Advertisement

Functions of SGT1, a Co-chaperone

  • Yohei NiikuraEmail author
  • Katsumi KitagawaEmail author
Chapter
Part of the Heat Shock Proteins book series (HESP, volume 19)

Abstract

SGT1/SUGT1, a co-chaperone of HSP90, is involved in multiple cellular activities including cullin E3 ubiquitin ligase activity. In various species, SGT1 homologs have been identified, indicating that SGT1 genes and proteins are highly conserved. SGT1 functions in multiple distinct biological processes, such as plant and mammal innate immune systems, yeast CBF3 kinetochore assembly, human CENP-A deposition and kinetochore assembly, SCF function and cyclic AMP signaling, centrosome organization and cytokinesis, and brain and heart diseases. Domain-specific functions, interactors, and roles in subcellular localization of SGT1 are described in this chapter. Importantly, SGT1 contributes to cancer development by stabilizing oncoproteins, and the SGT1-HSP90 complex is a potential target for therapies aimed at cancer, brain and heart disease. Recent advances in our understanding of the physiologic role of SGT1 are briefly reviewed in this chapter.

Keywords

Brain and heart diseases Cancer E3 ubiquitin ligase Kinetochore Post-translational modification (PTM) SGT1/SUGT1 

Abbreviations

17-AAG

17-allylaminogeldanamycin

AC

Adenylyl cyclase

ALS

Amyotrophic lateral sclerosis

CBF3

Centromere binding factor 3

CDPK

Calcium-dependent protein kinase

CENP-A

Centromere protein-A

CENP-B

Centromere protein-B

CHORD

Cysteine- and histidine-rich domain

CompPASS

Comparative Proteomic Analysis Software Suite

CS

CHORD protein and SGT1-specific

CUL

Cullin

CWP

Cell wall protein

DCM

Dilated cardiomyopathy

eEF1

Eukaryotic elongation factor 1

GA

Geldanamycin

HR

Hypersensitive response

HSP

Heat shock protein

IL

Interleukin

IL-1

Interleukin 1

LRR

Leucine rich repeats

MSU

Monosodium urate

NF-κB

Nuclear factor kappa-light-chain-enhancer of activated B cells

NLR

Nucleotide binding leucine-rich repeat receptor

Nod

Nucleotide-binding oligomerization domain

PAMP

Pathogen-associated molecular pattern

PCD

Programmed cell death

PCP

Phencyclidine

PGN

Peptidoglycan

PLK

Polo-like kinase

PQC

Protein quality control

PTM

Post-translational modification

R proteins

Resistance proteins

RAR1

Required for Mla12 resistance

S. cerevisiae

Saccharomyces cerevisiae

SCF

SKP1, Cullin, F-box

SGS

SGT1-specific

SGT1/SUGT1

Suppressor of G2 allele of SKP1

TNF-α

Tumor necrosis factor alpha

TPR

Tetratricopeptide repeat

UBE3A

Ubiquitin-protein ligase E3A

UPS

Ubiquitin-dependent 26S proteasome system

Notes

Acknowledgements

We thank past and current researchers at Greehey Children’s Cancer Research Institute at UT Health Science Center San Antonio School of Medicine, The Research Institute at Nationwide Children’s Hospital, and St. Jude Children’s Research Hospital for their helpful discussions. This work was supported by NCI R21CA205659 and institutional support from Greehey Children’s Cancer Research Institute and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University.

