenkins RB, Toft DO, Erlichman C (2008) P-glycoprotein-mediated resistance to HSP90-directed therapy is eclipsed by the heat shock response. Cancer Res 68:7419–7427CrossRefPubMedPubMedCentralGoogle Scholar
  78. McConkey DJ, Zhu K (2008) Mechanisms of proteasome inhibitor action and resistance in cancer. Drug Resist Updat 11:164–179CrossRefGoogle Scholar
  79. McLaughlin SH, Ventouras LA, Lobbezoo B, Jackson SE (2004) Independent ATPase activity of Hsp90 subunits creates a flexible assembly platform. J Mol Biol 344:813–826CrossRefGoogle Scholar
  80. Miao ZY, Hu Y, Zhang XJ, Yang XT, Tang YY, Kang A, Zhu D (2018) Screening and identification of ligand-protein interactions using functionalized heat shock protein 90-fluorescent mesoporous silica-indium phosphide/zinc sulfide quantum dot nanocomposites. J Chromatogr A 1562:1–11CrossRefGoogle Scholar
  81. Michał P, Marszałł RM, Krzysztof J, Michel B, Irving WW (2008) Initial synthesis and characterization of an immobilized heat shock protein 90 column for online determination of binding affinities. Anal Biochem 373:313–321CrossRefGoogle Scholar
  82. Mickler M, Hessling M, Ratzke C, Buchner J, Hugel T (2009) The large conformational changes of Hsp90 are only weakly coupled to ATP hydrolysis. Nat Struct Mol Biol 16:281–286CrossRefGoogle Scholar
  83. Minagawa S, Kondoh Y, Sueoka K, Osada H, Nakamoto H (2011) Cyclic lipopeptide antibiotics bind to the N-terminal domain of the prokaryotic Hsp90 to inhibit the chaperone activity. Biochem J 435:237–246CrossRefGoogle Scholar
  84. Mishra P, Bolon DN (2014) Designed Hsp90 heterodimers reveal an asymmetric ATPase-driven mechanism in vivo. Mol Cell 53:344–350CrossRefPubMedPubMedCentralGoogle Scholar
  85. Miyata Y (2009) Protein kinase CK2 in health and disease: CK2: the kinase controlling the Hsp90 chaperone machinery. Cell Mol Life Sci 66:1840–1849CrossRefGoogle Scholar
  86. Miyazaki I, Simizu S, Ichimiya H, Kawatani M, Osada H (2008) Robust and systematic drug screening method using chemical arrays and the protein library: identification of novel inhibitors of carbonic anhydrase II. Biosci Biotechnol Biochem 72:2739–2749CrossRefGoogle Scholar
  87. Miyazaki I, Simizu S, Okumura H, Takagi S, Osada H (2010) A small molecule inhibitor shows that pirin regulates migration of melanoma cells. Nat Chem Biol 6:667–673CrossRefGoogle Scholar
  88. Mollapour M, Neckers L (2012) Post-translational modifications of Hsp90 and their contributions to chaperone regulation. Biochim Biophys Acta 1823:648–655CrossRefPubMedPubMedCentralGoogle Scholar
  89. Mollapour M, Tsutsumi S, Truman AW, Xu WP, Vaughan CK, Beebe K, Konstantinova A, Vourganti S, Panaretou B, Piper PW, Trepel JB, Prodromou C, Pearl LH, Neckers L (2011) Threonine 22 phosphorylation attenuates Hsp90 interaction with cochaperones and affects its chaperone activity. Mol Cell 41:672–681CrossRefPubMedPubMedCentralGoogle Scholar
  90. Morelli L, Bernardi A, Sattin S (2014) Synthesis of potential allosteric modulators of Hsp90 by chemical glycosylation of Eupomatenoid-6. Carbohydr Res 390:33–41CrossRefGoogle Scholar
  91. Moulick K, Ahn JH, Zong H, Rodina A, Cerchietti L, Gomes DaGama EM, Caldas-Lopes E, Beebe K, Perna F, Hatzi K, Vu LP, Zhao X, Zatorska D, Taldone T, Smith-Jones P, Alpaugh M, Gross SS, Pillarsetty N, Ku T, Lewis JS, Larson SM, Levine R, Erdjument-Bromage H, Guzman ML, Nimer SD, Melnick A, Neckers L, Chiosis G (2011) Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90. Nat Chem Biol 7:818–826CrossRefPubMedPubMedCentralGoogle Scholar
  92. Muroi M, Kazami S, Noda K, Kondo H, Takayama H, Kawatani M, Usui T, Osada H (2010) Application of proteomic profiling based on 2D-DIGE for classification of compounds according to the mechanism of action. Chem Biol 17:460–470CrossRefPubMedPubMedCentralGoogle Scholar
