Hsp90: A Target for Susceptibilities and Substitutions in Biotechnological and Medicinal Application

  • Athanasia Warnecke
  • Andreas Kirschning
  • Daniel Landsberg
  • Carsten ZeilingerEmail author
Part of the Heat Shock Proteins book series (HESP, volume 19)


A main influencer of the chaperome is the environmental stress eliciting continuously degraded proteins. To avoid proteotoxic stress, which hinders the protein homeostasis and cell survival, most proteins are accompanied from the early existence on by heat shock proteins (HSP) and sequestrated into different routes of renaturation, de novo folding or denaturation. Therefore, the regulation of Hsp90 presence and activity is relevant for most cells and their function. In this position, Hsp90 can decide the fate between health and disease by selective refolding of denatured proteins and is a player in the evolution. From the last century on, Hsp90 was validated as a target due to its susceptibility for natural products and to make them perfect with the aim to hinder refolding and enhance the proteotoxic stress. In this review, the links between natural producer, chemical synthesis with Hsp90 as a target as well as alternative chaperoning routes by chemical compounds are illuminated.


Cancer Chaperone Chemical chaperones Heat shock protein Target 



Cystic fibrosis transmembrane conductance regulator


Heat shock proteins


Nucleotide binding domain


  1. Abdalla Z, Walsh T, Thakker N, Ward CM (2017) Loss of epithelial markers is an early event in oral dysplasia and is observed within the safety margin of dysplastic and T1 OSCC biopsies. PLoS One 12:e0187449CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adelstein DJ, Li Y, Adams GL et al (2003) An intergroup phase III comparison of standard radiation therapy and two schedules of concurrent chemoradiotherapy in patients with unresectable squamous cell head and neck cancer. J Clin Oncol 21:92–98CrossRefPubMedPubMedCentralGoogle Scholar
  3. Agrawal L, Engel KB, Greytak SR, Moore HM (2018) Understanding preanalytical variables and their effects on clinical biomarkers of oncology and immunotherapy. Semin Cancer Biol 52:26–38CrossRefPubMedPubMedCentralGoogle Scholar
  4. Alam Q, Alam MZ, Sait KHW et al (2017) Translational shift of HSP90 as a novel therapeutic target from cancer to neurodegenerative disorders: an emerging trend in the cure of Alzheimer’s and Parkinson’s diseases. Curr Drug Metab 18:868–876CrossRefPubMedPubMedCentralGoogle Scholar
  5. Aridon P, Geraci F, Turturici G, D’Amelio M, Savettieri G, Sconzo G (2011) Protective role of heat shock proteins in Parkinson’s disease. Neurodegener Dis 8:155–168CrossRefPubMedPubMedCentralGoogle Scholar
  6. Baselga J, Trigo JM, Bourhis J et al (2005) Phase II multicenter study of the antiepidermal growth factor receptor monoclonal antibody cetuximab in combination with platinum-based chemotherapy in patients with platinum-refractory metastatic and/or recurrent squamous cell carcinoma of the head and neck. J Clin Oncol 23:5568–5577CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bhattacharya K, Bernasconi L, Picard D (2018) Luminescence resonance energy transfer between genetically encoded donor and acceptor for protein-protein interaction studies in the molecular chaperone HSP70/HSP90 complexes. Sci Rep 8:2801CrossRefPubMedPubMedCentralGoogle Scholar
  8. Blacklock K, Verkhivker GM (2014) Allosteric regulation of the Hsp90 dynamics and stability by client recruiter cochaperones: protein structure network modeling. PLoS One 9:e86547CrossRefPubMedPubMedCentralGoogle Scholar
  9. Borderud SP, Li Y, Burkhalter JE, Sheffer CE, Ostroff JS (2014) Electronic cigarette use among patients with cancer: characteristics of electronic cigarette users and their smoking cessation outcomes. Cancer 120:3527–3535CrossRefPubMedPubMedCentralGoogle Scholar
