Advertisement

Hsp60 in Modifications of Nervous System Homeostasis and Neurodegeneration

  • Celeste Caruso BavisottoEmail author
  • Federica Scalia
  • Alessandro Pitruzzella
  • Magdalena Górska-Ponikowska
  • Claudia Marino
  • Giulio Taglialatela
Chapter
Part of the Heat Shock Proteins book series (HESP, volume 18)

Abstract

Hsp60 is a critical chaperonin for its role in preserving cell survival and protecting mitochondria against stress conditions. Indeed, mutations or malfunctions of Hsp60 are involved in several human diseases, either genetic or acquired, some of them affecting also the brain. In this chapter, we present several experimental observations supporting the role of Hsp60 in some neurodegenerative diseases. Further, Hsp60, as multifunctional protein, contributes to the protein folding system, to protect mitochondria and is involved in several other cellular pathways that are known to be affected in these diseases. Furthermore, due to its role outside of the mitochondria and in the extracellular fluids, it has also been suggested that Hsp60 has a role in triggering neuroinflammation. Taken together, these considerations strongly suggest the important role for Hsp60 in neurodegenerative diseases and might propose Hp60 as an attractive target for developing future therapies.

Keywords

Exosomes Heat shock proteins (Hsp) Hsp60 Molecular chaperones Neurodegenerative disease Theranostic tool 

Abbreviations

ACADS

Acyl-CoA dehydrogenase gene

AD

Alzheimer’s disease

APP

Amyloid precursor protein

ATPase

Adenosine triphosphatase

Amyloid-β peptide

BBB

Blood brain barrier

CNS

Central nervous system

CS

Chaperone system

HD

Huntington’s disease

Hsp60

Heat shock protein 60 kDa

HSPD1

Heat shock protein family D

HTT

Huntingtin gene

NDDs

Neurodegenerative disorders

NFTs

Neurofibrillary tangles

PD

Parkinson’s disease

sHsp

Small heat shock proteins

TLR

Toll-like receptor

Notes

Acknowledgements

A.P., C.C.B. and F.S. were partially supported by UniPA.