  93. Neckers L (2002) Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med 8:S55–S61CrossRefPubMedPubMedCentralGoogle Scholar
  94. Neckers L, Workman P (2012) Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res 18:64–76CrossRefPubMedPubMedCentralGoogle Scholar
  95. New SY, Aung KM, Lim GL, Hong S, Tan SK, Lu Y, Cheung E, Su X (2014) Fast screening of ligand-protein interactions based on ligand-induced protein stabilization of gold nanoparticles. Anal Chem 86:2361–2370CrossRefPubMedPubMedCentralGoogle Scholar
  96. Panaretou B, Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1998) ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. EMBO J 17:4829–4836CrossRefPubMedPubMedCentralGoogle Scholar
  97. Pantoliano MW, Petrella EC, Kwasnoski JD, Lobanov VS, Myslik J, Graf E, Carver T, Asel E, Springer BA, Lane P, Salemme FR (2001) High-density miniaturized thermal shift assays as a general strategy for drug discovery. J Biomol Screen 6:429–440CrossRefPubMedPubMedCentralGoogle Scholar
  98. Park S, Shin I (2002) Fabrication of carbohydrate chips for studying protein-carbohydrate interactions. Angew Chem Int Ed 41:3180–3182CrossRefGoogle Scholar
  99. Pashtan I, Tsutsumi S, Wang SQ, Xu WP, Neckers L (2008) Targeting Hsp90 prevents escape of breast cancer cells from tyrosine kinase inhibition. Cell Cycle 7:2936–2941CrossRefPubMedPubMedCentralGoogle Scholar
  100. Pearl LH, Prodromou C (2000) Structure and in vivo function of Hsp90. Curr Opin Struct Biol 10:46–51CrossRefPubMedPubMedCentralGoogle Scholar
  101. Pearl LH, Prodromou C (2006) Structure and mechanism of the Hsp90 molecular chaperone machinery. Ann Rev Biochem 75:271–294CrossRefPubMedPubMedCentralGoogle Scholar
  102. Pearl LH, Prodromou C, Workman P (2008) The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem J 410:439–453CrossRefPubMedPubMedCentralGoogle Scholar
  103. Pellecchia M, Bertini I, Cowburn D et al (2008) Perspectives on NMR in drug discovery: a technique comes of age. Nat Rev Drug Discov 7:738–745CrossRefPubMedPubMedCentralGoogle Scholar
  104. Pick E, Kluger Y, Giltnane JM, Moeder C, Camp RL, Rimm DL, Kluger HM (2007) High HSP90 expression is associated with decreased survival in breast cancer. Cancer Res 67:2932–2937CrossRefPubMedPubMedCentralGoogle Scholar
  105. Piliarik M, Párová L, Homola J (2009) High-throughput SPR sensor for food safety. Biosens Bioelectron 24:1399–1404CrossRefPubMedPubMedCentralGoogle Scholar
  106. Prodromou C (2016) Mechanisms of Hsp90 regulation. Biochem J 473:2439–2452CrossRefPubMedPubMedCentralGoogle Scholar
  107. Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1997) Identification and structural characterization of the ATP/ADP – binding site in the Hsp90 molecular chaperone. Cell 90:65–75CrossRefPubMedPubMedCentralGoogle Scholar
  108. Qing LS, Tang N, Xue Y, Liang J, Liu YM, Liao X (2012) Identification of enzyme inhibitors using therapeutic target protein-magnetic nanoparticle conjugates. Anal Methods 4:1612–1615CrossRefPubMedPubMedCentralGoogle Scholar
  109. Retzlaff M, Hagn F, Mitschke L, Hessling M, Gugel F, Kessler H, Richter K, Buchner J (2010) Asymmetric activation of the hsp90 dimer by its cochaperone aha1. Mol Cell 37:344–354CrossRefPubMedPubMedCentralGoogle Scholar
  110. Retzlaff M, Stahl M, Eberl HC, Lagleder S, Beck J, Kessler H, Buchner J (2009) Hsp90 is regulated by a switch point in the C-terminal domain. EMBO Rep 10:1147–1153CrossRefPubMedPubMedCentralGoogle Scholar
  111. Riccardi Sirtori F, Caronni D, Colombo M et al (2015) Establish an automated flow injection ESI-MS method for the screening of fragment based libraries: application to Hsp90. Eur J Pharm Sci 76:83–94CrossRefGoogle Scholar
  112. Roe SM, Prodromou C, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1999) Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem 42:260–266CrossRefGoogle Scholar