References

  1. Ali MM, Roe SM, Vaughan CK, Meyer P, Panaretou B, Piper PW, Prodromou C, Pearl LH (2006) Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440(7087):1013–1017.  https://doi.org/10.1038/nature04716CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andersen RO, Turnbull DW, Johnson EA, Doe CQ (2012) Sgt1 acts via an LKB1/AMPK pathway to establish cortical polarity in larval neuroblasts. Dev Biol 363(1):258–265.  https://doi.org/10.1016/j.ydbio.2011.12.047CrossRefPubMedPubMedCentralGoogle Scholar
  3. Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6(4):435–442.  https://doi.org/10.1038/74697CrossRefGoogle Scholar
  4. Austin MJ, Muskett P, Kahn K, Feys BJ, Jones JD, Parker JE (2002) Regulatory role of SGT1 in early R gene-mediated plant defenses. Science 295(5562):2077–2080.  https://doi.org/10.1126/science.1067747CrossRefGoogle Scholar
  5. Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven A, Shirasu K, Schulze-Lefert P (2002) The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 295(5562):2073–2076.  https://doi.org/10.1126/science.1067554CrossRefGoogle Scholar
  6. Azevedo C, Betsuyaku S, Peart J, Takahashi A, Noel L, Sadanandom A, Casais C, Parker J, Shirasu K (2006) Role of SGT1 in resistance protein accumulation in plant immunity. EMBO J 25(9):2007–2016.  https://doi.org/10.1038/sj.emboj.7601084CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bansal PK, Abdulle R, Kitagawa K (2004) Sgt1 associates with Hsp90: an initial step of assembly of the core kinetochore complex. Mol Cell Biol 24(18):8069–8079.  https://doi.org/10.1128/MCB.24.18.8069-8079.2004CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bansal PK, Nourse A, Abdulle R, Kitagawa K (2008) SGT1 dimerization is required for yeast kinetochore assembly. J Biol Chem. doi:M806281200 [pii].  https://doi.org/10.1074/jbc.M806281200
  9. Bansal PK, Mishra A, High AA, Abdulle R, Kitagawa K (2009a) Sgt1 dimerization is negatively regulated by protein kinase CK2-mediated phosphorylation at Ser361. J Biol Chem 284(28):18692–18698.  https://doi.org/10.1074/jbc.M109.012732CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bansal PK, Nourse A, Abdulle R, Kitagawa K (2009b) Sgt1 dimerization is required for yeast kinetochore assembly. J Biol Chem 284(6):3586–3592.  https://doi.org/10.1074/jbc.M806281200CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bayle V, Nussaume L, Bhat RA (2008) Combination of novel green fluorescent protein mutant TSapphire and DsRed variant mOrange to set up a versatile in planta FRET-FLIM assay. Plant Physiol 148(1):51–60. Epub 2008/07/16.  https://doi.org/10.1104/pp.108.117358. PubMed PMID: 18621983; PMCID: PMC2528103CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bhaskar PB, Raasch JA, Kramer LC, Neumann P, Wielgus SM, Austin-Phillips S, Jiang J (2008) Sgt1, but not Rar1, is essential for the RB-mediated broad-spectrum resistance to potato late blight. BMC Plant Biol 8:8.  https://doi.org/10.1186/1471-2229-8-8CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bhattarai KK, Li Q, Liu Y, Dinesh-Kumar SP, Kaloshian I (2007) The MI-1-mediated pest resistance requires Hsp90 and Sgt1. Plant Physiol 144(1):312–323.  https://doi.org/10.1104/pp.107.097246CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bhavsar AP, Brown NF, Stoepel J, Wiermer M, Martin DD, Hsu KJ, Imami K, Ross CJ, Hayden MR, Foster LJ, Li X, Hieter P, Finlay BB (2013) The Salmonella type III effector SspH2 specifically exploits the NLR co-chaperone activity of SGT1 to subvert immunity. PLoS Pathog 9(7):e1003518.  https://doi.org/10.1371/journal.ppat.1003518CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bieri S, Mauch S, Shen QH, Peart J, Devoto A, Casais C, Ceron F, Schulze S, Steinbiss HH, Shirasu K (2004) Schulze-Lefert P. RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance. Plant cell 16(12):3480–3495. Epub 2004/11/19.  https://doi.org/10.1105/tpc.104.026682. PubMed PMID: 15548741; PMCID: PMC535887CrossRefPubMedPubMedCentralGoogle Scholar
  16. Biggins S, Walczak CE (2003) Captivating capture: how microtubules attach to kinetochores. Curr Biol 13(11):R449–R460CrossRefGoogle Scholar
  17. Blatch GL, Lassle M (1999) The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. BioEssays 21(11):932–939.  https://doi.org/10.1002/(SICI)1521-1878(199911)21:11<932::AID-BIES5>3.0.CO;2-NCrossRefGoogle Scholar
  18. Boter M, Amigues B, Peart J, Breuer C, Kadota Y, Casais C, Moore G, Kleanthous C, Ochsenbein F, Shirasu K, Guerois R (2007) Structural and functional analysis of SGT1 reveals that its interaction with HSP90 is required for the accumulation of Rx, an R protein involved in plant immunity. Plant Cell 19(11):3791–3804.  https://doi.org/10.1105/tpc.107.050427CrossRefPubMedPubMedCentralGoogle Scholar
  19. Brancaccio M, Guazzone S, Menini N, Sibona E, Hirsch E, De Andrea M, Rocchi M, Altruda F, Tarone G, Silengo L (1999) Melusin is a new muscle-specific interactor for beta(1) integrin cytoplasmic domain. J Biol Chem 274(41):29282–29288. Epub 1999/10/03.  https://doi.org/10.1074/jbc.274.41.29282CrossRefGoogle Scholar
  20. Brancaccio M, Fratta L, Notte A, Hirsch E, Poulet R, Guazzone S, De Acetis M, Vecchione C, Marino G, Altruda F, Silengo L, Tarone G, Lembo G (2003a) Melusin, a muscle-specific integrin beta1-interacting protein, is required to prevent cardiac failure in response to chronic pressure overload. Nat Med 9(1):68–75.  https://doi.org/10.1038/nm805CrossRefGoogle Scholar
  21. Brancaccio M, Menini N, Bongioanni D, Ferretti R, De Acetis M, Silengo L, Tarone G (2003b) Chp-1 and melusin, two CHORD containing proteins in vertebrates. FEBS Lett 551(1–3):47–52CrossRefGoogle Scholar
  22. Breen EC, Tang K (2003) Calcyclin (S100A6) regulates pulmonary fibroblast proliferation, morphology, and cytoskeletal organization in vitro. J Cell Biochem 88(4):848–854.  https://doi.org/10.1002/jcb.10398CrossRefGoogle Scholar
  23. Brown JL, Jaquenoud M, Gulli MP, Chant J, Peter M (1997) Novel Cdc42-binding proteins Gic1 and Gic2 control cell polarity in yeast. Genes Dev 11(22):2972–2982CrossRefPubMedPubMedCentralGoogle Scholar
  24. Cam HP, Noma K, Ebina H, Levin HL, Grewal SI (2008) Host genome surveillance for retrotransposons by transposon-derived proteins. Nature 451(7177):431–436. doi:nature06499 [pii].  https://doi.org/10.1038/nature06499CrossRefGoogle Scholar
  25. Catlett MG, Kaplan KB (2006) Sgt1p is a unique co-chaperone that acts as a client adaptor to link Hsp90 to Skp1p. J Biol Chem 281(44):33739–33748.  https://doi.org/10.1074/jbc.M603847200CrossRefGoogle Scholar
  26. Chae JJ, Komarow HD, Cheng J, Wood G, Raben N, Liu PP, Kastner DL (2003) Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis. Mol Cell 11(3):591–604CrossRefGoogle Scholar
  27. Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124(4):803–814.  https://doi.org/10.1016/j.cell.2006.02.008CrossRefPubMedPubMedCentralGoogle Scholar
  28. Connelly C, Hieter P (1996) Budding yeast SKP1 encodes an evolutionarily conserved kinetochore protein required for cell cycle progression. Cell 86(2):275–285CrossRefGoogle Scholar
  29. Cuzick A, Maguire K, Hammond-Kosack KE (2009) Lack of the plant signalling component SGT1b enhances disease resistance to Fusarium culmorum in Arabidopsis buds and flowers. New Phytol 181(4):901–912.  https://doi.org/10.1111/j.1469-8137.2008.02712.xCrossRefGoogle Scholar
  30. da Silva CJ, Miranda Y, Leonard N, Ulevitch R (2007) SGT1 is essential for Nod1 activation. Proc Natl Acad Sci U S A 104(16):6764–6769.  https://doi.org/10.1073/pnas.0610926104CrossRefGoogle Scholar
  31. Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411(6839):826–833.  https://doi.org/10.1038/35081161CrossRefGoogle Scholar
  32. Das AK, Cohen PW, Barford D (1998) The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein-protein interactions. EMBO J 17(5):1192–1199.  https://doi.org/10.1093/emboj/17.5.1192CrossRefPubMedPubMedCentralGoogle Scholar
