Evaluation of Heat Shock Protein 60 (HSP60) Chaperonin in Oncology

  • İsmail Ağababaoğlu
Part of the Heat Shock Proteins book series (HESP, volume 18)


Heat shock proteins (Hsp) are a group of chaperonin that are increased production at cellular level in cellular stress situations. These stress include such as heat, infection, inflammation, many toxins such as ethanol, arsenic, some metals, ultraviolet light, some oncogenes. Under physiological conditions, Hsp helps the newly produced proteins in the cell in folding correctly. They provide stabilization of the mitochondria as a mechanism that prevents the cell from apoptosis. They function by interacting with proteins called chaperonin in the cell cycle and stabilization of mitochondria. And it protects the cell from apoptosis and directs it to the process of carcinogenesis. Therefore, it has great potential in cancer studies in many stages. Thus, our chapter aims to briefly evaluate up to date knowledge for Hsp in oncological field.


Biomarker Cancer vaccines Chaperonin Carcinogenesis Heat shock protein 60 Target therapy 


2D gel

Two-dimensional gel


5- fluorouracil




adenosine triphosphate


cancer Antigen 19-9


cytotoxic T cells surface antigen


carcinoembryonic antigen


myelocytomatosis oncogene


peptidylprolyl isomerase D (cyclophilin D)


enhancer box


Enzyme-linked immunosorbent assay


hepatitis C virus


heat shock protein




matrix assisted laser desorption ionization time of flight mass spectrometry


messenger ribonucleic acid


prostate specific antigen


polymerase chain reaction


human colorectal cancer cell line


tumor necrosis factor-alpha



I wish to thank Safiye Aktaş, Cahit Koçak and Efe Özgür Serinan for contributing many ideas that improved the chapter.