  10. Byrd KM, Subramanian C, Sanchez J et al (2016) Synthesis and biological evaluation of novobiocin core analogues as Hsp90 inhibitors. Chemistry 22:6921–6931CrossRefPubMedPubMedCentralGoogle Scholar
  11. Calderwood SK (2018) Heat shock proteins and cancer: intracellular chaperones or extracellular signalling ligands? Philos Trans R Soc Lond Ser B Biol Sci 373:20160524CrossRefGoogle Scholar
  12. Chen Y, Wang B, Liu D et al (2014) Hsp90 chaperone inhibitor 17-AAG attenuates Aβ-induced synaptic toxicity and memory impairment. J Neurosci 34:2464–2470CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chen H, Xing J, Hu X et al (2017) Inhibition of heat shock protein 90 rescues glucocorticoid-induced bone loss through enhancing bone formation. J Steroid Biochem Mol Biol 171:236–246CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chen B, Feder ME, Kang L (2018) Evolution of heat-shock protein expression underlying adaptive responses to environmental stress. Mol Ecol 27:3040–3054CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cheng SH, Gregory RJ, Marshall J et al (1990) Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63:827–834CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cook E, Eastman G, Bunn P (1956) The use of novobiocin in the management of acute pneumococcal and staphylococcal infections. Antibiot Annu 1:396–401Google Scholar
  17. Cunningham LL, Brandon CS (2006) Heat shock inhibits both aminoglycoside- and cisplatin-induced sensory hair cell death. JARO – J Assoc Res Otolaryngol 7:299–307CrossRefPubMedPubMedCentralGoogle Scholar
  18. Davenport J, Manjarrez JR, Peterson L, Krumm B, Blagg BS, Matts RL (2011) Gambogic acid, a natural product inhibitor of Hsp90. J Nat Prod 74:1085–1092CrossRefPubMedPubMedCentralGoogle Scholar
  19. DeBoer C, Meulman PA, Wnuk RJ, Peterson DH (1970) Geldanamycin, a new antibiotic. J Antibiot (Tokyo) 23:442–447CrossRefGoogle Scholar
  20. Devaney E, Gillan V (2016) Hsp90 inhibitors in parasitic nematodes: prospects and challenges. Curr Top Med Chem 16:2805–2811CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dezwaan DC, Freeman BC (2008) HSP90. The Rosetta stone for cellular protein dynamics? Cell cycle (Georgetown, Tex) 7:1006–1012CrossRefGoogle Scholar
  22. Dickey CA, Kamal A, Lundgren K et al (2007) The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J Clin Invest 117:648–658CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dlugosz A, Janecka A (2017) Novobiocin analogs as potential anticancer agents. Mini Rev Med Chem 17:728–733CrossRefPubMedPubMedCentralGoogle Scholar
  24. Du K, Sharma M, Lukacs GL (2005) The Delta F 508 cystic fibrosis mutation impairs domain- domain interactions and arrests post- translational folding of CFTR. Nat Struct Mol Biol 12:17–25CrossRefPubMedPubMedCentralGoogle Scholar
  25. Dylawerska A, Barczak W, Wegner A, Golusinski W, Suchorska WM (2017) Association of DNA repair genes polymorphisms and mutations with increased risk of head and neck cancer: a review. Med Oncol 34:197CrossRefPubMedPubMedCentralGoogle Scholar
  26. Echeverría PC, Bernthaler A, Dupuis P, Mayer B, Picard D (2011) An interaction network predicted from public data as a discovery tool: application to the Hsp90 molecular chaperone machine. PLoS One 6:e26044CrossRefPubMedPubMedCentralGoogle Scholar
  27. Edkins AL (2015) CHIP: a co-chaperone for degradation by the proteasome. Subcell Biochem 78:219–242CrossRefPubMedPubMedCentralGoogle Scholar
  28. Enokida T, Okano S, Fujisawa T, Ueda Y, Uozumi S, Tahara M (2018) Paclitaxel plus cetuximab as 1st line chemotherapy in platinum-based chemoradiotherapy-refractory patients with squamous cell carcinoma of the head and neck. Front Oncol 8:339CrossRefPubMedPubMedCentralGoogle Scholar