  33. Davies AE, Kaplan KB (2010) Hsp90-Sgt1 and Skp1 target human Mis12 complexes to ensure efficient formation of kinetochore-microtubule binding sites. J Cell Biol 189(2):261–274. Epub 2010/04/21.  https://doi.org/10.1083/jcb.200910036. PubMed PMID: 20404110; PMCID: PMC2856898CrossRefPubMedPubMedCentralGoogle Scholar
  34. Davies FC, Hope JE, McLachlan F, Nunez F, Doig J, Bengani H, Smith C, Abbott CM (2017) Biallelic mutations in the gene encoding eEF1A2 cause seizures and sudden death in F0 mice. Sci Rep 7:46019. Epub 2017/04/06.  https://doi.org/10.1038/srep46019. PubMed PMID: 28378778; PMCID: PMC5380952
  35. De Acetis M, Notte A, Accornero F, Selvetella G, Brancaccio M, Vecchione C, Sbroggio M, Collino F, Pacchioni B, Lanfranchi G, Aretini A, Ferretti R, Maffei A, Altruda F, Silengo L, Tarone G, Lembo G (2005) Cardiac overexpression of melusin protects from dilated cardiomyopathy due to long-standing pressure overload. Circ Res 96(10):1087–1094.  https://doi.org/10.1161/01.RES.0000168028.36081.e0CrossRefGoogle Scholar
  36. de Carcer G, do Carmo Avides M, Lallena MJ, Glover DM, Gonzalez C (2001) Requirement of Hsp90 for centrosomal function reflects its regulation of Polo kinase stability. EMBO J 20(11):2878–2884.  https://doi.org/10.1093/emboj/20.11.2878CrossRefPubMedPubMedCentralGoogle Scholar
  37. de la Fuente van Bentem S, Vossen JH, de Vries KJ, van Wees S, Tameling WI, Dekker HL, de Koster CG, Haring MA, Takken FL, Cornelissen BJ (2005) Heat shock protein 90 and its co-chaperone protein phosphatase 5 interact with distinct regions of the tomato I-2 disease resistance protein. Plant J 43(2):284–298.  https://doi.org/10.1111/j.1365-313X.2005.02450.xCrossRefGoogle Scholar
  38. Dias DC, Dolios G, Wang R, Pan ZQ (2002) CUL7: a DOC domain-containing cullin selectively binds Skp1.Fbx29 to form an SCF-like complex. Proc Natl Acad Sci U S A 99(26):16601–16606.  https://doi.org/10.1073/pnas.252646399CrossRefPubMedPubMedCentralGoogle Scholar
  39. Doheny KF, Sorger PK, Hyman AA, Tugendreich S, Spencer F, Hieter P (1993) Identification of essential components of the S. cerevisiae kinetochore. Cell 73(4):761–774CrossRefGoogle Scholar
  40. Dubacq C, Guerois R, Courbeyrette R, Kitagawa K, Mann C (2002) Sgt1p contributes to cyclic AMP pathway activity and physically interacts with the adenylyl cyclase Cyr1p/Cdc35p in budding yeast. Eukaryot Cell 1(4):568–582CrossRefPubMedPubMedCentralGoogle Scholar
  41. Dujon B (2010) Yeast evolutionary genomics. Nat Rev Genet 11(7):512–524.  https://doi.org/10.1038/nrg2811CrossRefGoogle Scholar
  42. Eitas TK, Nimchuk ZL, Dangl JL (2008) Arabidopsis TAO1 is a TIR-NB-LRR protein that contributes to disease resistance induced by the Pseudomonas syringae effector AvrB. Proc Natl Acad Sci U S A 105(17):6475–6480.  https://doi.org/10.1073/pnas.0802157105CrossRefPubMedPubMedCentralGoogle Scholar
  43. El Oirdi M, Bouarab K (2007) Plant signalling components EDS1 and SGT1 enhance disease caused by the necrotrophic pathogen Botrytis cinerea. New Phytol 175(1):131–139.  https://doi.org/10.1111/j.1469-8137.2007.02086.xCrossRefGoogle Scholar
  44. Fitzgerald-Hayes M, Clarke L, Carbon J (1982) Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs. Cell 29(1):235–244CrossRefGoogle Scholar
  45. Franchi L, Amer A, Body-Malapel M, Kanneganti TD, Ozoren N, Jagirdar R, Inohara N, Vandenabeele P, Bertin J, Coyle A, Grant EP, Nunez G (2006) Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat Immunol 7(6):576–582.  https://doi.org/10.1038/ni1346CrossRefGoogle Scholar
  46. Fu DQ, Ghabrial S, Kachroo A (2009) GmRAR1 and GmSGT1 are required for basal, R gene-mediated and systemic acquired resistance in soybean. Mol Plant-Microbe Interact 22(1):86–95.  https://doi.org/10.1094/MPMI-22-1-0086CrossRefGoogle Scholar
  47. Fukagawa T, Earnshaw WC (2014) The centromere: chromatin foundation for the kinetochore machinery. Dev Cell 30(5):496–508.  https://doi.org/10.1016/j.devcel.2014.08.016CrossRefPubMedPubMedCentralGoogle Scholar
  48. Gangula NR, Maddika S (2017) Interplay between the phosphatase PHLPP1 and E3 ligase RNF41 stimulates proper kinetochore assembly via the outer-kinetochore protein SGT1. J Biol Chem 292(34):13947–13958. Epub 2017/07/12.  https://doi.org/10.1074/jbc.M117.782896. PubMed PMID: 28696259; PMCID: PMC5572923CrossRefGoogle Scholar
  49. Gao G, Kun T, Sheng Y, Qian M, Kong F, Liu X, Yu Z, Zhang H, Zhang Q, Gu J, Zhang X (2013) SGT1 regulates Akt signaling by promoting beta-TrCP-dependent PHLPP1 degradation in gastric cancer cells. Mol Biol Rep 40(4):2947–2953.  https://doi.org/10.1007/s11033-012-2363-8CrossRefGoogle Scholar
  50. Garcia-Ranea JA, Mirey G, Camonis J, Valencia A (2002) p23 and HSP20/alpha-crystallin proteins define a conserved sequence domain present in other eukaryotic protein families. FEBS Lett 529(2–3):162–167. Epub 2002/10/10.  https://doi.org/10.1016/s0014-5793(02)03321-5CrossRefGoogle Scholar
  51. Gillis AN, Thomas S, Hansen SD, Kaplan KB (2005) A novel role for the CBF3 kinetochore-scaffold complex in regulating septin dynamics and cytokinesis. J Cell Biol 171(5):773–784.  https://doi.org/10.1083/jcb.200507017CrossRefPubMedPubMedCentralGoogle Scholar
  52. Goh PY, Kilmartin JV (1993) NDC10: a gene involved in chromosome segregation in Saccharomyces cerevisiae. J Cell Biol 121(3):503–512CrossRefGoogle Scholar
  53. Gray WM, Muskett PR, Chuang HW, Parker JE (2003) Arabidopsis SGT1b is required for SCF(TIR1)-mediated auxin response. Plant Cell 15(6):1310–1319CrossRefPubMedPubMedCentralGoogle Scholar
  54. Gupta S, Knowlton AA (2005) HSP60, Bax, apoptosis and the heart. J Cell Mol Med 9(1):51–58CrossRefPubMedPubMedCentralGoogle Scholar
  55. Hahn JS (2005) Regulation of Nod1 by Hsp90 chaperone complex. FEBS Lett 579(20):4513–4519.  https://doi.org/10.1016/j.febslet.2005.07.024CrossRefGoogle Scholar
  56. Halterman DA, Wise RP (2004) A single-amino acid substitution in the sixth leucine-rich repeat of barley MLA6 and MLA13 alleviates dependence on RAR1 for disease resistance signaling. Plant J 38(2):215–226.  https://doi.org/10.1111/j.1365-313X.2004.02032.xCrossRefGoogle Scholar
  57. Hann DR, Rathjen JP (2007) Early events in the pathogenicity of Pseudomonas syringae on Nicotiana benthamiana. Plant J 49(4):607–618.  https://doi.org/10.1111/j.1365-313X.2006.02981.xCrossRefGoogle Scholar
  58. Hawkins PN, Lachmann HJ, Aganna E, McDermott MF (2004) Spectrum of clinical features in Muckle-Wells syndrome and response to anakinra. Arthritis Rheum 50(2):607–612.  https://doi.org/10.1002/art.20033CrossRefGoogle Scholar
  59. He P, Shan L, Lin NC, Martin GB, Kemmerling B, Nurnberger T, Sheen J (2006) Specific bacterial suppressors of MAMP signaling upstream of MAPKKK in Arabidopsis innate immunity. Cell 125(3):563–575.  https://doi.org/10.1016/j.cell.2006.02.047CrossRefGoogle Scholar
  60. He WT, Zheng XM, Zhang YH, Gao YG, Song AX, van der Goot FG, Hu HY (2016) Cytoplasmic ubiquitin-specific protease 19 (USP19) modulates aggregation of polyglutamine-expanded Ataxin-3 and huntingtin through the HSP90 chaperone. PLoS One 11(1):e0147515.  https://doi.org/10.1371/journal.pone.0147515CrossRefPubMedPubMedCentralGoogle Scholar
  61. Hegemann JH, Shero JH, Cottarel G, Philippsen P, Hieter P (1988) Mutational analysis of centromere DNA from chromosome VI of Saccharomyces cerevisiae. Mol Cell Biol 8(6):2523–2535CrossRefPubMedPubMedCentralGoogle Scholar
  62. Hieter P, Pridmore D, Hegemann JH, Thomas M, Davis RW, Philippsen P (1985) Functional selection and analysis of yeast centromeric DNA. Cell 42(3):913–921CrossRefGoogle Scholar
  63. Hoffman CS, Winston F (1989) A transcriptionally regulated expression vector for the fission yeast Schizosaccharomyces pombe. Gene 84(2):473–479CrossRefGoogle Scholar