References

  1. Abbott NJ (2002) Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat 200(6):629–638. Retrieved August 28, 2018 from internet: http://www.ncbi.nlm.nih.gov/pubmed/12162730
  2. Ahmed Z, Asi YT, Sailer A, Lees AJ, Houlden H, Revesz T, Holton JL (2012) The neuropathology, pathophysiology and genetics of multiple system atrophy. Neuropathol Appl Neurobiol 38(1):4–24.  https://doi.org/10.1111/j.1365-2990.2011.01234.xCrossRefPubMedGoogle Scholar
  3. Armstrong RA (2012) On the “classification” of neurodegenerative disorders: discrete entities, overlap or continuum? Folia Neuropathol 50(3):201–208. Retrieved August 2, 2018 from internet: http://www.ncbi.nlm.nih.gov/pubmed/23023335
  4. Bayer TA (2015) Proteinopathies, a core concept for understanding and ultimately treating degenerative disorders? Eur Neuropsychopharmacol 25(5):713–724.  https://doi.org/10.1016/j.euroneuro.2013.03.007CrossRefPubMedGoogle Scholar
  5. Bellavista E, Santoro A, Galimberti D, Comi C, Luciani F, Mishto M (2014) Current understanding on the role of standard and immunoproteasomes in inflammatory/immunological pathways of multiple sclerosis. Autoimmune Dis 2014:739705.  https://doi.org/10.1155/2014/739705CrossRefPubMedPubMedCentralGoogle Scholar
  6. Beyer K, Domingo-Sàbat M, Ariza A (2009) Molecular pathology of Lewy body diseases. Int J Mol Sci 10(3):724–745.  https://doi.org/10.3390/ijms10030724CrossRefPubMedPubMedCentralGoogle Scholar
  7. Böttinger L, Oeljeklaus S, Guiard B, Rospert S, Warscheid B, Becker T (2015) Mitochondrial heat shock protein (Hsp) 70 and Hsp10 cooperate in the formation of Hsp60 complexes. J Biol Chem 290(18):11611–11622.  https://doi.org/10.1074/jbc.M115.642017CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bross P, Li Z, Hansen J, Hansen JJ, Nielsen MN, Corydon TJ, Georgopoulos C, Ang D, Lundemose JB, Niezen-Koning K, Eiberg H, Yang H, Kølvraa S, Bolund L, Gregersen N (2007) Single-nucleotide variations in the genes encoding the mitochondrial Hsp60/Hsp10 chaperone system and their disease-causing potential. J Hum Genet 52(1):56–65.  https://doi.org/10.1007/s10038-006-0080-7CrossRefGoogle Scholar
  9. Bross P, Naundrup S, Hansen J, Nielsen MN, Christensen JH, Kruhøffer M, Palmfeldt J, Corydon TJ, Gregersen N, Ang D, Georgopoulos C, Nielsen KL (2008) The Hsp60-(p.V98I) mutation associated with hereditary spastic paraplegia SPG13 compromises chaperonin function both in vitro and in vivo. J Biol Chem 283(23):15694–15700.  https://doi.org/10.1074/jbc.M800548200CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bross P, Magnoni R, Bie AS (2012) Molecular chaperone disorders: defective Hsp60 in neurodegeneration. Curr Top Med Chem 12(22):2491–2503CrossRefGoogle Scholar
  11. Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92(3):351–366CrossRefGoogle Scholar
  12. Butterfield S, Hejjaoui M, Fauvet B, Awad L, Lashuel HA (2012) Chemical strategies for controlling protein folding and elucidating the molecular mechanisms of amyloid formation and toxicity. JMB 421:204–236CrossRefGoogle Scholar
  13. Campanella C, Bucchieri F, Merendino AM, Fucarino A, Burgio G, Corona DFV, Barbieri G, David S, Farina F, Zummo G, de Macario EC, Macario AJL, Cappello F (2012) The odyssey of Hsp60 from tumor cells to other destinations includes plasma membrane-associated stages and Golgi and exosomal protein-trafficking modalities. PLoS One 7(7):e42008.  https://doi.org/10.1371/journal.pone.0042008CrossRefPubMedPubMedCentralGoogle Scholar
  14. Campanella C, Caruso Bavisotto C, Marino Gammazza A, Nikolic D, Rappa F, David S, Cappello F, Bucchieri F, Fais S (2014) Exosomal heat shock proteins as new players in tumour cell-to-cell communication. J Circulating Biomark 1.  https://doi.org/10.5772/58721
  15. Campanella C, D’Anneo A, Marino Gammazza A, Caruso Bavisotto C, Barone R, Emanuele S, Lo Cascio F, Fais S, Conway de Macario E, Macario AJL (2015a) The histone deacetylase inhibitor SAHA induces HSP60 nitration and its extracellular release by exosomal vesicles in human lung-derived carcinoma cells. Oncotarget 7(20):28849–28867.  https://doi.org/10.18632/oncotarget.6680. aCrossRefPubMedCentralGoogle Scholar
  16. Campanella C, Rappa F, Sciumè C, Marino Gammazza A, Barone R, Bucchieri F, David S, Curcurù G, Caruso Bavisotto C, Pitruzzella A, Geraci G, Modica G, Farina F, Zummo G, Fais S, Conway de Macario E, Macario AJL, Cappello F (2015b) Heat shock protein 60 levels in tissue and circulating exosomes in human large bowel cancer before and after ablative surgery. Cancer 121(18):3230–3239.  https://doi.org/10.1002/cncr.29499.bCrossRefGoogle Scholar
  17. Campanella C, Pace A, Caruso Bavisotto C, Marzullo P, Marino Gammazza A, Buscemi S, Palumbo Piccionello A (2018) Heat shock proteins in Alzheimer’s disease: role and targeting. Int J Mol Sci 19(9):2603.  https://doi.org/10.3390/ijms19092603CrossRefGoogle Scholar
  18. Cappello F, Conway de Macario E, Marasà L, Zummo G, Macario AJL (2008) Hsp60 expression, new locations, functions and perspectives for cancer diagnosis and therapy. Cancer Biol Ther 7(6):801–809CrossRefGoogle Scholar