  29. Eurostat (2017) Causes of death – deaths by country of residence and occurrence.
  30. Ferraro M, D’Annessa I, Moroni E et al (2019) Allosteric modulators of HSP90 and HSP70: dynamics meets function through structure-based drug design. J Med Chem 62:60–87CrossRefPubMedPubMedCentralGoogle Scholar
  31. Forster MD, Devlin MJ (2018) Immune checkpoint inhibition in head and neck cancer. Front Oncol 8:310CrossRefPubMedPubMedCentralGoogle Scholar
  32. Forsythe HL, Jarvis JL, Turner JW, Elmore LW, Holt SE (2001) Stable association of hsp90 and p23, but not hsp70, with active human telomerase. J Biol Chem 276:15571–15574CrossRefPubMedPubMedCentralGoogle Scholar
  33. Franke J, Eichner S, Zeilinger C, Kirschning A (2013) Targeting heat-shock-protein 90 (Hsp90) by natural products. Geldanamycin, a show case in cancer therapy. Nat Prod Rep 30:1299–1323CrossRefPubMedPubMedCentralGoogle Scholar
  34. Fries GR, Gassen NC, Rein T (2017) The FKBP51 glucocorticoid receptor co-chaperone: regulation, function, and implications in health and disease. Int J Mol Sci 18:1–31CrossRefGoogle Scholar
  35. Fu Y, Xu X, Huang D et al (2017) Plasma heat shock protein 90alpha as a biomarker for the diagnosis of liver cancer: an official, large-scale, and multicenter clinical trial. EBioMedicine 24:56–63CrossRefPubMedPubMedCentralGoogle Scholar
  36. Gammie T, Lu CY, Babar ZU (2015) Access to orphan drugs: a comprehensive review of legislations, regulations and policies in 35 countries. PLoS One 10:e0140002CrossRefPubMedPubMedCentralGoogle Scholar
  37. Gao Y, Yechikov S, Vazquez AE, Chen D, Nie L (2013) Distinct roles of molecular chaperones HSP90α and HSP90β in the biogenesis of KCNQ4 channels. PLoS One 8:1–10Google Scholar
  38. Geller R, Pechmann S, Acevedo A, Andino R, Frydman J (2018) Hsp90 shapes protein and RNA evolution to balance trade-offs between protein stability and aggregation. Nat Commun 9:1781CrossRefPubMedPubMedCentralGoogle Scholar
  39. Gentzsch M, Mall MA (2018) Ion channel modulators in cystic fibrosis. Chest 154:383–393CrossRefPubMedPubMedCentralGoogle Scholar
  40. Gerecitano JF, Modi S, Rampal R et al (2015) Phase I trial of the HSP-90 inhibitor PUH71. J Clin Oncol (Meeting Abstracts) 33:253Google Scholar
  41. Gestwicki JE, Shao H (2019) Inhibitors and chemical probes for molecular chaperone networks. J Biol Chem 294:2151–2161CrossRefPubMedPubMedCentralGoogle Scholar
  42. Gong T-W, Fairfield DA, Fullarton L et al (2012) Induction of heat shock proteins by hyperthermia and noise overstimulation in hsf1 −/− mice. J Assoc Res Otolaryngol 13:29–37CrossRefPubMedPubMedCentralGoogle Scholar
  43. Gregoire V, Lefebvre JL, Licitra L, Felip E, Group E.E. E. G. W et al (2010) Squamous cell carcinoma of the head and neck: EHNS-ESMO-ESTRO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncologia 21:184–186CrossRefGoogle Scholar
  44. Halicek M, Little JV, Wang X, et al (2018) Optical biopsy of head and neck cancer using hyperspectral imaging and convolutional neural networks. Proc SPIE Int Soc Opt Eng Jan–Feb. 10469Google Scholar
  45. Hendriksma M, Montagne MW, Langeveld TPM, Veselic M, van Benthem PPG, Sjögren EV (2018) Evaluation of surgical margin status in patients with early glottic cancer (Tis-T2) treated with transoral CO2 laser microsurgery, on local control. Eur Arch Otorhinolaryngol 275:2333–2340CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hinni ML, Ferlito A, Brandwein-Gensler MS et al (2013) Surgical margins in head and neck cancer: a contemporary review. Head Neck 35:1362–1370CrossRefPubMedPubMedCentralGoogle Scholar
  47. Holton AB, Sinatra FL, Kreahling J, Conway AJ, Landis DA, Altiok S (2017) Microfluidic biopsy trapping device for the real-time monitoring of tumor microenvironment. PLoS One 12:e0169797CrossRefPubMedPubMedCentralGoogle Scholar
  48. Hombach A, Clos J (2014) No stress – Hsp90 and signal transduction in Leishmania. Parasitology 141:1156–1166CrossRefPubMedPubMedCentralGoogle Scholar
  49. Hong D, Said R, Falchook G et al (2013) Phase I study of BIIB028, a selective heat shock protein 90 inhibitor, in patients with refractory metastatic or locally advanced solid tumors. Clin Cancer Res 19:4824–4831CrossRefPubMedPubMedCentralGoogle Scholar