  64. Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD (2001) Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet 29(3):301–305.  https://doi.org/10.1038/ng756CrossRefPubMedPubMedCentralGoogle Scholar
  65. Holt BF 3rd, Belkhadir Y, Dangl JL (2005) Antagonistic control of disease resistance protein stability in the plant immune system. Science 309(5736):929–932.  https://doi.org/10.1126/science.1109977CrossRefGoogle Scholar
  66. Hong TJ, Hahn JS (2016) Application of SGT1-Hsp90 chaperone complex for soluble expression of NOD1 LRR domain in E. coli. Biochem Biophys Res Commun 478(4):1647–1652.  https://doi.org/10.1016/j.bbrc.2016.08.174CrossRefGoogle Scholar
  67. Hong TJ, Kim S, Wi AR, Lee P, Kang M, Jeong JH, Hahn JS (2013) Dynamic nucleotide-dependent interactions of cysteine- and histidine-rich domain (CHORD)-containing Hsp90 cochaperones Chp-1 and melusin with cochaperones PP5 and Sgt1. J Biol Chem 288(1):215–222.  https://doi.org/10.1074/jbc.M112.398636CrossRefGoogle Scholar
  68. Hoser R, Zurczak M, Lichocka M, Zuzga S, Dadlez M, Samuel MA, Ellis BE, Stuttmann J, Parker JE, Hennig J, Krzymowska M (2013) Nucleocytoplasmic partitioning of tobacco N receptor is modulated by SGT1. New Phytol 200(1):158–171.  https://doi.org/10.1111/nph.12347CrossRefGoogle Scholar
  69. Hoser R, Lichocka M, Zurczak M, Hennig J, Krzymowska M (2014) Emerging role of SGT1 as a regulator of NB-LRR-receptor nucleocytoplasmic partitioning. Plant Signal Behav 9(4)CrossRefGoogle Scholar
  70. Hubert DA, Tornero P, Belkhadir Y, Krishna P, Takahashi A, Shirasu K, Dangl JL (2003) Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. EMBO J 22(21):5679–5689.  https://doi.org/10.1093/emboj/cdg547CrossRefPubMedPubMedCentralGoogle Scholar
  71. Inohara, Chamaillard, McDonald C, Nunez G (2005) NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu Rev Biochem 74:355–383.  https://doi.org/10.1146/annurev.biochem.74.082803.133347CrossRefGoogle Scholar
  72. Ishiga Y, Uppalapati SR, Ishiga T, Mysore KS (2011) Involvement of SGT1 in COR-mediated signal transduction pathway leading to disease symptom development. Plant Signal Behav 6(7):1072–1073CrossRefPubMedPubMedCentralGoogle Scholar
  73. Ito M, Ohnishi K, Hikichi Y, Kiba A (2015) Molecular chaperons and co-chaperons, Hsp90, RAR1, and SGT1 negatively regulate bacterial wilt disease caused by Ralstonia solanacearum in Nicotiana benthamiana. Plant Signal Behav 10(6):e970410.  https://doi.org/10.4161/15592316.2014.970410CrossRefGoogle Scholar
  74. Iwatsuki M, Mimori K, Sato T, Toh H, Yokobori T, Tanaka F, Ishikawa K, Baba H, Mori M (2010) Overexpression of SUGT1 in human colorectal cancer and its clinicopathological significance. Int J Oncol 36(3):569–575Google Scholar
  75. Jansen LE, Black BE, Foltz DR, Cleveland DW (2007) Propagation of centromeric chromatin requires exit from mitosis. J Cell Biol 176(6):795–805.  https://doi.org/10.1083/jcb.200701066CrossRefPubMedPubMedCentralGoogle Scholar
  76. Jaquenoud M, Gulli MP, Peter K, Peter M (1998) The Cdc42p effector Gic2p is targeted for ubiquitin-dependent degradation by the SCFGrr1 complex. EMBO J 17(18):5360–5373.  https://doi.org/10.1093/emboj/17.18.5360CrossRefPubMedPubMedCentralGoogle Scholar
  77. Jiang W, Lechner J, Carbon J (1993) Isolation and characterization of a gene (CBF2) specifying a protein component of the budding yeast kinetochore. J Cell Biol 121(3):513–519CrossRefGoogle Scholar
  78. Johnson JL, Zuehlke AD, Tenge VR, Langworthy JC (2014) Mutation of essential Hsp90 co-chaperones SGT1 or CNS1 renders yeast hypersensitive to overexpression of other co-chaperones. Curr Genet 60(4):265–276.  https://doi.org/10.1007/s00294-014-0432-3CrossRefGoogle Scholar
  79. Kadota Y, Amigues B, Ducassou L, Madaoui H, Ochsenbein F, Guerois R, Shirasu K (2008) Structural and functional analysis of SGT1-HSP90 core complex required for innate immunity in plants. EMBO Rep 9(12):1209–1215.  https://doi.org/10.1038/embor.2008.185CrossRefPubMedPubMedCentralGoogle Scholar
  80. Kadota Y, Shirasu K, Guerois R (2010) NLR sensors meet at the SGT1-HSP90 crossroad. Trends Biochem Sci 35(4):199–207.  https://doi.org/10.1016/j.tibs.2009.12.005CrossRefGoogle Scholar
  81. Kainou T, Shinzato T, Sasaki K, Mitsui Y, Giga-Hama Y, Kumagai H, Uemura H (2006) Spsgt1, a new essential gene of Schizosaccharomyces pombe, is involved in carbohydrate metabolism. Yeast 23(1):35–53.  https://doi.org/10.1002/yea.1336CrossRefGoogle Scholar
  82. Kanneganti TD, Ozoren N, Body-Malapel M, Amer A, Park JH, Franchi L, Whitfield J, Barchet W, Colonna M, Vandenabeele P, Bertin J, Coyle A, Grant EP, Akira S, Nunez G (2006) Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440(7081):233–236.  https://doi.org/10.1038/nature04517CrossRefGoogle Scholar
  83. Kaplan KB, Hyman AA, Sorger PK (1997) Regulating the yeast kinetochore by ubiquitin-dependent degradation and Skp1p-mediated phosphorylation. Cell 91(4):491–500CrossRefGoogle Scholar
  84. Kapustian LL, Vigontina OA, Rozhko OT, Ryabenko DV, Michowski W, Lesniak W, Filipek A, Kroupskaya IV, Sidorik LL (2013) Hsp90 and its co-chaperone, Sgt1, as autoantigens in dilated cardiomyopathy. Heart Vessel 28(1):114–119.  https://doi.org/10.1007/s00380-011-0226-1CrossRefGoogle Scholar
  85. Kawamura Y, Takenaka S, Hase S, Kubota M, Ichinose Y, Kanayama Y, Nakaho K, Klessig DF, Takahashi H (2009) Enhanced defense responses in Arabidopsis induced by the cell wall protein fractions from Pythium oligandrum require SGT1, RAR1, NPR1 and JAR1. Plant Cell Physiol 50(5):924–934.  https://doi.org/10.1093/pcp/pcp044CrossRefGoogle Scholar
  86. Khalyfa A, Bourbeau D, Chen E, Petroulakis E, Pan J, Xu S, Wang E (2001) Characterization of elongation factor-1A (eEF1A-1) and eEF1A-2/S1 protein expression in normal and wasted mice. J Biol Chem 276(25):22915–22922. Epub 2001/04/11.  https://doi.org/10.1074/jbc.M101011200CrossRefGoogle Scholar
  87. Kim NH, Kim DS, Chung EH, Hwang BK (2014) Pepper suppressor of the G2 allele of skp1 interacts with the receptor-like cytoplasmic kinase1 and type III effector AvrBsT and promotes the hypersensitive cell death response in a phosphorylation-dependent manner. Plant Physiol 165(1):76–91.  https://doi.org/10.1104/pp.114.238840CrossRefPubMedPubMedCentralGoogle Scholar
  88. Kitagawa K, Hieter P (2001) Evolutionary conservation between budding yeast and human kinetochores. Nat Rev Mol Cell Biol 2(9):678–687.  https://doi.org/10.1038/35089568CrossRefGoogle Scholar
  89. Kitagawa K, Skowyra D, Elledge SJ, Harper JW, Hieter P (1999) SGT1 encodes an essential component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex. Mol Cell 4(1):21–33. doi:S1097-2765(00)80184-7 [pii]CrossRefGoogle Scholar
  90. Kleiger G, Mayor T (2014) Perilous journey: a tour of the ubiquitin-proteasome system. Trends Cell Biol 24(6):352–359.  https://doi.org/10.1016/j.tcb.2013.12.003CrossRefPubMedPubMedCentralGoogle Scholar
  91. Kobayashi N, Suzuki Y, Schoenfeld LW, Muller CA, Nieduszynski C, Wolfe KH, Tanaka TU (2015) Discovery of an unconventional centromere in budding yeast redefines evolution of point centromeres. Curr Biol 25(15):2026–2033.  https://doi.org/10.1016/j.cub.2015.06.023CrossRefPubMedPubMedCentralGoogle Scholar
  92. Kordes E, Savelyeva L, Schwab M, Rommelaere J, Jauniaux JC, Cziepluch C (1998) Isolation and characterization of human SGT and identification of homologues in Saccharomyces cerevisiae and Caenorhabditis elegans. Genomics 52(1):90–94.  https://doi.org/10.1006/geno.1998.5385CrossRefGoogle Scholar
  93. Kud J, Zhao Z, Du X, Liu Y, Zhao Y, Xiao F (2013) SGT1 interacts with the Prf resistance protein and is required for Prf accumulation and Prf-mediated defense signaling. Biochem Biophys Res Commun 431(3):501–505.  https://doi.org/10.1016/j.bbrc.2013.01.028CrossRefGoogle Scholar