  19. Cappello F, Caramori G, Campanella C, Vicari C, Gnemmi I, Zanini A, Spanevello A, Capelli A, La Rocca G, Anzalone R, Bucchieri F, D’Anna SE, Ricciardolo FLM, Brun P, Balbi B, Carone M, Zummo G, Conway de Macario E, Macario AJL, Di Stefano A (2011) Convergent sets of data from in vivo and in vitro methods point to an active role of Hsp60 in chronic obstructive pulmonary disease pathogenesis. PLoS One 6(11):e28200.  https://doi.org/10.1371/journal.pone.0028200CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cappello F, Angileri F, Conway de Macario E, Macario AJL (2013a) Chaperonopathies and chaperonotherapy. Hsp60 as therapeutic target in cancer: potential benefits and risks. Curr Pharm Des 19(3):452–457CrossRefGoogle Scholar
  21. Cappello F, Conway de Macario E, Marino Gammazza A, Bonaventura G, Carini F, Czarnecka AM, Farina F, Zummo G, Macario AJL (2013b) Hsp60 and human aging: les liaisons dangereuses. Front Biosci (Landmark Edition) 18:626–637. Retrieved May 22, 2017 from internet: http://www.ncbi.nlm.nih.gov/pubmed/23276948
  22. Cappello F, Marino Gammazza A, Palumbo Piccionello A, Campanella C, Pace A, Conway de Macario E, Macario AJL (2014) Hsp60 chaperonopathies and chaperonotherapy: targets and agents. Expert Opin Ther Targets 18(2):185–208.  https://doi.org/10.1517/14728222.2014.856417CrossRefGoogle Scholar
  23. Carrell RW, Lomas DA (1997) Conformational disease. Lancet 350(9071):134–138.  https://doi.org/10.1016/S0140-6736(97)02073-4CrossRefPubMedGoogle Scholar
  24. Caruso Bavisotto C, Marino Gammazza A, Rappa F, Fucarino A, Pitruzzella A, David S, Campanella C (2013) Exosomes: can doctors still ignore their existence? EuroMediterranean Biomed J 8:137–139.  https://doi.org/10.3269/1970-5492.2013.8.22CrossRefGoogle Scholar
  25. Caruso Bavisotto C, Nikolic D, Marino Gammazza A, Barone R, Lo Cascio F, Mocciaro E, Zummo G, Conway de Macario E, Macario AJ, Cappello F, Giacalone V, Pace A, Barone G, Palumbo Piccionello A, Campanella C (2017a) The dissociation of the Hsp60/pro-Caspase-3 complex by bis(pyridyl)oxadiazole copper complex (CubipyOXA) leads to cell death in NCI-H292 cancer cells. J Inorg Biochem 170:8–16.  https://doi.org/10.1016/j.jinorgbio.2017.02.004. bCrossRefGoogle Scholar
  26. Caruso Bavisotto C, Graziano F, Rappa F, Marino Gammazza A, Logozzi M, Fais S, Maugeri R, Bucchieri F, Conway de Macario E, Macario A, Cappello F, Iacopino D, Campanella C (2018) Exosomal chaperones and miRNAs in gliomagenesis: state-of-art and theranostics perspectives. Int J Mol Sci 19(9):2626.  https://doi.org/10.3390/ijms19092626CrossRefGoogle Scholar
  27. Caruso Bavisotto C, Cappello F, Macario AJL, Conway de Macario E, Logozzi M, Fais S, Campanella C (2017b) Exosomal HSP60: a potentially useful biomarker for diagnosis, assessing prognosis, and monitoring response to treatment. Expert Rev Mol Diagn 17(9):815–822.  https://doi.org/10.1080/14737159.2017.1356230. aCrossRefGoogle Scholar
  28. Chandra D, Choy G, Tang DG (2007) Cytosolic accumulation of HSP60 during apoptosis with or without apparent mitochondrial release: evidence that its pro-apoptotic or pro-survival functions involve differential interactions with caspase-3. J Biol Chem 282(43):31289–31301.  https://doi.org/10.1074/jbc.M702777200CrossRefGoogle Scholar
  29. Cheng MY, Hartl FU, Martin J, Pollock RA, Kalousek F, Neuper W, Hallberg EM, Hallberg RL, Horwich AL (1989) Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 337(6208):620–625.  https://doi.org/10.1038/337620a0CrossRefGoogle Scholar
  30. Christensen JH, Nielsen MN, Hansen J, Füchtbauer A, Füchtbauer E-M, West M, Corydon TJ, Gregersen N, Bross P (2010) Inactivation of the hereditary spastic paraplegia-associated Hspd1 gene encoding the Hsp60 chaperone results in early embryonic lethality in mice. Cell Stress Chaperones 15(6):851–863.  https://doi.org/10.1007/s12192-010-0194-xCrossRefPubMedPubMedCentralGoogle Scholar
  31. Corydon TJ, Hansen J, Bross P, Jensen TG (2005) Down-regulation of Hsp60 expression by RNAi impairs folding of medium-chain acyl-CoA dehydrogenase wild-type and disease-associated proteins. Mol Genet Metab 85(4):260–270.  https://doi.org/10.1016/j.ymgme.2005.04.003CrossRefPubMedGoogle Scholar
  32. Czarnecka AM, Campanella C, Zummo G, Cappello F (2006) Mitochondrial chaperones in cancer: from molecular biology to clinical diagnostics. Cancer Biol Ther 5(7):714–720.  https://doi.org/10.4161/cbt.5.7.2975CrossRefGoogle Scholar
  33. D’Souza SM, Brown IR (1998) Constitutive expression of heat shock proteins Hsp90, Hsc70, Hsp70 and Hsp60 in neural and non-neural tissues of the rat during postnatal development. Cell Stress Chaperones 3(3):188–199CrossRefGoogle Scholar
  34. Dawson TM, Dawson VL (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302(5646):819–822.  https://doi.org/10.1126/science.1087753CrossRefPubMedGoogle Scholar
  35. Deocaris CC, Kaul SC, Wadhwa R (2006) On the brotherhood of the mitochondrial chaperones mortalin and heat shock protein 60. Cell Stress Chaperones 11(2):116–128CrossRefGoogle Scholar
  36. Edenhofer F, Rieger R, Famulok M, Wendler W, Weiss S, Winnacker EL (1996) Prion protein PrPc interacts with molecular chaperones of the Hsp60 family. J Virol 70(7):4724–4728PubMedPubMedCentralGoogle Scholar
  37. Feng M j, Zhang L, Liu Z, Zhou P, Lu X (2013) The expression and release of Hsp60 in 6-OHDA induced in vivo and in vitro models of Parkinson’s disease. Neurochem Res 38(10):2180–2189.  https://doi.org/10.1007/s11064-013-1127-8CrossRefPubMedGoogle Scholar