  50. Honoré FA, Méjean V, Genest O (2017) Hsp90 is essential under heat stress in the bacterium Shewanella oneidensis. Cell Rep 19:680–687CrossRefPubMedPubMedCentralGoogle Scholar
  51. Hooper PL, Durham HD, Török Z, Hooper PL, Crul T, Vígh L (2016) The central role of heat shock factor 1 in synaptic fidelity and memory consolidation. Cell Stress Chaperones 21:745–753CrossRefPubMedPubMedCentralGoogle Scholar
  52. Hoter A, El-Sabban M, Naim H (2018) The HSP90 family: structure, regulation, function, and implications in health and disease. Int J Mol Sci 19:2560CrossRefGoogle Scholar
  53. Inda C, Bolaender A, Wang T, Gandu SR, Koren J (2016) Stressing out Hsp90 in neurotoxic proteinopathies. Curr Top Med Chem 16:2829–2838CrossRefPubMedPubMedCentralGoogle Scholar
  54. Jarosz DF, Lindquist S (2010) Hsp90 and environmental stress transform the adaptive value of natural genetic variation. Science 330:1820–1824CrossRefPubMedPubMedCentralGoogle Scholar
  55. Jhaveri K, Taldone T, Modi S, Chiosis G (2012) Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochim Biophys Acta 1823:742–755CrossRefPubMedPubMedCentralGoogle Scholar
  56. Jhaveri K, Ochiana SO, Dunphy MP et al (2014) Heat shock protein 90 inhibitors in the treatment of cancer: current status and future directions. Expert Opin Investig Drugs 23:611–628CrossRefPubMedPubMedCentralGoogle Scholar
  57. Johnson JL (2012) Evolution and function of diverse Hsp90 homologs and cochaperone proteins. Biochim Biophys Acta, Mol Cell Res 1823:607–613CrossRefPubMedPubMedCentralGoogle Scholar
  58. Joshi S, Wang T, Araujo TLS, Sharma S, Brodsky JL, Chiosis G (2018) Adapting to stress – chaperome networks in cancer. Nat Rev Cancer 18:562–575CrossRefPubMedPubMedCentralGoogle Scholar
  59. Kampinga HH, Hageman J, Vos MJ et al (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111CrossRefPubMedPubMedCentralGoogle Scholar
  60. Kanwar A, Eduful BJ, Barbeto L et al (2017) Synthesis and activity of a new series of antileishmanial agents. ACS Med Chem Lett 8:797–801CrossRefPubMedPubMedCentralGoogle Scholar
  61. Khandelwal A, Hall JA, Blagg BS (2013) Synthesis and structure-activity relationships of EGCG analogues, a recently identified Hsp90 inhibitor. J Org Chem 78:7859–7884CrossRefPubMedPubMedCentralGoogle Scholar
  62. Khandelwal A, Crowley VM, Blagg BSJ (2016) Natural product inspired N-terminal Hsp90 inhibitors: from bench to bedside? Med Res Rev 36:92–118CrossRefPubMedPubMedCentralGoogle Scholar
  63. Khandelwal A, Kent CN, Balch M et al (2018) Structure-guided design of an Hsp90β N-terminal isoform-selective inhibitor. Nat Commun 9:425CrossRefPubMedPubMedCentralGoogle Scholar
  64. Kim Chiaw P, Eckford PD, Bear CE (2011) Insights into the mechanisms underlying CFTR channel activity, the molecular basis for cystic fibrosis and strategies for therapy. Essays Biochem 50:233–248CrossRefPubMedPubMedCentralGoogle Scholar
  65. Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU (2013) Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82:323–355CrossRefGoogle Scholar
  66. Koren J 3rd, Jinwal UK, Lee DC et al (2009) Chaperone signalling complexes in Alzheimer’s disease. J Cell Mol Med 13:619–630CrossRefPubMedPubMedCentralGoogle Scholar
  67. Kravats AN, Hoskins JR, Reidy M et al (2018) Functional and physical interaction between yeast Hsp90 and Hsp70. Proc Natl Acad Sci U S A 115:E2210–E2219CrossRefPubMedPubMedCentralGoogle Scholar
  68. Krüger K, Reichel T, Zeilinger C (2019) Role of heat shock proteins 70/90 in exercise physiology, exercise immunology and their diagnostic potential in sports. J. Appl. Physiol. (1985) 126:916–927. in pressCrossRefGoogle Scholar
  69. Lackie RE, Maciejewski A, Ostapchenko VG et al (2017) The Hsp70/Hsp90 chaperone machinery in neurodegenerative diseases. Front Neurosci 11:1–23CrossRefGoogle Scholar
  70. Lee DJ, Eun YG, Rho YS et al (2018) Three distinct genomic subtypes of head and neck squamous cell carcinoma associated with clinical outcomes. Oral Oncol 85:44–51CrossRefPubMedPubMedCentralGoogle Scholar