  94. Kumar D, Kirti PB (2015) Pathogen-induced SGT1 of Arachis diogoi induces cell death and enhanced disease resistance in tobacco and peanut. Plant Biotechnol J 13(1):73–84.  https://doi.org/10.1111/pbi.12237CrossRefGoogle Scholar
  95. Lange BM, Bachi A, Wilm M, Gonzalez C (2000) Hsp90 is a core centrosomal component and is required at different stages of the centrosome cycle in Drosophila and vertebrates. EMBO J 19(6):1252–1262.  https://doi.org/10.1093/emboj/19.6.1252CrossRefPubMedPubMedCentralGoogle Scholar
  96. Lapouge K, Smith SJ, Walker PA, Gamblin SJ, Smerdon SJ, Rittinger K (2000) Structure of the TPR domain of p67phox in complex with Rac.GTP. Mol Cell 6(4):899–907CrossRefGoogle Scholar
  97. Latchman DS (2001) Heat shock proteins and cardiac protection. Cardiovasc Res 51(4):637–646CrossRefGoogle Scholar
  98. Lechner J (1994) A zinc finger protein, essential for chromosome segregation, constitutes a putative DNA binding subunit of the Saccharomyces cerevisiae kinetochore complex, Cbf3. EMBO J 13(21):5203–5211CrossRefPubMedPubMedCentralGoogle Scholar
  99. Lechner J, Carbon J (1991) A 240 kd multisubunit protein complex, CBF3, is a major component of the budding yeast centromere. Cell 64(4):717–725CrossRefGoogle Scholar
  100. Lee YT, Jacob J, Michowski W, Nowotny M, Kuznicki J, Chazin WJ (2004) Human Sgt1 binds HSP90 through the CHORD-Sgt1 domain and not the tetratricopeptide repeat domain. J Biol Chem 279(16):16511–16517.  https://doi.org/10.1074/jbc.M400215200CrossRefGoogle Scholar
  101. Lee JW, Beebe K, Nangle LA, Jang J, Longo-Guess CM, Cook SA, Davisson MT, Sundberg JP, Schimmel P, Ackerman SL (2006) Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature 443(7107):50–55. Epub 2006/08/15.  https://doi.org/10.1038/nature05096CrossRefGoogle Scholar
  102. Leister RT, Dahlbeck D, Day B, Li Y, Chesnokova O, Staskawicz BJ (2005) Molecular genetic evidence for the role of SGT1 in the intramolecular complementation of Bs2 protein activity in Nicotiana benthamiana. Plant Cell 17(4):1268–1278.  https://doi.org/10.1105/tpc.104.029637CrossRefPubMedPubMedCentralGoogle Scholar
  103. Lingelbach LB, Kaplan KB (2004) The interaction between Sgt1p and Skp1p is regulated by HSP90 chaperones and is required for proper CBF3 assembly. Mol Cell Biol 24(20):8938–8950.  https://doi.org/10.1128/MCB.24.20.8938-8950.2004CrossRefPubMedPubMedCentralGoogle Scholar
  104. Liu Y, Schiff M, Serino G, Deng XW, Dinesh-Kumar SP (2002) Role of SCF ubiquitin-ligase and the COP9 signalosome in the N gene-mediated resistance response to tobacco mosaic virus. Plant Cell 14(7):1483–1496CrossRefPubMedPubMedCentralGoogle Scholar
  105. Liu Y, Burch-Smith T, Schiff M, Feng S, Dinesh-Kumar SP (2004) Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rar1 to modulate an innate immune response in plants. J Biol Chem 279(3):2101–2108.  https://doi.org/10.1074/jbc.M310029200CrossRefGoogle Scholar
  106. Liu ST, Rattner JB, Jablonski SA, Yen TJ (2006) Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells. J Cell Biol 175(1):41–53. doi:jcb.200606020 [pii].  https://doi.org/10.1083/jcb.200606020CrossRefPubMedPubMedCentralGoogle Scholar
  107. Liu XS, Song B, Tang J, Liu W, Kuang S, Liu X (2012) Plk1 phosphorylates Sgt1 at the kinetochores to promote timely kinetochore-microtubule attachment. Mol Cell Biol 32(19):4053–4067.  https://doi.org/10.1128/MCB.00516-12CrossRefPubMedPubMedCentralGoogle Scholar
  108. Liu ZQ, Liu YY, Shi LP, Yang S, Shen L, Yu HX, Wang RZ, Wen JY, Tang Q, Hussain A, Khan MI, Hu J, Liu CL, Zhang YW, Cheng W, He SL (2016) SGT1 is required in PcINF1/SRC2-1 induced pepper defense response by interacting with SRC2-1. Sci Rep 6:21651.  https://doi.org/10.1038/srep21651CrossRefPubMedPubMedCentralGoogle Scholar
  109. Lu R, Malcuit I, Moffett P, Ruiz MT, Peart J, Wu AJ, Rathjen JP, Bendahmane A, Day L, Baulcombe DC (2003) High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J 22(21):5690–5699.  https://doi.org/10.1093/emboj/cdg546CrossRefPubMedPubMedCentralGoogle Scholar
  110. Lyapina S, Cope G, Shevchenko A, Serino G, Tsuge T, Zhou C, Wolf DA, Wei N, Shevchenko A, Deshaies RJ (2001) Promotion of NEDD-CUL1 conjugate cleavage by COP9 signalosome. Science 292(5520):1382–1385.  https://doi.org/10.1126/science.1059780CrossRefGoogle Scholar
  111. Marber MS, Mestril R, Chi SH, Sayen MR, Yellon DM, Dillmann WH (1995) Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest 95(4):1446–1456.  https://doi.org/10.1172/JCI117815CrossRefPubMedPubMedCentralGoogle Scholar
  112. Marcotte EM, Pellegrini M, Thompson MJ, Yeates TO, Eisenberg D (1999) A combined algorithm for genome-wide prediction of protein function. Nature 402(6757):83–86.  https://doi.org/10.1038/47048CrossRefGoogle Scholar
  113. Martinez-Noel G, Luck K, Kuhnle S, Desbuleux A, Szajner P, Galligan JT, Rodriguez D, Zheng L, Boyland K, Leclere F, Zhong Q, Hill DE, Vidal M, Howley PM (2018) Network analysis of UBE3A/E6AP-associated proteins provides connections to several distinct cellular processes. J Mol Biol 430(7):1024–1050. http://dx.doi.org/10.1016/j.jmb.2018.01.021. PubMed PMID: 29426014; PMCID: PMC5866790CrossRefPubMedPubMedCentralGoogle Scholar
  114. Martinon F, Tschopp J (2007) Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ 14(1):10–22.  https://doi.org/10.1038/sj.cdd.4402038CrossRefGoogle Scholar
  115. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10(2):417–426CrossRefGoogle Scholar
  116. Martinon F, Agostini L, Meylan E, Tschopp J (2004) Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr Biol 14(21):1929–1934.  https://doi.org/10.1016/j.cub.2004.10.027CrossRefGoogle Scholar
  117. Martins T, Maia AF, Steffensen S, Sunkel CE (2009) Sgt1, a co-chaperone of Hsp90 stabilizes Polo and is required for centrosome organization. EMBO J 28(3):234–247.  https://doi.org/10.1038/emboj.2008.283CrossRefPubMedPubMedCentralGoogle Scholar
  118. Mayor A, Martinon F, De Smedt T, Petrilli V, Tschopp J (2007) A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nat Immunol 8(5):497–503.  https://doi.org/10.1038/ni1459CrossRefPubMedPubMedCentralGoogle Scholar
  119. McLachlan F, Sires AM, Abbott CM (2018) The role of translation elongation factor eEF1 subunits in neurodevelopmental disorders. Hum Mutat.  https://doi.org/10.1002/humu.23677CrossRefGoogle Scholar
  120. Mei Y, Hahn AA, Hu S, Yang X (2011) The USP19 deubiquitinase regulates the stability of c-IAP1 and c-IAP2. J Biol Chem 286(41):35380–35387.  https://doi.org/10.1074/jbc.M111.282020CrossRefPubMedPubMedCentralGoogle Scholar
  121. Meldau S, Baldwin IT, Wu J (2011) SGT1 regulates wounding- and herbivory-induced jasmonic acid accumulation and Nicotiana attenuata’s resistance to the specialist lepidopteran herbivore Manduca sexta. New Phytol 189(4):1143–1156.  https://doi.org/10.1111/j.1469-8137.2010.03558.xCrossRefGoogle Scholar
  122. Merlet J, Burger J, Gomes JE, Pintard L (2009) Regulation of cullin-RING E3 ubiquitin-ligases by neddylation and dimerization. Cell Mol Life Sci 66(11–12):1924–1938.  https://doi.org/10.1007/s00018-009-8712-7CrossRefGoogle Scholar
  123. Mestre P, Baulcombe DC (2006) Elicitor-mediated oligomerization of the tobacco N disease resistance protein. Plant Cell 18(2):491–501.  https://doi.org/10.1105/tpc.105.037234CrossRefPubMedPubMedCentralGoogle Scholar
  124. Meylan E, Tschopp J, Karin M (2006) Intracellular pattern recognition receptors in the host response. Nature 442(7098):39–44.  https://doi.org/10.1038/nature04946CrossRefGoogle Scholar
  125. Miao EA, Alpuche-Aranda CM, Dors M, Clark AE, Bader MW, Miller SI, Aderem A (2006) Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol 7(6):569–575.  https://doi.org/10.1038/ni1344CrossRefGoogle Scholar
  126. Milani V, Noessner E, Ghose S, Kuppner M, Ahrens B, Scharner A, Gastpar R, Issels RD (2002) Heat shock protein 70: role in antigen presentation and immune stimulation. Int J Hyperth 18(6):563–575.  https://doi.org/10.1080/02656730210166140CrossRefGoogle Scholar