  38. Ferrer I, López-González I, Carmona M, Arregui L, Dalfó E, Torrejón-Escribano B, Diehl R, Kovacs GG (2014) Glial and neuronal tau pathology in tauopathies: characterization of disease-specific phenotypes and tau pathology progression. J Neuropathol Exp Neurol 73(1):81–97.  https://doi.org/10.1097/NEN.0000000000000030CrossRefPubMedGoogle Scholar
  39. Fontaine B, Davoine CS, Dürr A, Paternotte C, Feki I, Weissenbach J, Hazan J, Brice A (2000) A new locus for autosomal dominant pure spastic paraplegia, on chromosome 2q24-q34. Am J Hum Genet 66(2):702–707.  https://doi.org/10.1086/302776CrossRefPubMedPubMedCentralGoogle Scholar
  40. Ghosh JC, Dohi T, Kang BH, Altieri DC (2008) Hsp60 regulation of tumor cell apoptosis. J Biol Chem 283(8):5188–5194.  https://doi.org/10.1074/jbc.M705904200CrossRefGoogle Scholar
  41. Ghosh JC, Siegelin MD, Dohi T, Altieri DC (2010) Heat shock protein 60 regulation of the mitochondrial permeability transition pore in tumor cells. Cancer Res 70(22):8988–8993.  https://doi.org/10.1158/0008-5472.CAN-10-2225CrossRefPubMedPubMedCentralGoogle Scholar
  42. Goedert M (2001) Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci 2(7):492–501.  https://doi.org/10.1038/35081564CrossRefPubMedGoogle Scholar
  43. Gorska M, Marino Gammazza A, Zmijewski MA, Campanella C, Cappello F, Wasiewicz T, Kuban-Jankowska A, Daca A, Sielicka A, Popowska U, Knap N, Antoniewicz J, Wakabayashi T, Wozniak M (2013) Geldanamycin-induced osteosarcoma cell death is associated with hyperacetylation and loss of mitochondrial pool of heat shock protein 60 (hsp60). PLoS One 8(8):e71135.  https://doi.org/10.1371/journal.pone.0071135CrossRefPubMedPubMedCentralGoogle Scholar
  44. Graziano F, Caruso Bavisotto C, Marino Gammazza A, Rappa F, Coway de Macario E, Macario AJL, Cappello F, Campanella C, Maugeri R, Iacopino DG (2018) Chaperonology: the third eye on brain gliomas. Brain Sci 8(6):110.  https://doi.org/10.3390/brainsci8060110CrossRefPubMedCentralGoogle Scholar
  45. Gupta S, Knowlton AA (2005) HSP60, Bax, apoptosis and the heart. J Cell Mol Med 9(1):51–58CrossRefGoogle Scholar
  46. Gupta S, Knowlton AA (2007) HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway. Am J Physiol Heart Circ Physiol 292(6):3052–3056.  https://doi.org/10.1152/ajpheart.01355.2006CrossRefGoogle Scholar
  47. Gupta RS, Ramachandra NB, Bowes T, Singh B (2008) Unusual cellular disposition of the mitochondrial molecular chaperones Hsp60, Hsp70 and Hsp10. Novartis Found Symp 291:59–68. Retrieved December 2, 2015 from internet: http://www.ncbi.nlm.nih.gov/pubmed/18575266
  48. Haass C, Kaether C, Thinakaran G, Sisodia S (2012) Trafficking and proteolytic processing of APP. Cold Spring Arb Perspect Med 2:a006270Google Scholar
  49. Hansen J, Dürr A, Cournu-Rebeix I, Georgopoulos C, Ang D, Nielsen MN, Davoine C-S, Brice A, Fontaine B, Gregersen N, Bross P (2002) Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am J Hum Genet 70(5):1328–1332.  https://doi.org/10.1086/339935CrossRefPubMedPubMedCentralGoogle Scholar
  50. Hansen J, Bross P, Westergaard M, Nielsen M, Eiberg H, Børglum A, Mogensen J, Kristiansen K, Bolund L, Gregersen N (2003) Genomic structure of the human mitochondrial chaperonin genes: HSP60 and HSP10 are localised head to head on chromosome 2 separated by a bidirectional promoter. Hum Genet 112(1):71–77.  https://doi.org/10.1007/s00439-002-0837-9CrossRefGoogle Scholar
  51. Hansen J, Svenstrup K, Ang D, Nielsen MN, Christensen JH, Gregersen N, Nielsen JE, Georgopoulos C, Bross P (2007) A novel mutation in the HSPD1 gene in a patient with hereditary spastic paraplegia. J Neurol 254(7):897–900.  https://doi.org/10.1007/s00415-006-0470-yCrossRefGoogle Scholar
  52. Hartl FU, Pfanner N, Nicholson DW, Neupert W (1989) Mitochondrial protein import. Biochim Biophys Acta 988(1):1–45CrossRefGoogle Scholar
  53. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475(7356):324–332.  https://doi.org/10.1038/nature10317CrossRefPubMedGoogle Scholar
  54. Hayoun D, Kapp T, Edri-Brami M, Ventura T, Cohen M, Avidan A, Lichtenstein RG (2012) HSP60 is transported through the secretory pathway of 3-MCA-induced fibrosarcoma tumour cells and undergoes N-glycosylation. FEBS J 279(12):2083–2095.  https://doi.org/10.1111/j.1742-4658.2012.08594.xCrossRefPubMedGoogle Scholar
  55. He F, Sun YE (2007) Glial cells more than support cells? Int J Biochem Cell Biol 39(4):661–665.  https://doi.org/10.1016/j.biocel.2006.10.022CrossRefPubMedGoogle Scholar
  56. Hewamadduma CAA, Kirby J, Kershaw C, Martindale J, Dalton A, McDermott CJ, Shaw PJ (2008) HSP60 is a rare cause of hereditary spastic paraparesis, but may act as a genetic modifier. Neurology 70(19):1717–1718.  https://doi.org/10.1212/01.wnl.0000311395.31081.70CrossRefGoogle Scholar
  57. Horwich AL, Fenton WA, Chapman E, Farr GW (2007) Two families of chaperonin: physiology and mechanism. Annu Rev Cell Dev Biol 23(1):115–145.  https://doi.org/10.1146/annurev.cellbio.23.090506.123555CrossRefGoogle Scholar
  58. Illis L (1999) The central nervous system structure and function. Spinal Cord 37(4):310–310.  https://doi.org/10.1038/sj.sc.3100793CrossRefGoogle Scholar
  59. Imarisio S, Carmichael J, Korolchuk V, Chen CW, Saiki S, Rose C, Krishna G, Davies JE, Ttofi E, Underwood BR, Rubinsztein DC (2008) Huntington’s disease: from pathology and genetics to potential therapies. Biochem J 412(2):191–209.  https://doi.org/10.1042/BJ20071619CrossRefPubMedGoogle Scholar
  60. Jacobson M (1991) Developmental neurobiology. Springer US, Boston.  https://doi.org/10.1007/978-1-4757-4954-0CrossRefGoogle Scholar