  113. Rohl A, Rohrberg J, Buchner J (2013) The chaperone Hsp90: changing partners for demanding clients. Trends Biochem Sci 38:253–262CrossRefGoogle Scholar
  114. Rowlands MG, Newbatt YM, Prodromou C, Pearl LH, Workman P, Aherne W (2004) High-throughput screening assay for inhibitors of heat-shock protein 90 ATPase activity. Anal Biochem 327:176–183CrossRefPubMedPubMedCentralGoogle Scholar
  115. Schopf HF, Maximilian MB, Johannes B (2017) The Hsp90 chaperone machinery. Nat Rev Mol Cell Bi 18:345–360CrossRefGoogle Scholar
  116. Scroggins BT, Robzyk K, Wang D, Marcu MG, Tsutsumi S, Beebe K, Cotter RJ, Felts S, Toft D, Karnitz L, Rosen N, Neckers L (2007) An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol Cell 25:151–159CrossRefPubMedPubMedCentralGoogle Scholar
  117. Shiau AK, Harris SF, Southworth DR, Agard DA (2006) Structural analysis of E. coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell 127:329–340CrossRefGoogle Scholar
  118. Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274:1531–1534CrossRefGoogle Scholar
  119. Sidera K, Patsavoudi E (2014) HSP90 inhibitors: current development and potential in cancer therapy. Recent Pat Anticancer Drug Discov 9:1–20CrossRefGoogle Scholar
  120. Singh N, Ravichandran S, Spelman K, Fugmann SD, Moaddel R (2014) The identification of a novel SIRT6 modulator from Trigonella foenum-graecum using ligand fishing with protein coated magnetic beads. J Chromatogr B: Anal Technol Biomed Life Sci 968:105–111CrossRefGoogle Scholar
  121. Šípová H, Homola J (2013) Surface plasmon resonance sensing of nucleic acids: a review. Anal Chim Acta 773:9–23CrossRefGoogle Scholar
  122. Soga S, Akinaga S, Shiotsu Y (2013) Hsp90 inhibitors as anti-cancer agents, from basic discoveries to clinical development. Curr Pharm Design 19:366–376CrossRefGoogle Scholar
  123. Soga S, Shiotsu Y, Akinaga S, Sharma SV (2003) Development of radicicol analogues. Curr Cancer Drug Targets 3:359–369CrossRefPubMedPubMedCentralGoogle Scholar
  124. Soroka J, Wandinger SK, Mäusbacher N, Schreiber T, Richter K, Daub H, Buchner J (2012) Conformational switching of the molecular chaperone Hsp90 via regulated phosphorylation. Mol Cell 45:517–528CrossRefPubMedPubMedCentralGoogle Scholar
  125. Southworth DR, Agard DA (2008) Species-dependent ensembles of conserved conformational states define the Hsp90 chaperone ATPase cycle. Mol Cell 32:631–640CrossRefPubMedPubMedCentralGoogle Scholar
  126. Southworth DR, Agard DA (2011) Client-loading conformation of the Hsp90 molecular chaperone revealed in the Cryo-EM structure of the human Hsp90: hop complex. Mol Cell 42:771–781CrossRefPubMedPubMedCentralGoogle Scholar
  127. Stanton BZ, Peng LF, Maloof N, Nakai K, Wang X, Duffner JL, Taveras KM, Hyman JM, Lee SW, Koehler AN, Chen JK, Fox JL, Mandinova A, Schreiber SL (2009) A small molecule that binds hedgehog and blocks its signaling in human cells. Nat Chem Biol 5:154–156CrossRefPubMedPubMedCentralGoogle Scholar
  128. Stark JL, Powers R (2011) Application of NMR and molecular docking in structure-based drug discovery. Top Curr Chem 326:1–34CrossRefGoogle Scholar
  129. Sun HP, Jia JM, Jiang F et al (2014) Identification and optimization of novel Hsp90 inhibitors with tetrahydropyrido[4,3-d]pyrimidines core through shape-based screening. Eur J Med Chem 79:399–412CrossRefPubMedPubMedCentralGoogle Scholar
  130. Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11:515–528CrossRefGoogle Scholar
  131. Taipale M, Krykbaeva I, Koeva M, Kayatekin C, Westover KD, Karras GI, Lindquist S (2012) Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell 150:987–1001CrossRefPubMedPubMedCentralGoogle Scholar