  71. Lewis HA, Buchanan SG, Burley SK et al (2004) Structure of nucleotide- binding domain 1 of the cystic fibrosis transmembrane conductance regulator. EMBO J 23:282–293CrossRefPubMedPubMedCentralGoogle Scholar
  72. Li J, Buchner J (2012) Structure, function and regulation of the Hsp90 machinery. Biom J 36:106–117Google Scholar
  73. Li T, Jiang HL, Tong YG, Lu JJ (2018) Targeting the Hsp90-Cdc37-client protein interaction to disrupt Hsp90 chaperone machinery. J Hematol Oncol 11:59CrossRefPubMedPubMedCentralGoogle Scholar
  74. Loeb LA, Loeb KR, Anderson JP (2003) Multiple mutations and cancer. Proc Natl Acad Sci U S A 100:776–781CrossRefPubMedPubMedCentralGoogle Scholar
  75. Lukacs GL, Verkman AS (2012) CFTR: folding, misfolding and correcting the ΔF508 conformational defect. Trends Mol Med 18:81–91CrossRefPubMedPubMedCentralGoogle Scholar
  76. Luzzatto L, Hyry HI, Schieppati A et al (2018) Second workshop on orphan drugs participants. Outrageous prices of orphan drugs: a call for collaboration. Lancet 392:791–794CrossRefPubMedPubMedCentralGoogle Scholar
  77. Maeda Y, Fukushima K, Kariya S, Orita Y, Nishizaki K (2012) Intratympanic dexamethasone up-regulates Fkbp5 in the cochleae of mice in vivo. Acta Otolaryngol 132:4–9CrossRefPubMedPubMedCentralGoogle Scholar
  78. Marioni G, Marchese-Ragona R, Cartei G, Marchese F, Staffieri A (2006) Current opinion in diagnosis and treatment of laryngeal carcinoma. Cancer Treat Rev 32:504–515CrossRefPubMedPubMedCentralGoogle Scholar
  79. Marur S, Forastiere AA (2008) Head and neck cancer: changing epidemiology, diagnosis, and treatment. Mayo Clin Proc 83:489–501CrossRefPubMedPubMedCentralGoogle Scholar
  80. Mayer MP, Le Breton L (2015) Hsp90: breaking the symmetry. Mol Cell 58:8–20CrossRefPubMedPubMedCentralGoogle Scholar
  81. McFarland NR, Dimant H, Kibuuka L et al (2014) Chronic treatment with novel small molecule Hsp90 inhibitors rescues striatal dopa-mine levels but not alpha-synuclein-induced neuronal cell loss. PLoS One 9:e86048CrossRefPubMedPubMedCentralGoogle Scholar
  82. Mechler K, Mountford WK, Hoffmann GF, Ries M (2015) Pressure for drug development in lysosomal storage disorders – a quantitative analysis thirty years beyond the US orphan drug act. Orphanet J Rare Dis 10:46CrossRefPubMedPubMedCentralGoogle Scholar
  83. Millson SH, Chun C-S, Roe SM et al (2011) Features of the Streptomyces hygroscopicus HtpG reveal how partial geldanamycin resistance can arise by mutation to the ATP binding pocket of a eukaryotic Hsp90. FASEB J 25:3828–3837CrossRefPubMedPubMedCentralGoogle Scholar
  84. Mitchell DA, Kanatas A, Murphy C, Chengot P, Smith AB, Ong TK (2018) Margins and survival in oral cancer. Br J Oral Maxillofac Surg 56:820–829CrossRefPubMedPubMedCentralGoogle Scholar
  85. Mohammadi-Ostad-Kalayeh S, Hrupins V, Helmsen S et al (2017) Development of a microarray-based assay for efficient testing of new HSP70/DnaK inhibitors. Bioorg Med Chem 25:6345–6352CrossRefPubMedPubMedCentralGoogle Scholar
  86. Mohammadi-Ostad-Kalayeh S, Stahl F, Scheper T et al (2018) Heat shock proteins revisited: using a mutasynthetically generated Reblastatin library to compare the inhibition of human and Leishmania Hsp90s. Chembiochem 19:562–574CrossRefPubMedPubMedCentralGoogle Scholar
  87. Morris M, Maeda S, Vossel K, Mucke L (2011) The many faces of tau. Neuron 70:410–426CrossRefPubMedPubMedCentralGoogle Scholar
  88. Moulin E, Zoete V, Barluenga S, Karplus M, Winssinger N (2005) Design, synthesis, and biological evaluation of HSP90 inhibitors based on conformational analysis of radicicol and its analogues. J Am Chem Soc 127:6999–7004CrossRefPubMedPubMedCentralGoogle Scholar
  89. Nakazono A, Adachi N, Takahashi H et al (2018) Pharmacological induction of heat shock proteins ameliorates toxicity of mutant PKCγ in spinocerebellar ataxia type 14. J Biol Chem 293:14758–14774CrossRefPubMedPubMedCentralGoogle Scholar
  90. Nourbakhsh F, Atabaki R, Roohbakhsh A (2018) The role of orphan G protein-coupled receptors in the modulation of pain: a review. Life Sci 212:59–69CrossRefPubMedPubMedCentralGoogle Scholar
  91. Omura S, Iwai Y, Takahashi Y et al (1979) Herbimycin, a new antibiotic produced by a strain of Streptomyces. J Antibiot (Tokyo) 32:255–261CrossRefGoogle Scholar