  61. Jäkel S, Dimou L (2017) Glial cells and their function in the adult brain: a journey through the history of their ablation. Front Cell Neurosci 11:24.  https://doi.org/10.3389/fncel.2017.00024CrossRefPubMedPubMedCentralGoogle Scholar
  62. Jellinger KA (2012) Interaction between pathogenic proteins in neurodegenerative disorders. J Cell Mol Med 16(6):1166–1183.  https://doi.org/10.1111/j.1582-4934.2011.01507.xCrossRefPubMedPubMedCentralGoogle Scholar
  63. Jiang YQ, Wang XL, Cao XH, Ye ZY, Li L, Cai WQ (2013) Increased heat shock transcription factor 1 in the cerebellum reverses the deficiency of Purkinje cells in Alzheimer’s disease. Brain Res 1519:105–111.  https://doi.org/10.1016/j.brainres.2013.04.059CrossRefGoogle Scholar
  64. Jiménez AJ, Domínguez-Pinos MD, Guerra MM, Fernández-Llebrez P, Pérez-Fígares JM (2014) Structure and function of the ependymal barrier and diseases associated with ependyma disruption. Tissue Barriers 2(1):e28426.  https://doi.org/10.4161/tisb.28426CrossRefPubMedPubMedCentralGoogle Scholar
  65. Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford E a, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14(1):105–111.  https://doi.org/10.1007/s12192-008-0068-7CrossRefGoogle Scholar
  66. Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspet AJ, Mack S et al (2000) Principles of neural science, 4th edn. McGraw-Hill Ed, New YorkGoogle Scholar
  67. Kayed R, Head E, Thompson JL, Mclntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300(5618):486–489CrossRefGoogle Scholar
  68. Kim SD, Fung VS (2014) An update on Huntington’s disease: from the gene to the clinic. Curr Opin Neurol 27(4):477–483.  https://doi.org/10.1097/WCO.0000000000000116CrossRefPubMedGoogle Scholar
  69. Kirchhoff SR, Gupta S, Knowlton AA (2002) Cytosolic heat shock protein 60, apoptosis, and myocardial injury. Circulation 105(24):2899–2904CrossRefGoogle Scholar
  70. Korsak M, Kozyreva T (2015) Beta amyloid hallmarks: from intrinsically disordered proteins to Alzheimer’s disease. In: Felli I, Pierattelli R (eds) Intrinsically disordered proteins studied by NMR spectroscopy. Advances in experimental medicine and biology, vol 870. Springer, Cham.  https://doi.org/10.1007/978-3-319-20164-1_14CrossRefGoogle Scholar
  71. Kusk MS, Damgaard B, Risom L, Hansen B, Ostergaard E (2016) Hypomyelinating Leukodystrophy due to HSPD1 mutations: a new patient. Neuropediatrics 47(5):332–335.  https://doi.org/10.1055/s-0036-1584564CrossRefGoogle Scholar
  72. Kuter K, Kratochwil M, Marx S-H, Hartwig S, Lehr S, Sugawa MD, Dencher NA (2016) Native DIGE proteomic analysis of mitochondria from substantia nigra and striatum during neuronal degeneration and its compensation in an animal model of early Parkinson’s disease. Arch Physiol Biochem 122(5):238–256.  https://doi.org/10.1080/13813455.2016.1197948CrossRefPubMedGoogle Scholar
  73. Lee A, Hirabayashi Y, KyuKwon S, LLewis T Jr, Polleux F (2018) Emerging roles of mitochondria in synaptic transmission and neurodegeneration. Curr Opin Physiol 3:82–93CrossRefGoogle Scholar
  74. Levy-Rimler G, Viitanen P, Weiss C, Sharkia R, Greenberg A, Niv A, Lustig A, Delarea Y, Azem A (2001) The effect of nucleotides and mitochondrial chaperonin 10 on the structure and chaperone activity of mitochondrial chaperonin 60. Eur J Biochem 268(12):3465–3472CrossRefGoogle Scholar
  75. Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55(1):1151–1191.  https://doi.org/10.1146/annurev.bi.55.070186.005443CrossRefGoogle Scholar
  76. Lv LH, Wan YL, Lin Y, Zhang W, Yang M, Li G-L, Lin HM, Shang CZ, Chen Y-J, Min J (2012) Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. J Biol Chem 287(19):15874–15885.  https://doi.org/10.1074/jbc.M112.340588CrossRefPubMedPubMedCentralGoogle Scholar
  77. Macario AJL, Conway De Macario E (2001) Molecular chaperones and age-related degenerative disorders. Adv Cell Aging Gerontol 7:131–162.  https://doi.org/10.1016/S1566-3124(01)07018-3CrossRefGoogle Scholar
  78. Macario AJL, Conway de Macario E (2005) Sick chaperones, cellular stress, and disease. N Engl J Med 353(14):1489–1501.  https://doi.org/10.1056/NEJMra050111CrossRefGoogle Scholar
  79. Macario AJ, Conway de Macario E (2018) The Chaperonopathies. Diseases with defective molecular chaperones. In: Fink G (ed) Stress physiology, biochemistry, and pathology. Handbook of stress. Handbook of stress. Elsevier, EdinburghGoogle Scholar
  80. Macario AJL, Cappello F, Zummo G, Conway de Macario E (2010) Chaperonopathies of senescence and the scrambling of interactions between the chaperoning and the immune systems. Ann N Y Acad Sci 1197:85–93.  https://doi.org/10.1111/j.1749-6632.2010.05187.xCrossRefPubMedGoogle Scholar
  81. Macario AJL, Conway de Macario E, Cappello F (2013) The chaperonopathies : diseases with defective molecular chaperones. Springer, DordrechtCrossRefGoogle Scholar
  82. Magen D, Georgopoulos C, Bross P, Ang D, Segev Y, Goldsher D, Nemirovski A, Shahar E, Ravid S, Luder A, Heno B, Gershoni-Baruch R, Skorecki K, Mandel H (2008) Mitochondrial hsp60 chaperonopathy causes an autosomal-recessive neurodegenerative disorder linked to brain hypomyelination and leukodystrophy. Am J Hum Genet 83(1):30–42.  https://doi.org/10.1016/j.ajhg.2008.05.016CrossRefPubMedPubMedCentralGoogle Scholar
