Targeting Hsp-90 Related Disease Entities for Therapeutic Development

  • Timothy Westlake
  • Mitchell Sun
  • Brandon C. Rosenblum
  • Zhengping Zhuang
  • Jared S. RosenblumEmail author
Part of the Heat Shock Proteins book series (HESP, volume 19)


Heat shock protein 90 (HSP-90) has been identified in many disease processes including cancer, neurodegeneration, autoimmune diseases, and cancers. Great effort has been expended in the development of specific inhibitors of the N-terminal and C-terminal domains. Inhibitors of post-translational modification have also been developed. Herein, we explore the available inhibitors and those in development, discuss the relevant disease processes, and examine the pitfalls and promises of targeting HSP-90 for therapeutic intervention.


Autoimmune disease Cancer Diabetes Heat shock proteins Neurodegeneration Therapeutics 





absorption, distribution, metabolism, excretion


protein kinase B


B-Raf proto-oncogene


RAF proto-oncogene serine/threonine-protein kinase


C-terminal domain




endoplasmic reticulum


FK506 binding protein


Fms-like tyrosine kinase




histone deacetylase


HDAC inhibitor


human epidermal growth factor receptor


hypoxia inducible factor


HSP70-HSP90 organizaing protein


heat shock factor


heat shock protein


huntington protein


IkB kinase


Janus kinase


c-Jun N-terminal kinases


nuclear factor kappa light-chain enhancer of activated B cells


nuclear factor erythroid 2-related factor


N-terminal domain


rapidly accelerated fibrosarcoma


RAS guanyl-releasing protein


suberoyl anilide hydroxamic acid


signal transducer and activators of transcription


tetraotricopeptide repeat


vascular endothelial growth factor receptor


  1. Allan RK, Mok D, Ward BK et al (2006) Modulation of chaperone function and cochaperone interaction by novobiocin in the C-terminal domain of Hsp90: evidence that coumarin antibiotics disrupt Hsp90 dimerization. J Biol Chem 281:7161–7171CrossRefGoogle Scholar
  2. Aoyagi S, Archer TK (2005) Modulating molecular chaperone Hsp90 functions through reversible acetylation. Trends Cell Biol 15(11):565–567CrossRefGoogle Scholar
  3. Baldo B, Weiss A, Bibel M et al (2012) A screen for enhancers of clearance identifies huntingtin as a heat shock protein 90 (Hsp90) client protein. J Biol Chem 287:1406–1414CrossRefGoogle Scholar
  4. Bali P, George P, Cohen P et al (2004) Superior activity of the combination of histone deacetylase inhibitor LAQ824 and the FLT-3 kinase inhibitor PKC412 against human AML cells with mutant FLT-3. Clin Cancer Res 10:4991–4997CrossRefGoogle Scholar
  5. Banerji U (2009) Heat shock protein 90 as a drug target: some like it hot. Clin Cancer Res 15:9–14CrossRefGoogle Scholar
  6. Barrott JJ, Haystead TA (2013) HSP90, an unlikely ally in the war on cancer. FEBS J 280(6):1381–1396CrossRefGoogle Scholar
  7. Beliakoff J, Whitesell L (2004) Hsp90: an emerging target for breast cancer therapy. Anti-Cancer Drugs 15:651–662CrossRefGoogle Scholar
  8. Bhatia S, Diedrich D, Frieg B et al (2018) Targeting HSP90 dimerization via the C terminus is effective in imatinib-resistant CML and lacks the heat shock response. Blood 132(3):307–320CrossRefPubMedPubMedCentralGoogle Scholar
  9. Boyault C, Zhang Y, Fritah S et al (2007) HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates. Genes Dev 21:2172–2218CrossRefPubMedPubMedCentralGoogle Scholar