  127. Mimnaugh EG, Chavany C, Neckers L (1996) Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J Biol Chem 271(37):22796–22801CrossRefPubMedPubMedCentralGoogle Scholar
  128. Moehs CP, Allen PV, Friedman M, Belknap WR (1997) Cloning and expression of solanidine UDP-glucose glucosyltransferase from potato. Plant J 11(2):227–236CrossRefGoogle Scholar
  129. Multhoff G (2002) Activation of natural killer cells by heat shock protein 70. Int J Hyperth 18(6):576–585.  https://doi.org/10.1080/0265673021000017109CrossRefGoogle Scholar
  130. Muskett P, Parker J (2003) Role of SGT1 in the regulation of plant R gene signalling. Microbes Infect 5(11):969–976CrossRefGoogle Scholar
  131. Muskett PR, Kahn K, Austin MJ, Moisan LJ, Sadanandom A, Shirasu K, Jones JD, Parker JE (2002) Arabidopsis RAR1 exerts rate-limiting control of R gene-mediated defenses against multiple pathogens. Plant Cell 14(5):979–992CrossRefPubMedPubMedCentralGoogle Scholar
  132. Newbery HJ, Loh DH, O’Donoghue JE, Tomlinson VA, Chau YY, Boyd JA, Bergmann JH, Brownstein D, Abbott CM (2007) Translation elongation factor eEF1A2 is essential for post-weaning survival in mice. J Biol Chem 282(39):28951–28959. Epub 2007/07/21.  https://doi.org/10.1074/jbc.M703962200CrossRefGoogle Scholar
  133. Niikura Y, Kitagawa K (2003) Identification of a novel splice variant: human SGT1B (SUGT1B). DNA Seq 14(6):436–441CrossRefGoogle Scholar
  134. Niikura Y, Ohta S, Vandenbeldt KJ, Abdulle R, McEwen BF, Kitagawa K (2006) 17-AAG, an Hsp90 inhibitor, causes kinetochore defects: a novel mechanism by which 17-AAG inhibits cell proliferation. Oncogene 25(30):4133–4146.  https://doi.org/10.1038/sj.onc.1209461CrossRefGoogle Scholar
  135. Niikura Y, Kitagawa R, Ogi H, Abdulle R, Pagala V, Kitagawa K (2015) CENP-A K124 ubiquitylation is required for CENP-A deposition at the centromere. Dev Cell 32(5):589–603.  https://doi.org/10.1016/j.devcel.2015.01.024CrossRefPubMedPubMedCentralGoogle Scholar
  136. Niikura Y, Kitagawa R, Ogi H, Kitagawa K (2017) SGT1-HSP90 complex is required for CENP-A deposition at centromeres. Cell Cycle 16(18):1683–1694.  https://doi.org/10.1080/15384101.2017.1325039CrossRefPubMedPubMedCentralGoogle Scholar
  137. Noel LD, Cagna G, Stuttmann J, Wirthmuller L, Betsuyaku S, Witte CP, Bhat R, Pochon N, Colby T, Parker JE (2007) Interaction between SGT1 and cytosolic/nuclear HSC70 chaperones regulates Arabidopsis immune responses. Plant Cell 19(12):4061–4076.  https://doi.org/10.1105/tpc.107.051896CrossRefPubMedPubMedCentralGoogle Scholar
  138. Nonneman A, Robberecht W, Van Den Bosch L (2014) The role of oligodendroglial dysfunction in amyotrophic lateral sclerosis. Neurodegener Dis Manag 4(3):223–239.  https://doi.org/10.2217/nmt.14.21CrossRefGoogle Scholar
  139. Novosylna O, Jurewicz E, Pydiura N, Goral A, Filipek A, Negrutskii B, El’skaya A (2015) Translation elongation factor eEF1A1 is a novel partner of a multifunctional protein Sgt1. Biochimie 119:137–145.  https://doi.org/10.1016/j.biochi.2015.10.026CrossRefGoogle Scholar
  140. Nowotny M, Spiechowicz M, Jastrzebska B, Filipek A, Kitagawa K, Kuznicki J (2003) Calcium-regulated interaction of Sgt1 with S100A6 (calcyclin) and other S100 proteins. J Biol Chem 278(29):26923–26928.  https://doi.org/10.1074/jbc.M211518200CrossRefGoogle Scholar
  141. Nyarko A, Mosbahi K, Rowe AJ, Leech A, Boter M, Shirasu K, Kleanthous C (2007) TPR-mediated self-association of plant SGT1. Biochemistry 46(40):11331–11341.  https://doi.org/10.1021/bi700735tCrossRefGoogle Scholar
  142. Ogi H, Sakuraba Y, Kitagawa R, Xiao L, Shen C, Cynthia MA, Ohta S, Arnold MA, Ramirez N, Houghton PJ, Kitagawa K (2015) The oncogenic role of the cochaperone Sgt1. Oncogene 4:e149.  https://doi.org/10.1038/oncsis.2015.12CrossRefGoogle Scholar
  143. Ogura Y, Sutterwala FS, Flavell RA (2006) The inflammasome: first line of the immune response to cell stress. Cell 126(4):659–662.  https://doi.org/10.1016/j.cell.2006.08.002CrossRefGoogle Scholar
  144. Oh SK, Kim H, Choi D (2014a) Rpi-blb2-mediated late blight resistance in Nicotiana benthamiana requires SGT1 and salicylic acid-mediated signaling but not RAR1 or HSP90. FEBS Lett 588(7):1109–1115.  https://doi.org/10.1016/j.febslet.2014.02.028CrossRefGoogle Scholar
  145. Oh SK, Kwon SY, Choi D (2014b) Rpi-blb2-mediated hypersensitive cell death caused by Phytophthora infestans AVRblb2 requires SGT1, but not EDS1, NDR1, salicylic acid-, jasmonic acid-, or ethylene-mediated signaling. Plant Pathol J 30(3):254–260.  https://doi.org/10.5423/PPJ.OA.03.2014.0027CrossRefPubMedPubMedCentralGoogle Scholar
  146. Park SC, Cheong MS, Kim EJ, Kim JH, Chi YH, Jang MK (2017) Antifungal effect of Arabidopsis SGT1 proteins via mitochondrial reactive oxygen species. J Agric Food Chem 65(38):8340–8347.  https://doi.org/10.1021/acs.jafc.7b02808CrossRefGoogle Scholar
  147. Pearl LH, Prodromou C (2006) Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem 75:271–294.  https://doi.org/10.1146/annurev.biochem.75.103004.142738CrossRefGoogle Scholar
  148. Pearl LH, Prodromou C, Workman P (2008) The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem J 410(3):439–453.  https://doi.org/10.1042/BJ20071640CrossRefPubMedPubMedCentralGoogle Scholar
  149. Peart JR, Lu R, Sadanandom A, Malcuit I, Moffett P, Brice DC, Schauser L, Jaggard DA, Xiao S, Coleman MJ, Dow M, Jones JD, Shirasu K, Baulcombe DC (2002) Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proc Natl Acad Sci U S A 99(16):10865–10869.  https://doi.org/10.1073/pnas.152330599CrossRefPubMedPubMedCentralGoogle Scholar
  150. Pickering C, Ericson M, Soderpalm B (2013) Chronic phencyclidine increases synapsin-1 and synaptic adaptation proteins in the medial prefrontal cortex. ISRN Psychiatry 2013:620361.  https://doi.org/10.1155/2013/620361CrossRefPubMedPubMedCentralGoogle Scholar
  151. Pluta AF, Mackay AM, Ainsztein AM, Goldberg IG, Earnshaw WC (1995) The centromere: hub of chromosomal activities. Science 270(5242):1591–1594CrossRefGoogle Scholar
  152. Portig I, Pankuweit S, Maisch B (1997) Antibodies against stress proteins in sera of patients with dilated cardiomyopathy. J Mol Cell Cardiol 29(8):2245–2251.  https://doi.org/10.1006/jmcc.1997.0463CrossRefGoogle Scholar
  153. Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 228(2):111–133CrossRefGoogle Scholar
  154. Prus W, Filipek A (2011) S100A6 mediates nuclear translocation of Sgt1: a heat shock-regulated protein. Amino Acids 41(4):781–787.  https://doi.org/10.1007/s00726-010-0526-2CrossRefGoogle Scholar
  155. Prus W, Zabka M, Bieganowski P, Filipek A (2011) Nuclear translocation of Sgt1 depends on its phosphorylation state. Int J Biochem Cell Biol 43(12):1747–1753.  https://doi.org/10.1016/j.biocel.2011.08.010CrossRefGoogle Scholar
  156. Radford NB, Fina M, Benjamin IJ, Moreadith RW, Graves KH, Zhao P, Gavva S, Wiethoff A, Sherry AD, Malloy CR, Williams RS (1996) Cardioprotective effects of 70-kDa heat shock protein in transgenic mice. Proc Natl Acad Sci U S A 93(6):2339–2342CrossRefPubMedPubMedCentralGoogle Scholar
  157. Rodrigo-Brenni MC, Thomas S, Bouck DC, Kaplan KB (2004) Sgt1p and Skp1p modulate the assembly and turnover of CBF3 complexes required for proper kinetochore function. Mol Biol Cell 15(7):3366–3378.  https://doi.org/10.1091/mbc.e03-12-0887CrossRefPubMedPubMedCentralGoogle Scholar
  158. Russell LC, Whitt SR, Chen MS, Chinkers M (1999) Identification of conserved residues required for the binding of a tetratricopeptide repeat domain to heat shock protein 90. J Biol Chem 274(29):20060–20063CrossRefGoogle Scholar