  1. Abu-hadid M, Wilkes JD, Elakawi Z, Pendyala L, Perez RP (1997) Relationship between heat shock protein 60 (HSP60) mRNA expression and resistance to platinum analogues in human ovarian and bladder carcinoma cell lines. Cancer Lett 119:63–70CrossRefGoogle Scholar
  2. Ağababaoğlu İ, Demir AB, Erçetin AP, Altun ZS, Ayça Pamukoğlu, Aktaş S, Ersöz H, Akkoçlu A, Önen A (2017) Chaperonin (HSP60) and annexin 2 are candidate biomarkers for early diagnosis of non small cell lung carcinoma. Med J 96(6)Google Scholar
  3. Arya R, Mallik M, Lakhotia SC (2007) Heat shock genes – integrating cell survival and death. J Biosci 32:595–610CrossRefGoogle Scholar
  4. Cappello F, Conway de Macario E, Marasà L, Zummo G, Macario AJ (2008) Hsp60 expression, new locations, functions and perspectives for cancer diagnosis and therapy. Cancer Biol Ther 7:801–809CrossRefGoogle Scholar
  5. Cappello F, Conway de Macario E, Marino Gammazza A, Bonaventura G, Carini F, Czarnecka AM, Farina F, Zummo G, Macario AJ (2013) Hsp60 and human aging: les liaisons dangereuses. Front Biosci 18:626–637CrossRefGoogle Scholar
  6. Chaiwatanasirkul KA, Sala A (2011) The tumour-suppressive function of CLU is explained by its localisation and interaction with HSP60. Cell Death Dis 2:e219CrossRefGoogle Scholar
  7. Chang CL, Hsu YT, Wu CC, Yang YC, Wang C, Wu TC, Hung CF (2012) Immune mechanism of the antitumor effects generated by bortezomib. J Immunol 189:3209–3220CrossRefGoogle Scholar
  8. Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10:86–103CrossRefGoogle Scholar
  9. Desmetz C, Bibeau F, Boissière F, Bellet V, Rouanet P, Maudelonde T, Mangé A, Solassol J (2008) Proteomics-based identification of HSP60 as a tumor-associated antigen in early stage breast cancer and ductal carcinoma in situ. J Proteome Res 7:2830–2837CrossRefGoogle Scholar
  10. Faried A, Sohda M, Nakajima M, Miyazaki T, Kato H, Kuwano H (2004) Expression of heat-shock protein Hsp60 correlated with the apoptotic index and patient prognosis in human esophageal squamous cell carcinoma. Eur J Cancer 40:2804–2811CrossRefGoogle Scholar
  11. Ghosh JC, Dohi T, Kang BH, Altieri DC (2008) Hsp60 regulation of tumor cell apoptosis. J Biol Chem 283:5188–5194CrossRefGoogle Scholar
  12. Ghosh JC, Siegelin MD, Dohi T, Altieri DC (2010) Heatshock protein 60 regulation of the mitochondrial permeability transition pore in tumor cells. Cancer Res 15:8988–8993CrossRefGoogle Scholar
  13. Gorska M, Gammazza AM, Zmijewski MA, Campanella C, Cappello F, Wasiewicz T, Kuban-Jankowska A, Daca A, Sielicka A, Popowska U, Knap N, Antoniewicz J, Wakabayashi T, Wozniak M (2013) Geldanamycin-induced osteosarcoma cell death is associated with hyperacetylation and loss of mitochondrial pool of heat shock protein 60 (hsp60). PLoS One 8:e71135CrossRefGoogle Scholar
  14. Hamelin C, Cornut E, Poirier F, Pons S, Beaulieu C, Charrier J-P, Haïdous H, Cotte E, Lambert C, Piard F, Ataman-Önal Y, Choquet-Kastylevsky G (2011) Identification and verification of heat shock protein 60 as a potential serum marker for colorectal cancer. FEBS J 278:4845–4859CrossRefGoogle Scholar
  15. Hamrita B, Chahed K, Kabbage M, Guillier CL, Trimeche M, Chaïeb A, Chouchane L (2008) Identification of tumor antigens that elicit a humoral immune response in breast cancer patients’ sera bysero- logical proteome analysis (SERPA). Clin Chim Acta 393:95–102CrossRefGoogle Scholar
  16. Hjerpe E, Egyhazi S, Carlson J, Stolt MF, Schedvins K, Johansson H, Shoshan M, Avall-Lundqvist E (2013) Int J Gynecol Cancer 23(3):448–455. Scholar
  17. Hoang AT, Huang J, Rudra-Ganguly N et al (2000) A novel association between the human heat shock transcription factor 1 (HSF1) and prostate adenocarcinoma. Am J Pathol 156(3):857–864CrossRefGoogle Scholar
  18. Hwang YJ, Soon PL, Suk YK, Young HC, Min JK, Choong HL, Joo YL, Dae YK (2009) Expression of heats hock protein 60 kDa is upregulated in cervical cancer. Yonsei Med J 50:399–406CrossRefGoogle Scholar
  19. Kang SM, Kim SJ, Kim JH, Lee W, Kim GW, Lee KH, Choi KY, Oh JW (2009) Interaction of hepatitis C virus core protein with Hsp60 triggers the production of reactive oxygen species and enhances TNF-alpha-mediated apoptosis. Cancer Lett 279:230–237CrossRefGoogle Scholar
  20. Liffers ST, Maghnouj A, Munding JB, Jackstadt R, Herbrand U, Schulenborg T, Marcus K, Klein-Scory S, Wolff Schmiegel W, Irmgard Schwarte-Waldhoff I, Meyer HE, Stühler K, Hahn SA (2011) Keratin 23, a novel DPC4/Smad4 target gene which binds 14-3-3e. BMC Cancer 11:137CrossRefGoogle Scholar
  21. Liu T, Daniels CK, Cao S (2012) Comprehensive review on the HSC70 functions, interactions with related molecules and involvement in clinical diseases and therapeutic potential. Pharmacol Ther 136:354–374CrossRefGoogle Scholar
  22. Lv LH, Wan YL, Lin Y, Zhang W, Yang M, Li GL, Lin HM, Shang CZ, Chen YJ, Min J (2012) Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. J Biol Chem 287:15874–15885CrossRefGoogle Scholar
  23. Nakamura H, Minegishi H (2013) Curr Pharm Des 19(3):441–451. ReviewCrossRefGoogle Scholar
  24. Peng X, Guo X, Borkan SC, Bharti A, Kuramochi Y, Calderwood S, Sawyer DB (2005) Heat shock protein 90 stabilization of ErbB2 expression is disrupted by ATP depletion in myocytes. J Biol Cem 280:13148–13152Google Scholar
  25. Ritossa F (1996) Discovery of the heat shock response. Cell Stress Chaperones 1(2):97–98CrossRefGoogle Scholar
  26. Sigler PB, Xu Z, Rye HS, Burston SG, Fenton WA, Horwich AL (1998) Structure and function in GroEL-mediated protein folding. Annu Rev Biochem 67:581–608CrossRefGoogle Scholar
  27. Skvortsov S, Schafer G, Stasyk T, Fuchsberger C, Bonn GK, Bartsch G, Klocker H, Huber LA (2011) Proteomics profiling of micro dissected low- and high-grade prostate tumors identifies Lamin A as a discriminatory biomarker. J Proteome Res 10:259–268CrossRefGoogle Scholar
  28. Srivastava P (2002) Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 20:395–425CrossRefGoogle Scholar
  29. Su TR, Lin JJ, Chiu CC, Chen JY, Su JH, Cheng ZJ, Hwang WI, Huang HH, Wu YJ (2012) Proteomic investigation of anti-tumor activities exerted by sinularin against A2058 melanoma cells. Electrophoresis 33:1139–1152CrossRefGoogle Scholar
  30. Tsai YP, Teng SC, Wu KJ (2008) Direct regulation of HSP60 expression by c-MYC induces. Transformation 582(29):4083–4088. Epub 2008 Nov 20CrossRefGoogle Scholar
  31. Tsai YP, Yang MH, Huang CH, Chang SY, Chen PM, Liu CJ, Teng SC, Wu KJ (2009) Interaction between HSP60 and beta-catenin promotes metastasis. Carcinogenesis 30:1049–1057CrossRefGoogle Scholar
  32. Wong CS, Wong VW, Chan CM, Ma BB, Hui EP, Wong MC, Lam MY, Au TC, Chan WH, Cheuk W, Chan AT (2008) Identification of 5-fluorouracil response proteins in colorectal carcinoma cell line SW480 by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Oncol Rep 20:89–98PubMedGoogle Scholar
  33. Xu X, Wang W, Shao W, Yin W, Chen H, Qiu Y, Mo M, Zhao J, Deng Q, He J (2011) J Surg Oncol 104(6):598–603. Epub 2011Jun13CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • İsmail Ağababaoğlu
    • 1
  1. 1.Department of Thoracic SurgeryYıldırım Beyazıt University Yenimahalle Research HospitalAnkaraTurkey

Personalised recommendations