  10. Brady RO, Kanfer JN, Bradley RM et al (1966) Demonstration of a deficiency of glucocerebroside-cleaving enzyme in Gaucher's disease. J Clin Invest 45:1112–1115CrossRefPubMedPubMedCentralGoogle Scholar
  11. Buchner J (1999) Hsp90 & co. – a holding for folding. Trends Biochem Sci 24:136–141CrossRefPubMedPubMedCentralGoogle Scholar
  12. Burlison J, Neckers L, Smith AB et al (2006) Novobiocin: redesigning a DNA gyrase inhibitor for selective inhibition of Hsp90. JACS 128(48):15529–15536CrossRefGoogle Scholar
  13. Chai RC, Vieusseux JL, Lang BJ et al (2017) Histone deacteylase activity mediates acquired resistance towards structurally diverse hsp90 inhibitors. Mol Oncol 11(5):567–583CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chiosis G, Timaul MN, Lucas B et al (2001) Small molecule designed to bind to the adenine nucleotide pocket of HSP-90 causes Her2 degradation and the growth arrest and differentiation of breast cancer cells. Chem Biol 8(3):289–299CrossRefPubMedPubMedCentralGoogle Scholar
  15. DeBoer C, Meulman PA, Wnuk RJ et al (1970) Geldanamycin, a new antibiotic. J Antibiot (Tokyo) 23:442–447CrossRefGoogle Scholar
  16. Dickey CA, Kamal A, Lundgren K et al (2007) The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J Clin Invest 117:648–658CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dickson MA, Okuno SH, Keohan ML et al (2012) Phase II study of the HSP90-inhibitor BIIB021 in gastrointestinal stromal tumors. Ann Oncol: Off J Eur Soc Med Oncol 24(1):252–257CrossRefGoogle Scholar
  18. Ding H, Peterson KL, Correia C et al (2017) Histone deacetylase inhibitors interrupt HSP90-CRAF interactions to upregulate BIM and circumvent drug resistance in lymphoma cells. Leukemia 31(7):1593–1602CrossRefPubMedPubMedCentralGoogle Scholar
  19. Donnelly A, Blagg B (2008) Novobiocin and additional inhibitors of Hsp90 C-terminal nucleotide-binding pocket. Curr Med Chem 15:2702–2717CrossRefPubMedPubMedCentralGoogle Scholar
  20. Duerfeldt A, Blagg B (2010) Hsp90 inhibition: elimination of shock and stress. Bioorg Med Chem Lett 20(17):4983–4987CrossRefPubMedPubMedCentralGoogle Scholar
  21. Elfiky A, Saif MW, Beeram M et al (2008) BIIB021, an oral, synthetic non-ansamycin Hsp90 inhibitor: phase I experience. J Clin Oncol 26:2503CrossRefGoogle Scholar
  22. Eskew JD, Sadikot T, Morales P et al (2011) Development and characterization of a novel C-terminal inhibitor of Hsp90 in androgen dependent and independent prostate cancer cells. BMC Cancer 11:468CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fiskus W, Ren Y, Mohapatra A et al (2007) Hydroxamic acid analogue histone deacetylase inhibitors attenuate estrogen receptor-alpha levels and transcriptional activity: a result of hyperacetylation and inhibition of chaperone function of heat shock protein 90. Clin Cancer Res 13:4882–4890CrossRefGoogle Scholar
  24. Goetz MP, Toft DO, Ames MM et al (2003) The HSP90 chaperone complex as a novel target for cancer therapy. Ann Oncol 14(8):1169–1176CrossRefGoogle Scholar
  25. Gong C, Igbal K (2008) Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr Med Chem 15:2321–2328CrossRefPubMedPubMedCentralGoogle Scholar
  26. Goode KM, Petrov DP, Vickman RE et al (2017) Targeting the Hsp90 C-terminal domain to induce allosteric inhibition and selective client downregulation. Biochim Biophys Acta 1861:1992–2006CrossRefGoogle Scholar
  27. Gormley N, Orphanides G, Meyers A et al (1996) The interaction of coumarin antibiotics with dragments of DNA gyrase B. Biochemistry 3:5083–5092CrossRefGoogle Scholar