  83. Magnoni R, Palmfeldt J, Hansen J, Christensen JH, Corydon TJ, Bross P (2014) The Hsp60 folding machinery is crucial for manganese superoxide dismutase folding and function. Free Radic Res 48(2):168–179.  https://doi.org/10.3109/10715762.2013.858147CrossRefGoogle Scholar
  84. Maiti P, Manna J, Veleri S, Frautschy S (2014) Molecular chaperone dysfunction in neurodegenerative diseases and effects of curcumin. Biomed Res Int 2014:1–14.  https://doi.org/10.1155/2014/495091CrossRefGoogle Scholar
  85. Malik ZA, Kott KS, Poe AJ, Kuo T, Chen L, Ferrara KW, Knowlton AA (2013) Cardiac myocyte exosomes: stability, HSP60, and proteomics. Am J Physiol Heart Circ Physiol 304(7):954–965.  https://doi.org/10.1152/ajpheart.00835.2012CrossRefGoogle Scholar
  86. Mangione MR, Vilasi S, Marino C, Librizzi F, Canale C, Spigolon D, Bucchieri F, Fucarino A, Passantino R, Cappello F, Bulone D, San Biagio PL (2016) Hsp60, amateur chaperone in amyloid-beta fibrillogenesis. Biochim Biophys Acta 1860(11 Pt A):2474–2483.  https://doi.org/10.1016/j.bbagen.2016.07.019CrossRefGoogle Scholar
  87. Marino Gammazza A, Bucchieri F, Grimaldi LME, Benigno A, Conway De Macario E, Macario AJL, Zummo G, Cappello F (2012) The molecular anatomy of human Hsp60 and its similarity with that of bacterial orthologs and acetylcholine receptor reveal a potential pathogenetic role of anti-chaperonin immunity in myasthenia gravis. Cell Mol Neurobiol 32(6):943–947.  https://doi.org/10.1007/s10571-011-9789-8CrossRefGoogle Scholar
  88. Marino Gammazza A, Rizzo M, Citarrella R, Rappa F, Campanella C, Bucchieri F, Patti A, Nikolic D, Cabibi D, Amico G, Conaldi PG, San Biagio PL, Montalto G, Farina F, Zummo G, Conway de Macario E, Macario AJL, Cappello F (2014) Elevated blood Hsp60, its structural similarities and cross-reactivity with thyroid molecules, and its presence on the plasma membrane of oncocytes point to the chaperonin as an immunopathogenic factor in Hashimoto’s thyroiditis. Cell Stress Chaperones 19(3):343–353.  https://doi.org/10.1007/s12192-013-0460-9CrossRefGoogle Scholar
  89. Marino Gammazza A, Caruso Bavisotto C, Barone R, Conway de Macario E, Macario AJL (2016) Alzheimer’s disease and molecular chaperones: current knowledge and the future of chaperonotherapy. Curr Pharm Des 22(26):4040–4049.  https://doi.org/10.2174/1381612822666160518141437CrossRefGoogle Scholar
  90. Marino Gammazza A, Campanella C, Barone R, Caruso Bavisotto C, Gorska M, Wozniak M, Carini F, Cappello F, D’Anneo A, Lauricella M, Zummo G, Conway de Macario E, Macario AJL, Di Felice V (2017a) Doxorubicin anti-tumor mechanisms include Hsp60 post-translational modifications leading to the Hsp60/p53 complex dissociation and instauration of replicative senescence. Cancer Lett 385:75–86.  https://doi.org/10.1016/j.canlet.2016.10.045. aCrossRefPubMedGoogle Scholar
  91. Marino Gammazza A, Caruso Bavisotto C, David S, Barone R, Rappa F, Campanella C, Conway de Macario E, Cappello F, Macario AJL (2017b) HSP60 is a ubiquitous player in the physiological and pathogenic interactions between the chaperoning and the immune systems. Curr Immunol Rev 13(1):44–55.  https://doi.org/10.2174/1573395513666170412170540. bCrossRefGoogle Scholar
  92. Merendino AM, Bucchieri F, Campanella C, Marcianò V, Ribbene A, David S, Zummo G, Burgio G, Corona DFV, Conway de Macario E, Macario AJL, Cappello F (2010) Hsp60 is actively secreted by human tumor cells. PLoS One 5(2):e9247.  https://doi.org/10.1371/journal.pone.0009247CrossRefPubMedPubMedCentralGoogle Scholar
  93. Miyamoto Y, Eguchi T, Kawahara K, Hasegawa N, Nakamura K, Funakoshi-Tago M, Tanoue A, Tamura H, Yamauchi J (2015) Hypomyelinating leukodystrophy-associated missense mutation in HSPD1 blunts mitochondrial dynamics. Biochem Biophys Res Commun 462(3):275–281.  https://doi.org/10.1016/j.bbrc.2015.04.132CrossRefGoogle Scholar
  94. Miyamoto Y, Megumi FT, Hasegawa N, Eguchi T, Tanoue A, Tamura H, Yamauchi J (2016) Data supporting mitochondrial morphological changes by SPG13-associated HSPD1 mutants. Data Brief 6:482–488.  https://doi.org/10.1016/j.dib.2015.12.038CrossRefPubMedPubMedCentralGoogle Scholar
  95. Miyamoto Y, Kawahara K, Torii T, Yamauchi J (2017) Defective myelination in mice harboring hypomyelinating leukodystrophy-associated HSPD1 mutation. Mol Genet Metab Rep 11:6–7.  https://doi.org/10.1016/j.ymgmr.2017.03.003CrossRefPubMedPubMedCentralGoogle Scholar
  96. Mizielinska S, Lashley T, Norona FE, Clayton EL, Ridler CE, Fratta P, Isaacs AM (2013) C9orf72 frontotemporal lobar degeneration is characterised by frequent neuronal sense and antisense RNA foci. Acta Neuropathol 126(6):845–857.  https://doi.org/10.1007/s00401-013-1200-zCrossRefPubMedPubMedCentralGoogle Scholar
  97. Monreal-Flores J, Espinosa-García MT, García-Regalado A, Arechavaleta-Velasco F, Martínez F (2017) The heat shock protein 60 promotes progesterone synthesis in mitochondria of JEG-3 cells. Reprod Biol 17(2):154–161.  https://doi.org/10.1016/j.repbio.2017.04.001CrossRefGoogle Scholar
  98. Morell P, Norton WT (1980) Myelin. Sci Am 242(5):88–90CrossRefGoogle Scholar
  99. Nakamura H, Minegishi H (2013) HSP60 as a drug target. Curr Pharm Des 19(3):441–451CrossRefGoogle Scholar
  100. Nemirovsky A, Fisher Y, Baron R, Cohen IR, Monsonego A (2011) Amyloid beta-HSP60 peptide conjugate vaccine treats a mouse model of Alzheimer’s disease. Vaccine 29(23):4043–4050.  https://doi.org/10.1016/j.vaccine.2011.03.033CrossRefGoogle Scholar