  159. Sahni N, Yi S, Taipale M, Fuxman Bass JI, Coulombe-Huntington J, Yang F, Peng J, Weile J, Karras GI, Wang Y, Kovacs IA, Kamburov A, Krykbaeva I, Lam MH, Tucker G, Khurana V, Sharma A, Liu YY, Yachie N, Zhong Q, Shen Y, Palagi A, San-Miguel A, Fan C, Balcha D, Dricot A, Jordan DM, Walsh JM, Shah AA, Yang X, Stoyanova AK, Leighton A, Calderwood MA, Jacob Y, Cusick ME, Salehi-Ashtiani K, Whitesell LJ, Sunyaev S, Berger B, Barabasi AL, Charloteaux B, Hill DE, Hao T, Roth FP, Xia Y, Walhout AJM, Lindquist S, Vidal M (2015) Widespread macromolecular interaction perturbations in human genetic disorders. Cell 161(3):647–660. Epub 2015/04/25.  https://doi.org/10.1016/j.cell.2015.04.013. PubMed PMID: 25910212; PMCID: PMC4441215CrossRefPubMedPubMedCentralGoogle Scholar
  160. Sato T, Jigami Y, Suzuki T, Uemura H (1999) A human gene, hSGT1, can substitute for GCR2, which encodes a general regulatory factor of glycolytic gene expression in Saccharomyces cerevisiae. Mol Gen Genet 260(6):535–540CrossRefGoogle Scholar
  161. Sbroggio M, Ferretti R, Percivalle E, Gutkowska M, Zylicz A, Michowski W, Kuznicki J, Accornero F, Pacchioni B, Lanfranchi G, Hamm J, Turco E, Silengo L, Tarone G, Brancaccio M (2008) The mammalian CHORD-containing protein melusin is a stress response protein interacting with Hsp90 and Sgt1. FEBS Lett 582(13):1788–1794.  https://doi.org/10.1016/j.febslet.2008.04.058CrossRefGoogle Scholar
  162. Schadick K, Fourcade HM, Boumenot P, Seitz JJ, Morrell JL, Chang L, Gould KL, Partridge JF, Allshire RC, Kitagawa K, Hieter P, Hoffman CS (2002) Schizosaccharomyces pombe Git7p, a member of the Saccharomyces cerevisiae Sgtlp family, is required for glucose and cyclic AMP signaling, cell wall integrity, and septation. Eukaryot Cell 1(4):558–567CrossRefPubMedPubMedCentralGoogle Scholar
  163. Scheufler C, Brinker A, Bourenkov G, Pegoraro S, Moroder L, Bartunik H, Hartl FU, Moarefi I (2000) Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101(2):199–210.  https://doi.org/10.1016/S0092-8674(00)80830-2CrossRefPubMedPubMedCentralGoogle Scholar
  164. Shang Y, Li X, Cui H, He P, Thilmony R, Chintamanani S, Zwiesler-Vollick J, Gopalan S, Tang X, Zhou JM (2006) RAR1, a central player in plant immunity, is targeted by Pseudomonas syringae effector AvrB. Proc Natl Acad Sci U S A 103(50):19200–19205.  https://doi.org/10.1073/pnas.0607279103CrossRefPubMedPubMedCentralGoogle Scholar
  165. Shanmugam A, Thamilarasan SK, Park JI, Jung MY, Nou IS (2016) Characterization and abiotic stress-responsive expression analysis of SGT1 genes in Brassica oleracea. Genome 59(4):243–251.  https://doi.org/10.1139/gen-2015-0128CrossRefGoogle Scholar
  166. Shapiro RS, Zaas AK, Betancourt-Quiroz M, Perfect JR, Cowen LE (2012) The Hsp90 co-chaperone Sgt1 governs Candida albicans morphogenesis and drug resistance. PLoS One 7(9):e44734.  https://doi.org/10.1371/journal.pone.0044734CrossRefPubMedPubMedCentralGoogle Scholar
  167. Sharma UC, Barenbrug P, Pokharel S, Dassen WR, Pinto YM, Maessen JG (2004) Systematic review of the outcome of aortic valve replacement in patients with aortic stenosis. Ann Thorac Surg 78(1):90–95.  https://doi.org/10.1016/j.athoracsur.2004.02.020CrossRefGoogle Scholar
  168. Shen QH, Zhou F, Bieri S, Haizel T, Shirasu K, Schulze-Lefert P (2003) Recognition specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus. Plant Cell 15(3):732–744CrossRefPubMedPubMedCentralGoogle Scholar
  169. Shirasu K (2009) The HSP90-SGT1 chaperone complex for NLR immune sensors. Annu Rev Plant Biol 60:139–164.  https://doi.org/10.1146/annurev.arplant.59.032607.092906CrossRefGoogle Scholar
  170. Shirasu K, Schulze-Lefert P (2000) Regulators of cell death in disease resistance. Plant Mol Biol 44(3):371–385CrossRefGoogle Scholar
  171. Shirasu K, Schulze-Lefert P (2003) Complex formation, promiscuity and multi-functionality: protein interactions in disease-resistance pathways. Trends Plant Sci 8(6):252–258.  https://doi.org/10.1016/S1360-1385(03)00104-3CrossRefGoogle Scholar
  172. Shirasu K, Lahaye T, Tan MW, Zhou F, Azevedo C, Schulze-Lefert P (1999) A novel class of eukaryotic zinc-binding proteins is required for disease resistance signaling in barley and development in C. elegans. Cell 99(4):355–366CrossRefGoogle Scholar
  173. Siligardi G, Zhang M, Prodromou C (2017) The stoichiometric interaction of the Hsp90-Sgt1-Rar1 complex by CD and SRCD spectroscopy. Front Mol Biosci 4:95.  https://doi.org/10.3389/fmolb.2017.00095CrossRefGoogle Scholar
  174. Sorger PK, Doheny KF, Hieter P, Kopski KM, Huffaker TC, Hyman AA (1995) Two genes required for the binding of an essential Saccharomyces cerevisiae kinetochore complex to DNA. Proc Natl Acad Sci U S A 92(26):12026–12030CrossRefPubMedPubMedCentralGoogle Scholar
  175. Spiechowicz M, Filipek A (2005) The expression and function of Sgt1 protein in eukaryotic cells. Acta Neurobiol Exp (Wars) 65(2):161–165Google Scholar
  176. Spiechowicz M, Bernstein HG, Dobrowolny H, Lesniak W, Mawrin C, Bogerts B, Kuznicki J, Filipek A (2006) Density of Sgt1-immunopositive neurons is decreased in the cerebral cortex of Alzheimer’s disease brain. Neurochem Int 49(5):487–493.  https://doi.org/10.1016/j.neuint.2006.03.009CrossRefGoogle Scholar
  177. Spiechowicz M, Zylicz A, Bieganowski P, Kuznicki J, Filipek A (2007) Hsp70 is a new target of Sgt1–an interaction modulated by S100A6. Biochem Biophys Res Commun 357(4):1148–1153.  https://doi.org/10.1016/j.bbrc.2007.04.073CrossRefGoogle Scholar
  178. Staskawicz BJ, Mudgett MB, Dangl JL, Galan JE (2001) Common and contrasting themes of plant and animal diseases. Science 292(5525):2285–2289.  https://doi.org/10.1126/science.1062013CrossRefGoogle Scholar
  179. Steensgaard P, Garre M, Muradore I, Transidico P, Nigg EA, Kitagawa K, Earnshaw WC, Faretta M, Musacchio A (2004) Sgt1 is required for human kinetochore assembly. EMBO Rep 5(6):626–631.  https://doi.org/10.1038/sj.embor.7400154CrossRefPubMedPubMedCentralGoogle Scholar
  180. Stemmann O, Lechner J (1996) The Saccharomyces cerevisiae kinetochore contains a cyclin-CDK complexing homologue, as identified by in vitro reconstitution. EMBO J 15(14):3611–3620CrossRefPubMedPubMedCentralGoogle Scholar
  181. Stemmann O, Neidig A, Kocher T, Wilm M, Lechner J (2002) Hsp90 enables Ctf13p/Skp1p to nucleate the budding yeast kinetochore. Proc Natl Acad Sci U S A 99(13):8585–8590.  https://doi.org/10.1073/pnas.082223899CrossRefPubMedPubMedCentralGoogle Scholar
  182. Strunnikov AV, Kingsbury J, Koshland D (1995) CEP3 encodes a centromere protein of Saccharomyces cerevisiae. J Cell Biol 128(5):749–760CrossRefGoogle Scholar
  183. Stuttmann J, Parker JE, Noel LD (2008) Staying in the fold: the SGT1/chaperone machinery in maintenance and evolution of leucine-rich repeat proteins. Plant Signal Behav 3(5):283–285CrossRefPubMedPubMedCentralGoogle Scholar
  184. Tai YS (2008) Interactome of signaling networks in wheat: the protein-protein interaction between TaRAR1 and TaSGT1. Mol Biol Rep 35(3):337–343.. Epub 2007/06/15.  https://doi.org/10.1007/s11033-007-9091-5CrossRefGoogle Scholar
  185. Takahashi A, Casais C, Ichimura K, Shirasu K (2003) HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. Proc Natl Acad Sci U S A 100(20):11777–11782.  https://doi.org/10.1073/pnas.2033934100CrossRefPubMedPubMedCentralGoogle Scholar
  186. Taube M, Pienkowska JR, Jarmolowski A, Kozak M (2014) Low-resolution structure of the full-length barley (Hordeum vulgare) SGT1 protein in solution, obtained using small-angle X-ray scattering. PLoS One 9(4):e93313.  https://doi.org/10.1371/journal.pone.0093313CrossRefPubMedPubMedCentralGoogle Scholar
  187. Tavares R, Wajnberg G, Scherer NM, Pauletti BA, Cassoli JS, Ferreira CG, Paes Leme AF, de Araujo-Souza PS, Martins-de-Souza D, Passetti F (2017) Unveiling alterative splice diversity from human oligodendrocyte proteome data. J Proteomics. 151:293–301.  https://doi.org/10.1016/j.jprot.2016.05.023. Epub 2016/05/26. PubMed PMID: 27222040CrossRefGoogle Scholar