  92. O’Sullivan BP, Orenstein DM, Milla CE (2013) Pricing for orphan drugs: will the market bear what society cannot? JAMA 310:1343–1344CrossRefPubMedPubMedCentralGoogle Scholar
  93. Patel R, Williams-Dautovich J, Cummins CL (2014) Minireview: new molecular mediators of glucocorticoid receptor activity in metabolic tissues. Mol Endocrinol 28:999–1011CrossRefPubMedPubMedCentralGoogle Scholar
  94. Piper PW, Millson SH (2012) Spotlight on the microbes that produce heat shock protein 90-targeting antibiotics. Open Biol 2:120138CrossRefPubMedPubMedCentralGoogle Scholar
  95. Polanska H, Raudenska M, Gumulec J et al (2014) Clinical significance of head and neck squamous cell cancer biomarkers. Oral Oncol 50:168–177CrossRefPubMedPubMedCentralGoogle Scholar
  96. Posfai D, Eubanks AL, Keim AI et al (2018) Identification of Hsp90 inhibitors with anti-plasmodium activity. Antimicrob Agents Chemother 62:e01799–e01717CrossRefPubMedPubMedCentralGoogle Scholar
  97. Powers AD, Palecek SP (2012) Protein analytical assays for diagnosing, monitoring, and choosing treatment for cancer patients. J Healthc Eng 3:503–534CrossRefPubMedPubMedCentralGoogle Scholar
  98. Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361CrossRefGoogle Scholar
  99. Rana P, Chawla S (2018) Orphan drugs: trends and issues in drug development. J Basic Clin Physiol Pharmacol 29:437–446CrossRefPubMedPubMedCentralGoogle Scholar
  100. Reis SD, Pinho BR, Oliveira JMA (2017) Modulation of molecular chaperones in Huntington’s disease and other polyglutamine disorders. Mol Neurobiol 54:5829–5854CrossRefPubMedPubMedCentralGoogle Scholar
  101. Riebold M, Kozany C, Freiburger L et al (2015) A C-terminal HSP90 inhibitor restores glucocorticoid sensitivity and relieves a mouse allograft model of Cushing disease. Nat Med 21:276–280CrossRefPubMedPubMedCentralGoogle Scholar
  102. Riordan JR, Rommens JM, Kerem B et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073CrossRefPubMedPubMedCentralGoogle Scholar
  103. Ritossa F (1962a) A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia 18:571–573CrossRefGoogle Scholar
  104. Ritossa F (1962b) A new puffing pattern induced by temperature shock and DNP in drosophila. Cell Mol Life Sci 18:571–573CrossRefGoogle Scholar
  105. Roe MS, Wahab B, Török Z, Horváth I, Vigh L, Prodromou C (2018) Dihydropyridines allosterically modulate Hsp90 providing a novel mechanism for heat shock protein co-induction and neuroprotection. Front Mol Biosci 5:1–14CrossRefGoogle Scholar
  106. Röhl A, Wengler D, Madl T et al (2015) Hsp90 regulates the dynamics of its cochaperone Sti1 and the transfer of Hsp70 between modules. Nat Commun 6:6655CrossRefPubMedPubMedCentralGoogle Scholar
  107. Rose WC, Wild R (2004) Therapeutic synergy of oral taxane BMS-275183 and cetuximab versus human tumor xenografts. Clin Cancer Res 10:7413–7417CrossRefPubMedPubMedCentralGoogle Scholar
  108. Sager RA, Woodford MR, Neckers L, Mollapour M (2018) Detecting posttranslational modifications of Hsp90. Methods Mol Biol 1709:209–219CrossRefPubMedPubMedCentralGoogle Scholar
  109. Saibil H (2013) Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol 14:630–642CrossRefPubMedPubMedCentralGoogle Scholar
  110. Sasaki K, Yasuda H, Onodera K (1979) Growth inhibition of virus transformed cells in vitro and antitumor activity in vivo of geldanamycin and its derivatives. J Antibiot (Tokyo) 32:849–851CrossRefGoogle Scholar
  111. Schax E, Walter JG, Märzhäuser H et al (2014) Microarray-based screening of heat shock protein inhibitors. J Biotechnol 180:1–9CrossRefPubMedPubMedCentralGoogle Scholar
  112. Schmitt H, Roemer A, Zeilinger C et al (2018) Heat shock proteins in human perilymph: implications for cochlear implantation. Otol Neurotol 39:37–44CrossRefPubMedPubMedCentralGoogle Scholar
  113. Schuster M, Schnell L, Feigl P et al (2017) The Hsp90 machinery facilitates the transport of diphtheria toxin into human cells. Sci Rep 7:613CrossRefPubMedPubMedCentralGoogle Scholar
  114. Shah JP, Karnell LH, Hoffman HT et al (1997) Patterns of care for cancer of the larynx in the United States. Arch Otolaryngol Head Neck Surg 123:475–483CrossRefPubMedPubMedCentralGoogle Scholar