  101. Nielsen KL, Cowan NJ (1998) A single ring is sufficient for productive chaperonin-mediated folding in vivo. Mol Cell 2(1):93–99CrossRefGoogle Scholar
  102. Nielsen KL, McLennan N, Masters M, Cowan NJ (1999) A single-ring mitochondrial chaperonin (Hsp60-Hsp10) can substitute for GroEL-GroES in vivo. J Bacteriol 181(18):5871–5875PubMedPubMedCentralGoogle Scholar
  103. Noelker C, Morel L, Osterloh A, Alvarez-Fischer D, Lescot T, Breloer M, Gold M, Oertel WH, Henze C, Michel PP, Dodel RC, Lu L, Hirsch EC, Hunot S, Hartmann A (2014) Heat shock protein 60: an endogenous inducer of dopaminergic cell death in Parkinson disease. J Neuroinflammation 11(1):86.  https://doi.org/10.1186/1742-2094-11-86CrossRefPubMedPubMedCentralGoogle Scholar
  104. Novo G, Cappello F, Rizzo M, Fazio G, Zambuto S, Tortorici E, Marino Gammazza A, Corrao S, Zummo G, Conway de Macario E, Macario AJL, Assennato P, Novo S, Li Volti G, Volti GL (2011) Hsp60 and heme oxygenase-1 (Hsp32) in acute myocardial infarction. Transl Res: J Lab Clin Med 157(5):285–292.  https://doi.org/10.1016/j.trsl.2011.01.003CrossRefGoogle Scholar
  105. Okamoto T, Ishida R, Yamamoto H, Tanabe-Ishida M, Haga A, Takahashi H, Takahashi K, Goto D, Grave E, Itoh H (2015) Functional structure and physiological functions of mammalian wild-type HSP60. Arch Biochem Biophys 586:10–19.  https://doi.org/10.1016/j.abb.2015.09.022CrossRefPubMedGoogle Scholar
  106. Okamoto T, Yamamoto H, Kudo I, Matsumoto K, Odaka M, Grave E, Itoh H (2017) HSP60 possesses a GTPase activity and mediates protein folding with HSP10. Sci Rep 7(1):16931.  https://doi.org/10.1038/s41598-017-17167-7CrossRefPubMedPubMedCentralGoogle Scholar
  107. Osterloh A, Meier-Stiegen F, Veit A, Fleischer B, von Bonin A, Breloer M (2004) Lipopolysaccharide-free heat shock protein 60 activates T cells. J Biol Chem 279(46):47906–47911.  https://doi.org/10.1074/jbc.M408440200CrossRefGoogle Scholar
  108. Pace A, Barone G, Lauria A, Martorana A, Piccionello AP, Pierro P, Terenzi A, Almerico AM, Buscemi S, Campanella C, Angileri F, Carini F, Zummo G, Conway de Macario E, Cappello F, Macario AJL (2013) Hsp60, a novel target for antitumor therapy: structure-function features and prospective drugs design. Curr Pharm Des 19(15):2757–2764CrossRefGoogle Scholar
  109. Parnas A, Nadler M, Nisemblat S, Horovitz A, Mandel H, Azem A (2009) The MitCHAP-60 disease is due to entropic destabilization of the human mitochondrial Hsp60 oligomer. J Biol Chem 284(41):28198–28203.  https://doi.org/10.1074/jbc.M109.031997CrossRefPubMedPubMedCentralGoogle Scholar
  110. Pasanen P, Myllykangas L, Siitonen M, Raunio A, Kaakkola S, Lyytinen J, Tienari PJ, Pöyhönen M, Paetau A (2014) Novel α-synuclein mutation A53E associated with atypical multiple system atrophy and Parkinson’s disease-type pathology. Neurobiol Aging 35(9):2180.e1–2180.e5.  https://doi.org/10.1016/j.neurobiolaging.2014.03.024CrossRefGoogle Scholar
  111. Perry VH, Holmes C (2014) Microglial priming in neurodegenerative disease. Nat Rev Neurol 10(4):217–224.  https://doi.org/10.1038/nrneurol.2014.38CrossRefPubMedGoogle Scholar
  112. Peters A, Palay SL, Webster HD (1978) The fine structure of the nervous system: the neurons and supporting cells. Ann Neurol 4(6):588–588.  https://doi.org/10.1002/ana.410040660CrossRefGoogle Scholar
  113. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag AE, Lang AE (2017) Parkinson disease. Nat Rev Dis Primers 3:17013CrossRefGoogle Scholar
  114. Querfurth, La Ferla (2010) Alzheimer’s disease. N Ingl J Med 362:329–344CrossRefGoogle Scholar
  115. Rizzo M, Cappello F, Marfil R, Nibali L, Marino Gammazza A, Rappa F, Bonaventura G, Galindo-Moreno P, O’Valle F, Zummo G, Conway de Macario E, Macario AJL, Mesa F (2012) Heat-shock protein 60 kDa and atherogenic dyslipidemia in patients with untreated mild periodontitis: a pilot study. Cell Stress Chaperones 17(3):399–407.  https://doi.org/10.1007/s12192-011-0315-1CrossRefPubMedPubMedCentralGoogle Scholar
  116. Samali A, Cai J, Zhivotovsky B, Jones DP, Orrenius S (1999) Presence of a pre-apoptotic complex of pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of jurkat cells. EMBO J 18(8):2040–2048.  https://doi.org/10.1093/emboj/18.8.2040CrossRefPubMedPubMedCentralGoogle Scholar
  117. Satoh J, Onoue H, Arima K, Yamamura T (2005) The 14-3-3 protein forms a molecular complex with heat shock protein Hsp60 and cellular prion protein. J Neuropathol Exp Neurol 64(10):858–868. Retrieved September 2, 2018 from internet: http://www.ncbi.nlm.nih.gov/pubmed/16215457
  118. Seelaar H, Rohrer JD, Pijnenburg YAL, Fox NC, van Swieten JC (2011) Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review. J Neurol Neurosurg Psychiatry 82(5):476–486.  https://doi.org/10.1136/jnnp.2010.212225CrossRefPubMedGoogle Scholar
  119. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608.  https://doi.org/10.15252/emmm.201606210CrossRefPubMedPubMedCentralGoogle Scholar
  120. Shan YX, Liu TJ, Su HF, Samsamshariat A, Mestril R, Wang PH (2003) Hsp10 and Hsp60 modulate Bcl-2 family and mitochondria apoptosis signaling induced by doxorubicin in cardiac muscle cells. J Mol Cell Cardiol 35(9):1135–1143CrossRefGoogle Scholar
  121. Soltys BJ, Gupta RS (1996) Immunoelectron microscopic localization of the 60-kDa heat shock chaperonin protein (Hsp60) in mammalian cells. Exp Cell Res 222(1):16–27.  https://doi.org/10.1006/excr.1996.0003CrossRefGoogle Scholar