  188. Ting JP, Davis BK (2005) CATERPILLER: a novel gene family important in immunity, cell death, and diseases. Annu Rev Immunol 23:387–414.  https://doi.org/10.1146/annurev.immunol.23.021704.115616CrossRefGoogle Scholar
  189. Ting JP, Lovering RC, Alnemri ES, Bertin J, Boss JM, Davis BK, Flavell RA, Girardin SE, Godzik A, Harton JA, Hoffman HM, Hugot JP, Inohara N, Mackenzie A, Maltais LJ, Nunez G, Ogura Y, Otten LA, Philpott D, Reed JC, Reith W, Schreiber S, Steimle V, Ward PA (2008) The NLR gene family: a standard nomenclature. Immunity 28(3):285–287.  https://doi.org/10.1016/j.immuni.2008.02.005CrossRefPubMedPubMedCentralGoogle Scholar
  190. Tor M, Gordon P, Cuzick A, Eulgem T, Sinapidou E, Mert-Turk F, Can C, Dangl JL, Holub EB (2002) Arabidopsis SGT1b is required for defense signaling conferred by several downy mildew resistance genes. Plant Cell 14(5):993–1003CrossRefPubMedPubMedCentralGoogle Scholar
  191. Tornero P, Merritt P, Sadanandom A, Shirasu K, Innes RW, Dangl JL (2002) RAR1 and NDR1 contribute quantitatively to disease resistance in Arabidopsis, and their relative contributions are dependent on the R gene assayed. Plant Cell 14(5):1005–1015CrossRefPubMedPubMedCentralGoogle Scholar
  192. Trepel J, Mollapour M, Giaccone G, Neckers L (2010) Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10(8):537–549.  https://doi.org/10.1038/nrc2887CrossRefPubMedPubMedCentralGoogle Scholar
  193. Uppalapati SR, Ishiga Y, Ryu CM, Ishiga T, Wang K, Noel LD, Parker JE, Mysore KS (2011) SGT1 contributes to coronatine signaling and Pseudomonas syringae pv. tomato disease symptom development in tomato and Arabidopsis. New Phytol 189(1):83–93.  https://doi.org/10.1111/j.1469-8137.2010.03470.xCrossRefGoogle Scholar
  194. Vassarotti A, Friesen JD (1985) Isolation of the fructose-1,6-bisphosphatase gene of the yeast Schizosaccharomyces pombe. Evidence for transcriptional regulation. J Biol Chem 260(10):6348–6353Google Scholar
  195. Verdaasdonk JS, Bloom K (2011) Centromeres: unique chromatin structures that drive chromosome segregation. Nat Rev Mol Cell Biol 12(5):320–332.  https://doi.org/10.1038/nrm3107CrossRefPubMedPubMedCentralGoogle Scholar
  196. Wang Y, Gao M, Li Q, Wang L, Wang J, Jeon JS, Qu N, Zhang Y, He Z (2008) OsRAR1 and OsSGT1 physically interact and function in rice basal disease resistance. Mol Plant-Microbe Interact 21(3):294–303.  https://doi.org/10.1094/MPMI-21-3-0294CrossRefGoogle Scholar
  197. Wang K, Uppalapati SR, Zhu X, Dinesh-Kumar SP, Mysore KS (2010) SGT1 positively regulates the process of plant cell death during both compatible and incompatible plant-pathogen interactions. Mol Plant Pathol 11(5):597–611.  https://doi.org/10.1111/j.1364-3703.2010.00631.xCrossRefPubMedPubMedCentralGoogle Scholar
  198. Wang GF, Fan R, Wang X, Wang D, Zhang X (2015) TaRAR1 and TaSGT1 associate with TaHsp90 to function in bread wheat (Triticum aestivum L.) seedling growth and stripe rust resistance. Plant Mol Biol 87(6):577–589.  https://doi.org/10.1007/s11103-015-0298-xCrossRefGoogle Scholar
  199. Wang K, Shang Y, Dou F (2018) Brain aging: Hsp90 and neurodegenerative diseases. Adv Exp Med Biol 1086:93–103.  https://doi.org/10.1007/978-981-13-1117-8_6CrossRefGoogle Scholar
  200. Wegele H, Muller L, Buchner J (2004) Hsp70 and Hsp90 – a relay team for protein folding. Rev Physiol Biochem Pharmacol 151:1–44.  https://doi.org/10.1007/s10254-003-0021-1CrossRefGoogle Scholar
  201. Wegele H, Wandinger SK, Schmid AB, Reinstein J, Buchner J (2006) Substrate transfer from the chaperone Hsp70 to Hsp90. J Mol Biol 356(3):802–811.  https://doi.org/10.1016/j.jmb.2005.12.008CrossRefGoogle Scholar
  202. Weinstein IB, Joe A (2008) Oncogene addiction. Cancer Res 68(9):3077–3080.; discussion 3080.  https://doi.org/10.1158/0008-5472.CAN-07-3293CrossRefGoogle Scholar
  203. Westermann S, Drubin DG, Barnes G (2007) Structures and functions of yeast kinetochore complexes. Annu Rev Biochem 76:563–591CrossRefGoogle Scholar
  204. Willhoft O, Kerr R, Patel D, Zhang W, Al-Jassar C, Daviter T, Millson SH, Thalassinos K, Vaughan CK (2017) The crystal structure of the Sgt1-Skp1 complex: the link between Hsp90 and both SCF E3 ubiquitin ligases and kinetochores. Sci Rep 7:41626.  https://doi.org/10.1038/srep41626CrossRefPubMedPubMedCentralGoogle Scholar
  205. Wu J, Luo S, Jiang H, Li H (2005) Mammalian CHORD-containing protein 1 is a novel heat shock protein 90-interacting protein. FEBS Lett 579(2):421–426.  https://doi.org/10.1016/j.febslet.2004.12.005CrossRefGoogle Scholar
  206. Xing L, Qian C, Cao A, Li Y, Jiang Z, Li M, Jin X, Hu J, Zhang Y, Wang X, Chen P (2013) The Hv-SGT1 gene from Haynaldia villosa contributes to resistances towards both biotrophic and hemi-biotrophic pathogens in common wheat (Triticum aestivum L.). PLoS One 8(9):e72571.  https://doi.org/10.1371/journal.pone.0072571CrossRefPubMedPubMedCentralGoogle Scholar
  207. Xu XL, Lee RT, Fang HM, Wang YM, Li R, Zou H, Zhu Y, Wang Y (2008) Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell Host Microbe 4(1):28–39.  https://doi.org/10.1016/j.chom.2008.05.014CrossRefGoogle Scholar
  208. Yamamoto T, Mori Y, Ishibashi T, Uchiyama Y, Sakaguchi N, Furukawa T, Hashimoto J, Kimura S, Sakaguchi K (2004) Characterization of Rad6 from a higher plant, rice (Oryza sativa L.) and its interaction with Sgt1, a subunit of the SCF ubiquitin ligase complex. Biochem Biophys Res Commun 314(2):434–439CrossRefGoogle Scholar
  209. Yan JJ, Zhang YB, Ding Y (2012) Binding mechanism between Hsp90 and Sgt1 explored by homology modeling and molecular dynamics simulations in rice. J Mol Model 18(10):4665–4673.  https://doi.org/10.1007/s00894-012-1464-6CrossRefGoogle Scholar
  210. Yan Q, Cui X, Su L, Xu N, Guo N, Xing H, Dou D (2014) GmSGT1 is differently required for soybean Rps genes-mediated and basal resistance to Phytophthora sojae. Plant Cell Rep 33(8):1275–1288.  https://doi.org/10.1007/s00299-014-1615-6CrossRefGoogle Scholar
  211. Yusof NA, Hashim NH, Beddoe T, Mahadi NM, Illias RM, Bakar FD, Murad AM (2016) Thermotolerance and molecular chaperone function of an SGT1-like protein from the psychrophilic yeast, Glaciozyma Antarctica. Cell Stress Chaperones 21(4):707–715.  https://doi.org/10.1007/s12192-016-0696-2CrossRefPubMedPubMedCentralGoogle Scholar
  212. Zabka M, Lesniak W, Prus W, Kuznicki J, Filipek A (2008) Sgt1 has co-chaperone properties and is up-regulated by heat shock. Biochem Biophys Res Commun 370(1):179–183.  https://doi.org/10.1016/j.bbrc.2008.03.055CrossRefGoogle Scholar
  213. Zhang Y, Dorey S, Swiderski M, Jones JD (2004) Expression of RPS4 in tobacco induces an AvrRps4-independent HR that requires EDS1, SGT1 and HSP90. Plant J 40(2):213–224.  https://doi.org/10.1111/j.1365-313X.2004.02201.xCrossRefGoogle Scholar
  214. Zhang M, Boter M, Li K, Kadota Y, Panaretou B, Prodromou C, Shirasu K, Pearl LH (2008) Structural and functional coupling of Hsp90- and Sgt1-centred multi-protein complexes. EMBO J 27(20):2789–2798.  https://doi.org/10.1038/emboj.2008.190CrossRefPubMedPubMedCentralGoogle Scholar
  215. Zhang M, Kadota Y, Prodromou C, Shirasu K, Pearl LH (2010) Structural basis for assembly of Hsp90-Sgt1-CHORD protein complexes: implications for chaperoning of NLR innate immunity receptors. Mol Cell 39(2):269–281.  https://doi.org/10.1016/j.molcel.2010.05.010CrossRefPubMedPubMedCentralGoogle Scholar
  216. Zou X, Ji C, Wang L, Wu M, Zheng H, Xu J, Jin F, Gu S, Ying K, Xie Y, Mao Y (2004) Molecular cloning and characterization of SGT1.2, a novel splice variant of Homo sapiens SGT1. DNA Seq 15(2):140–143CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research CenterNanjing UniversityNanjing, Jiangsu ProvinceChina
  2. 2.Greehey Children’s Cancer Research Institute, Department of Molecular MedicineUT Health San AntonioSan AntonioUSA

Personalised recommendations