  115. Sheehan-Rooney K, Swartz ME, Zhao F, Liu D, Eberhart JK (2013) Ahsa1 and Hsp90 activity confers more severe craniofacial phenotypes in a zebrafish model of hypoparathyroidism, sensorineural deafness and renal dysplasia (HDR). Dis Model Mech 6:1285–1291CrossRefPubMedPubMedCentralGoogle Scholar
  116. Shi J, Van de Water R, Hong et al (2012) EC144 is a potent inhibitor of the heat shock protein 90. J Med Chem 55:7786–7795CrossRefPubMedPubMedCentralGoogle Scholar
  117. Shin JM, Kamarajan P, Fenno JC, Rickard AH, Kapila YL (2016) Metabolomics of head and neck cancer: a mini-review. Front Physiol 7:526CrossRefPubMedPubMedCentralGoogle Scholar
  118. Shirakami Y, Shimizu M, Moriwaki H (2012) Cancer chemoprevention with green tea catechins: from bench to bed. Curr Drug Targets 13:1842–1857CrossRefPubMedPubMedCentralGoogle Scholar
  119. Shrestha L, Patel HJ, Chiosis G (2016) Chemical tools to investigate mechanisms associated with HSP90 and HSP70 in disease. Cell chemical biology 23:158–172CrossRefPubMedPubMedCentralGoogle Scholar
  120. Smith PC, Karpowich N, Millen L et al (2002) ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol Cell 10:139–149CrossRefPubMedPubMedCentralGoogle Scholar
  121. Sõti C, Nagy E, Giricz Z, Vígh L, Csermely P, Ferdinandy P (2005) Heat shock proteins as emerging therapeutic targets. Br J Pharmacol 146:769–780CrossRefPubMedPubMedCentralGoogle Scholar
  122. Spiegelberg D, Kuku G, Selvaraju R, Nestor M (2014) Characterization of CD44 variant expression in head and neck squamous cell carcinomas. Tumour Biol 35:2053–2062CrossRefPubMedPubMedCentralGoogle Scholar
  123. Srivastava BI, DiCioccio RA, Rinehart KL Jr, Li LH (1978) Preferential inhibition of terminal deoxynucleotidyltransferase activity among deoxyribonucleic acid polymerase activities of leukemic and normal cells by geldanamycin, streptoval C, streptovarone, and dapmavarone. Mol Pharmacol 14:442–447PubMedPubMedCentralGoogle Scholar
  124. Starr TN, Flynn JM, Mishra P, Bolon DNA, Thornton JW (2018) Pervasive contingency and entrenchment in a billion years of Hsp90 evolution. Proc Natl Acad Sci U S A 115:4453–4458CrossRefPubMedPubMedCentralGoogle Scholar
  125. Supek F, Lehner B (2017) Clustered mutation signatures reveal that error-prone DNA repair targets mutations to active genes. Cell 170:534–547.e23CrossRefPubMedPubMedCentralGoogle Scholar
  126. Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis. Emerging mechanistic insights. Nature reviews Mol Cell Biol 11:515–528CrossRefGoogle Scholar
  127. Tamaki A, Miles BA, Lango M, Kowalski L, Zender CA (2018) AHNS series: do you know your guidelines? Review of current knowledge on laryngeal cancer. Head Neck 40:170–181CrossRefPubMedPubMedCentralGoogle Scholar
  128. Tanida S, Hasegawa T, Higashide E (1980) Macbecins I and II, new antitumor antibiotics. I. Producing organism, fermentation and antimicrobial activities. J Antibiot (Tokyo) 33:199–204CrossRefGoogle Scholar
  129. Thirstrup K, Sotty F, Montezinho LC et al (2016) Linking HSP90 target occupancy to HSP70 induction and efficacy in mouse brain. Pharmacol Res 104:197–205CrossRefPubMedPubMedCentralGoogle Scholar
  130. Thomas Robbins K, Triantafyllou A, Suárez C et al (2019) Surgical margins in head and neck cancer: intra- and postoperative considerations. Auris Nasus Larynx 46:10–17CrossRefPubMedPubMedCentralGoogle Scholar
  131. Tillet Y, Maillols-Perroy AC (2015) Orphan drugs: underrated opportunities for the developers in Europe. Therapie 70:351–357CrossRefPubMedPubMedCentralGoogle Scholar
  132. Trepel J, Mollapour M, Giaccone G, Neckers L (2010) Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10:537–549CrossRefPubMedPubMedCentralGoogle Scholar
  133. Trune DR, Canlon B (2012) Corticosteroid therapy for hearing and balance disorders. Anat Rec Adv Integr Anat Evol Biol 295:1928–1943CrossRefGoogle Scholar
  134. Van Goor F, Hadida S, Grootenhuis PD et al (2009) Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci U S A 106:18825–18830CrossRefPubMedPubMedCentralGoogle Scholar