  28. Guo T, Noble W, Hanger DP (2017) Roles of tau protein in health and disease. Acta Neuropathol (Berl) 133:665–704CrossRefGoogle Scholar
  29. Hoter A, El-Sabban M, Naim H (2018) The HSP90 family: structure, regulation, function, and implications in health and disease. Int J Mol Sci 19:1–33Google Scholar
  30. Hruska K, LaMarca M, Scott C et al (2008) Gaucher disease: mutation and polymorphism spectrum in the glucocerebrosidase gene (GBA). Hum Mutat 29:567–583CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jackson SE (2012) Hsp90: structure and function. In: Jackson S (ed) Molecular chaperones, Topics in current chemistry, vol 328. Springer, BerlinCrossRefGoogle Scholar
  32. Jhaveri K, Modi S (2012) HSP90 inhibitors for cancer therapy and overcoming drug resistance. Adv Pharmacol 65:471–517CrossRefPubMedPubMedCentralGoogle Scholar
  33. Karagoz G, Duarte A, Akoury E et al (2014) Hsp90-tau complex reveals molecular basis for specificity in chaperone action. Cell 156:963–974CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kasperkiewicz M, Müller R, Manz R et al (2011) Heat-shockprotein 90 inhibition in autoimmunity to type VII collagen: evidence that nonmalignant plasma cells are not therapeutic targets. Blood 117(23):6135–6142CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kekapure V, Dannenberg A, Subbaramaiah K (2009) HDAC6 modulates Hsp90 chaperone activity and regulates activation of aryl hydrocarbon receptor signaling. J Biol Chem 284:7436–7445CrossRefGoogle Scholar
  36. Koay YC, Wahyudi H, McAlpine SR (2016) Reinventing HSP90 inhibitors: blocking C-terminal binding events to HSP90 by using dimerized inhibitors. Chem Eur J 22:18572–11858CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kovacs J, Murphy P, Gaillard S et al (2005) HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell 18:601–607CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lackie R, Maciejewski A, Ostapchenko V et al (2017) The HSP70/HSP90 chaperone machinery in neurodegenerative diseases. Front Neurosci 11:1–23CrossRefGoogle Scholar
  39. Lazaro I, Oguiza A, Recio C et al (2015) Targeting HSP90 ameliorates nephropathy and atherosclerosis through suppression of NF-κB and STAT signaling pathways in diabetic mice. Diabetes 64(10):3600–3613CrossRefGoogle Scholar
  40. Lazaro I, Oguiza A, Recio C et al (2017) Interplay between HSP90 and Nrf2 pathways in diabetes-associated atherosclerosis. Clin Investig Arterioscler 29(2):51–59Google Scholar
  41. Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159CrossRefGoogle Scholar
  42. Lee JH, Gao J, Kosinski PA, Elliman SJ et al (2013) Heat shock protein 90 (HSP90) inhibitors activate the heat shock factor 1 (HSF1) stress response pathway and improve glucose regulation in diabetic mice. Biochem Biophys Res Commun 430(3):1109–1113CrossRefGoogle Scholar
  43. Lei H, Romeo G, Kazlauskas A (2004) Heat shock protein-90α-dependent translocation of annexin II to the surface of endothelial cells modulates plasmin activity in the diabetic rat aorta. Circ Res 94:902–909CrossRefGoogle Scholar
  44. Liu W, Vielhauer GA, Holzbeierlein JM et al (2015) KU675, a concomitant heat-shock protein inhibitor of Hsp90 and Hsc70 that manifests isoform selectivity for Hsp90α in prostate cancer cells. Mol Pharmacol 88(1):121–130CrossRefPubMedPubMedCentralGoogle Scholar