  132. Taldone T, Sun W, Chiosis G (2009) Discovery and development of heat shock protein 90 inhibitors. Bioorg Med Chem 7:2225–2235CrossRefGoogle Scholar
  133. Trepel J, Mollapour M, Giaccone G, Neckers L (2010) Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10:537–549CrossRefPubMedPubMedCentralGoogle Scholar
  134. Uttamchandani M, Wang J, Yao SQ (2006) Protein and small molecule microarrays: powerful tools for high-throughput proteomics. Mol BioSyst 2:58–68CrossRefGoogle Scholar
  135. Van den Heuvel RH, Heck AJ (2004) Native protein mass spectrometry: from intact oligomers to functional machineries. Curr Opin Chem Biol 8:519–526CrossRefGoogle Scholar
  136. Vegas AJ, Fuller JH, Koehler AN (2008) Small-molecule microarrays as tools in ligand discovery. Chem Soc Rev 37:1385–1394CrossRefPubMedPubMedCentralGoogle Scholar
  137. Vivat Hannah V, Atmanene C, Zeyer D, Van Dorsselaer A, Sanglier-Cianfàrani S (2009) Native MS: an “ESI” way to support structure- and fragment-based drug discovery. Future Med Chem 2:35–50CrossRefGoogle Scholar
  138. Voellmy R, Boellmann F (2007) Chaperone regulation of the heat shock protein response. Adv Exp Med Biol 594:89–99CrossRefPubMedPubMedCentralGoogle Scholar
  139. Warner G, Illy C, Pedro L, Roby P, Bossé R (2004) AlphaScreen kinase HTS platforms. Curr Med Chem 11:721–730CrossRefGoogle Scholar
  140. Whitesell L, Lin NU (2012) HSP90 as a platform for the assembly of more effective cancer chemotherapy. Biochim Biophys Acta Mol Cell Res 1823:756–766CrossRefGoogle Scholar
  141. Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772CrossRefGoogle Scholar
  142. Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM (1994) Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci USA 91:8324–8328CrossRefPubMedPubMedCentralGoogle Scholar
  143. Willett P (2006) Similarity-based virtual screening using 2D fingerprints. Drug Discov Today 11:1046–1053CrossRefGoogle Scholar
  144. Williamson MP (2013) Using chemical shift perturbation to characterise ligand binding. Prog Nucl Magn Reson Spectrosc 73:1–16CrossRefGoogle Scholar
  145. Xu XL, Sun HP, Liu F et al (2014) Discovery and bioevaluation of novel pyrazolopyrimidine analogs as competitive Hsp90 inhibitors through shape-based similarity screening. Mol Inform 33:293–306CrossRefGoogle Scholar
  146. Yi F, Regan L (2008) A novel class of small molecule inhibitors of Hsp90. ACS Chem Biol 3:645–654CrossRefPubMedPubMedCentralGoogle Scholar
  147. Yi F, Zhu P, Southall N, Inglese J, Austin CP, Zheng W, Regan L (2009) An AlphaScreen-based high-throughput screen to identify inhibitors of Hsp90-cochaperone interaction. J Biomol Screen 14:273–281CrossRefPubMedPubMedCentralGoogle Scholar
  148. Zhang R, Monsma F (2010) Fluorescence-based thermal shift assays. Curr Opin Drug Discov Devel 13:389–402PubMedGoogle Scholar
  149. Zhu Y, Li Z, Chen M, Cooper HM, Lu GQ, Xu ZP (2012) Synthesis of robust sandwich-like SiO2@CdTe@SiO2 fluorescent nanoparticles for cellular imaging. Chem Mater 24:421–423CrossRefGoogle Scholar
  150. Zierer BK, Rübbelke M, Tippel F, Madl T, Schopf FH, Rutz DA, Richter K, Sattler M, Buchner J (2016) Importance of cycle timing for the function of the molecular chaperone Hsp90. Nat Struct Mol Biol 23:1020–1028CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yue Hu
    • 1
  • Xiao J. Zhang
    • 1
  • Xiao T. Yang
    • 1
  • Ying Y. Tang
    • 1
  • Lin Y. Hu
    • 1
  • Dong Zhu
    • 1
    • 2
    • 3
    Email author
  1. 1.School of PharmacyNanjing University of Chinese MedicineNanjingPeople’s Republic of China
  2. 2.Jiangsu Key Laboratory for Functional Substance of Chinese MedicineNanjingPeople’s Republic of China
  3. 3.State Key Laboratory Cultivation Base for TCM Quality and EfficacyNanjing University of Chinese MedicineNanjingPeople’s Republic of China

Personalised recommendations