  135. Van Goor F, Hadida S, Grootenhuis PD et al (2011) Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci U S A 108:18843–18848CrossRefPubMedPubMedCentralGoogle Scholar
  136. Vaughan CK, Gohlke U, Sobott F et al (2006) Structure of an Hsp90-Cdc37-Cdk4 complex. Mol Cell 23:697–707CrossRefPubMedPubMedCentralGoogle Scholar
  137. Verba KA, Wang RY, Arakawa A et al (2016) Atomic structure of Hsp90-Cdc37-Cdk4 reveals that Hsp90 traps and stabilizes an unfolded kinase. Science 352:1542–1547CrossRefPubMedPubMedCentralGoogle Scholar
  138. Verkhivker GM (2018) Dynamics-based community analysis and perturbation response scanning of allosteric interaction networks in the TRAP1 chaperone structures dissect molecular linkage between conformational asymmetry and sequential ATP hydrolysis. Biochim Biophys Acta Proteins Proteom 1866:899–912CrossRefPubMedPubMedCentralGoogle Scholar
  139. Vetrivel KS, Kodam A, Gong P et al (2008) Localization and regional distribution of p23/TMP21 in the brain. Neurobiol Dis 32:37–49CrossRefPubMedPubMedCentralGoogle Scholar
  140. Wandinger SK, Richter K, Buchner J (2008) The Hsp90 chaperone machinery. J Biol Chem 283:18473–18477CrossRefGoogle Scholar
  141. Wang X, Venable J, LaPointe P et al (2006) Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell 127:803–815CrossRefPubMedPubMedCentralGoogle Scholar
  142. Wang B, Liu Y, Huang L et al (2017) A CNS-permeable Hsp90 inhibitor rescues synaptic dysfunction and memory loss in APP-overexpressing Alzheimer’s mouse model via an HSF1-mediated mechanism. Mol Psychiatry 22:990–1001CrossRefPubMedPubMedCentralGoogle Scholar
  143. Winssinger N, Barluenga S (2007) Chemistry and biology of resorcylic acid lactones. Chem Commun 7:22–36CrossRefGoogle Scholar
  144. Woo JA, Liu T, Zhao X et al (2017) Enhanced tau pathology via RanBP9 and Hsp90/Hsc70 chaperone complexes. Hum Mol Genet 26:3973–3988CrossRefPubMedPubMedCentralGoogle Scholar
  145. Woodford MR, Dunn DM, Ciciarelli JG, Beebe K, Neckers L, Mollapour M (2016) Targeting Hsp90 in non-cancerous maladies. Curr Top Med Chem 16:2792–2804CrossRefPubMedPubMedCentralGoogle Scholar
  146. Wu AH (2013) Biological and analytical variation of clinical biomarker testing: implications for biomarker-guided therapy. Curr Heart Fail Rep 10:434–440CrossRefPubMedPubMedCentralGoogle Scholar
  147. Yáñez-Mó M, Siljander PR-M, Andreu Z et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066CrossRefPubMedPubMedCentralGoogle Scholar
  148. Yim KH, Prince TL, Qu S et al (2016) Gambogic acid identifies an isoform-specific druggable pocket in the middle domain of Hsp90β. Proc Natl Acad Sci U S A 113:E4801–E4809CrossRefPubMedPubMedCentralGoogle Scholar
  149. Yin Z, Henry EC, Gasiewicz TA (2009) (−)-Epigallocatechin-3-gallate is a novel Hsp90 inhibitor. Biochemistry 48:336–345CrossRefPubMedPubMedCentralGoogle Scholar
  150. Yue Q, Stahl F, Plettenburg O, Kirschning A, Warnecke A, Zeilinger C (2018) The noncompetitive effect of Gambogic acid displaces fluorescence-labeled ATP but requires ATP for binding to Hsp90/HtpG. Biochemistry 57:2601–2605CrossRefPubMedPubMedCentralGoogle Scholar
  151. Zhang SY, Lu ZM, Luo XN et al (2013) Retrospective analysis of prognostic factors in 205 patients with laryngeal squamous cell carcinoma who underwent surgical treatment. PLoS One 8:e60157CrossRefPubMedPubMedCentralGoogle Scholar
  152. Zhang FZ, Ho DH, Wong RH (2018) Triptolide, a HSP90 middle domain inhibitor, induces apoptosis in triple manner. Oncotarget 9:22301–22315PubMedPubMedCentralGoogle Scholar
  153. Zhao R, Davey M, Hsu Y-C et al (2005) Navigating the chaperone network. An integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120:715–727CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Athanasia Warnecke
    • 1
  • Andreas Kirschning
    • 2
  • Daniel Landsberg
    • 3
  • Carsten Zeilinger
    • 3
    Email author
  1. 1.Clinic for Otorhinolaryngology – Head and Neck SurgeryHannover Medical School (MHH)HannoverGermany
  2. 2.Leibniz University Hannover, Institute of Organic Chemistry and Biomolecular Drug Research Center (BMWZ)HannoverGermany
  3. 3.Leibniz University Hannover, Center of Biomolecular Drug Research Center (BMWZ)HannoverGermany

Personalised recommendations