  45. Luo W, Sun W, Taldone T et al (2010) Heat shock protein 90 in neurodegenerative diseases. Mol Neurodegener 5:1–8CrossRefGoogle Scholar
  46. Madrigal-Matute J, Lopez-Franco O, Blanco-Colio LM et al (2010) Heat shock protein 90 inhibitors attenuate inflammatory responses in atherosclerosis. Cardiovasc Res 86:330–337CrossRefGoogle Scholar
  47. Mollapour M, Neckers L (2012) Post-translational modifications of Hsp90 and their contributions to chaperone regulation. Biochim Biophys Acta 1823:648–655CrossRefPubMedPubMedCentralGoogle Scholar
  48. Neckers L, Ivy SP (2003) Heat shock protein 90. Curr Opin Oncol 15:419–424CrossRefPubMedPubMedCentralGoogle Scholar
  49. Park J, Kim S, Choi M, Lee J et al (2008) Class II histone deacetylases play pivotal roles in heat shock protein 90-mediated proteasomal degradation of vascular endothelial growth factor receptors. Biochem Biophys Res Commun 368:318–322CrossRefGoogle Scholar
  50. Prodromou C (2016) Mechanisms of Hsp90 regulation. Biochem J 473:2439–2452CrossRefPubMedPubMedCentralGoogle Scholar
  51. Prodromou C, Rose SM, O’Brien R et al (1997) Identification and structural characterization of the ATP/ADP-binding site in the HSP-90 molecular chaperone. Cell 90(1):65–75CrossRefPubMedPubMedCentralGoogle Scholar
  52. Regna N, Vieson M, Gojmerac A et al (2015) HDAC expression and activity is upregulated in diseased lupus-prone mice. Int Immunopharmacol 29:494–503CrossRefPubMedPubMedCentralGoogle Scholar
  53. Rice JW, Veal JM, Fadden RP et al (2008) Small molecule inhibitors of Hsp90 potently affect inflammatory disease pathways and exhibit activity in models of rheumatoid arthritis. Arthritis Rheum 58(12):3765–3775CrossRefGoogle Scholar
  54. Roe M, Wahab B, Torok Z et al (2018) Dihydropyridines allosterically modulate Hsp90 providing a novel mechanism for heat shock protein co-induction and neuroprotection. Front Mol Biosci 5(51):1–14Google Scholar
  55. Ron I, Horowitz M (2005) ER retention and degradation as the molecular basis underlying Gaucher disease heterogeneity. Hum Mol Genet 14(16):2387–2398CrossRefPubMedPubMedCentralGoogle Scholar
  56. Russo CD, Polak PE, Mercado PR et al (2006) The heat-shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin suppresses glial inflammatory responses and ameliorates experimental autoimmune encephalomyelitis. J Neurochem 99(5):1351–1362CrossRefGoogle Scholar
  57. Schopf F, Biebl M, Buchner J (2017) The HSP90 chaperone machinery. Nat Rev Mol Cell Biol 18:345–360CrossRefGoogle Scholar
  58. Schwock J, Pham NA, Cao MP et al (2008) Efficacy of Hsp90 inhibition for induction of apoptosis and inhibition of growth in cervical carcinoma cells in vitro and in vivo. Cancer Chemother Pharmacol 61:669–681CrossRefPubMedPubMedCentralGoogle Scholar
  59. Scroggins BT, Robzyk K, Wang D et al (2007) An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol Cell 25:151–159CrossRefPubMedPubMedCentralGoogle Scholar
  60. Shelton L, Koren J, Blair L (2017) Imbalances in the Hsp90 chaperone machinery: implications for Tauopathies. Front Neurosci 11:1–12CrossRefGoogle Scholar
  61. Sidera K, Patsavoudi E (2014) HSP90 inhibitors: current development and potential in cancer therapy. Recent Pat Anticancer Drug Discov 9:1–20CrossRefGoogle Scholar
  62. Sittler A, Lurz R, Lueder G et al (2001) Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington’s disease. Hum Mol Genet 10(12):1307–1315CrossRefPubMedPubMedCentralGoogle Scholar
  63. Solárová Z, Mojžiš J, Solár P (2015) Hsp90 inhibitor as a sensitizer of cancer cells to different therapies (review). Int J Oncol 46:907–926Google Scholar
  64. Speranza G, Anderson L, Chen AP et al (2018) First-in-human study of the epichaperome inhibitor PU-H71: clinical results and metabolic profile. Investig New Drugs 36(2):230–239CrossRefGoogle Scholar
  65. Srivastava P (2002) Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2(3):185–194CrossRefGoogle Scholar
  66. Stebbins CE, Russo AA, Schneider C et al (1997) Crystal structure of an HSP90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 18(2):239–250CrossRefGoogle Scholar
  67. Stirnemann J, Belmatoug N, Camou F et al (2017) A review of Gaucher disease pathophysiology, clinical presentation and treatments. Int J Mol Sci 18(2):441CrossRefPubMedPubMedCentralGoogle Scholar
  68. Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11:515–528CrossRefGoogle Scholar
  69. Terracciano S, Russo A, Chini MG et al (2018) Discovery of new molecular entities able to strongly interfere with Hsp90 C-terminal domain. Sci Rep 8:1709CrossRefPubMedPubMedCentralGoogle Scholar
  70. Trepel J, Mollapour M, Giaccone G et al (2010) Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10:537–549CrossRefPubMedPubMedCentralGoogle Scholar
  71. Tukaj S, Zillikens D, Kasperkiewicz M (2015) Heat shock protein 90: a pathophysiological factor and novel treatment target in autoimmune bullous skin diseases. Exp Dermatol 24:567–571CrossRefGoogle Scholar
  72. Wandinger S, Richter K, Buchner J (2008) The Hsp90 chaperone machinery. J Biol Chem 283(27):18473–18477CrossRefGoogle Scholar
  73. Wang L, Xie C, Greggio E et al (2008) The chaperone activity of heat shock protein 90 is critical for maintaining the stability of leucine-rich repeat kinase 2J. Neurosciences 28:3384–3391Google Scholar
  74. Wang Z, Hu P, Tang F et al (n.d.) HDAC6 promotes cell proliferation and confers resistance to temozolomide in glioblastoma. Cancer Lett 379:134–142CrossRefPubMedPubMedCentralGoogle Scholar
  75. Whitesell L, Linquist S (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772CrossRefGoogle Scholar
  76. Yang C, Rahimpour S, Lu J et al (2013) Histone deacetylase inhibitors increase glucocerebrosidase activity in Gaucher disease by modulation of molecular chaperones. Proc Natl Acad Sci U S A 110:966–971CrossRefPubMedPubMedCentralGoogle Scholar
  77. Yu X, Guo ZS, Marcu MG et al (2002) J Natl Cancer Inst 94:504–513CrossRefGoogle Scholar
  78. Zhang H, Burrows F (2004) Targeting multiple signal transduction pathways through inhibition of Hsp90. J Mol Med 82:488–499Google Scholar
  79. de Zoeten E, Wang L, Butler K et al (2011) Histone deacetylase 6 and heat shock protein 90 control the functions of foxp3+ T-regulatory cellsMol. Cell Biol 31:2066–2078Google Scholar
  80. Zou JY, Guo YL, Guettouche T et al (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94(4):471–480CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Timothy Westlake
    • 1
  • Mitchell Sun
    • 1
    • 2
  • Brandon C. Rosenblum
    • 3
  • Zhengping Zhuang
    • 1
    • 3
  • Jared S. Rosenblum
    • 1
    Email author
  1. 1.Neuro-Oncology Branch, National Cancer InstituteNational Institutes of HealthBethesdaUSA
  2. 2.Liberal Arts and SciencesUniversity of Illinois at ChicagoChicagoUSA
  3. 3.Surgical Neurology BranchNational Institute of Neurologic Disorders and StrokeBethesdaUSA

Personalised recommendations