  122. Soltys BJ, Gupta RS (1997) Cell surface localization of the 60 kDa heat shock chaperonin protein (hsp60) in mammalian cells. Cell Biol Int 21(5):315–320.  https://doi.org/10.1006/cbir.1997.0144CrossRefGoogle Scholar
  123. Soltys BJ, Gupta RS (2000) Mitochondrial proteins at unexpected cellular locations: export of proteins from mitochondria from an evolutionary perspective. Int Rev Cytol 194:133–196CrossRefGoogle Scholar
  124. Soto C (2003) Unfolding the role of protein misfolding in neurodegenerative diseases. Natl Rev 4:49–60CrossRefGoogle Scholar
  125. Steward O (1989) Principles of cellular, molecular, and developmental neuroscience. Springer, New YorkCrossRefGoogle Scholar
  126. Sun Y, Zheng J, Xu Y, Zhang X (2018) Paraquat-induced inflammatory response of microglia through HSP60/TLR4 signaling. Hum Exp Toxicol, 960327118758152.  https://doi.org/10.1177/0960327118758152
  127. Takano M, Yamashita T, Nagano K, Otani M, Maekura K, Kamada H, Tsunoda S, Tsutsumi Y, Tomiyama T, Mori H, Matsuura K, Matsuyama S (2013) Proteomic analysis of the hippocampus in Alzheimer’s disease model mice by using two-dimensional fluorescence difference in gel electrophoresis. Neurosci Lett 534:85–89.  https://doi.org/10.1016/j.neulet.2012.11.010CrossRefPubMedGoogle Scholar
  128. Tomasello G, Rodolico V, Zerilli M, Martorana A, Bucchieri F, Pitruzzella A, Marino Gammazza A, David S, Rappa F, Zummo G, Damiani P, Accomando S, Rizzo M, Conway de Macario E, Macario AJL, Cappello F (2011) Changes in immunohistochemical levels and subcellular localization after therapy and correlation and colocalization with CD68 suggest a pathogenetic role of Hsp60 in ulcerative colitis. Appl Immunohistochem Mol Morphol 19(6):552–561.  https://doi.org/10.1097/PAI.0b013e3182118e5fCrossRefGoogle Scholar
  129. Tong X, Ao Y, Faas GC, Nwaobi SE, Xu J, Haustein MD, Anderson MA, Mody I, Olsen ML, Sofroniew MV, Khakh BS (2014) Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat Neurosci 17(5):694–703.  https://doi.org/10.1038/nn.3691CrossRefPubMedPubMedCentralGoogle Scholar
  130. Veereshwarayya V, Kumar P, Rosen KM, Mestril R, Querfurth HW (2006) Differential effects of mitochondrial heat shock protein 60 and related molecular chaperones to prevent intracellular beta-amyloid-induced inhibition of complex IV and limit apoptosis. J Biol Chem 281(40):29468–29478.  https://doi.org/10.1074/jbc.M602533200CrossRefGoogle Scholar
  131. Vilasi S, Carrotta R, Mangione MR, Campanella C, Librizzi F, Martorana V, Marino Gammazza A, Ortore MG, Vilasi A, Pocsfalvi G, Burgio G, Corona D, Palumbo Piccionello A, Zummo G, Bulone D, Conway de Macario C, Macario AJL, San Biagio PL, Cappello F (2014) Human Hsp60 with its mitochondrial import signal occurs in solution as heptamers and tetradecamers remarkably stable over a wide range of concentrations. PLoS One 9(5):e97657.  https://doi.org/10.1371/journal.pone.0097657CrossRefPubMedPubMedCentralGoogle Scholar
  132. Vilasi S, Bulone D, Caruso Bavisotto C, Campanella C, Marino Gammazza A, San Biagio PL, Cappello F, Conway de Macario E, Macario AJL (2018) Chaperonin of group I: oligomeric spectrum and biochemical and biological implications. Front Mol Biosci 4:99.  https://doi.org/10.3389/fmolb.2017.00099CrossRefPubMedPubMedCentralGoogle Scholar
  133. Wadhwa R, Takano S, Kaur K, Aida S, Yaguchi T, Kaul Z, Hirano T, Taira K, Kaul SC (2005) Identification and characterization of molecular interactions between mortalin/mtHsp70 and HSP60. Biochem J 391(Pt 2):185–190.  https://doi.org/10.1042/BJ20050861CrossRefPubMedPubMedCentralGoogle Scholar
  134. Walls KC, Coskun P, Gallegos-Perez JL, Zadourian N, Freude K, Rasool S, Blurton-Jones M, Green KN, LaFerla FM (2012) Swedish Alzheimer mutation induces mitochondrial dysfunction mediated by HSP60 mislocalization of amyloid precursor protein (APP) and beta-amyloid. J Biol Chem 287(36):30317–30327.  https://doi.org/10.1074/jbc.M112.365890CrossRefPubMedPubMedCentralGoogle Scholar
  135. Wang HQ, Xu YX, Zhao XY, Zhao H, Yan J, Sun XB, Guo JC, Zhu CQ (2009) Overexpression of F0F1-ATP synthase α suppresses mutant huntingtin aggregation and toxicity in vitro. Biochem Biophys Res Commun 390(4):1294–1298.  https://doi.org/10.1016/j.bbrc.2009.10.139CrossRefPubMedGoogle Scholar
  136. Wijesekera LC, Leigh PN (2009) Amyotrophic lateral sclerosis. Orphanet J Rare Dis 4(1):3.  https://doi.org/10.1186/1750-1172-4-3CrossRefPubMedPubMedCentralGoogle Scholar
  137. Wojsiat J, Prandelli C, Laskowska-Kaszub K, Martín-Requero A, Wojda U (2015) Oxidative stress and aberrant cell cycle in Alzheimer’s disease lymphocytes: diagnostic prospects. J Alzheimer’s Dis: JAD 46(2):329–350.  https://doi.org/10.3233/JAD-141977CrossRefGoogle Scholar
  138. Yamamoto T, Yamamoto-Shimojima K, Ueda Y, Imai K, Takahashi Y, Imagawa E, Miyake N, Matsumoto N (2018) Independent occurrence of de novo HSPD1 and HIP1 variants in brothers with different neurological disorders – leukodystrophy and autism. Hum Genome Var 5(1):18.  https://doi.org/10.1038/s41439-018-0020-zCrossRefPubMedPubMedCentralGoogle Scholar
  139. Zhang R, Li Y, Hou X, Miao Z, Wang Y (2017) Neuroprotective effect of heat shock protein 60 on matrine-suppressed microglial activation. Exp Ther Med 14(2):1832–1836.  https://doi.org/10.3892/etm.2017.4691CrossRefPubMedPubMedCentralGoogle Scholar
  140. Zhao C, Li H, Zhao XJ, Liu ZX, Zhou P, Liu Y, Feng MJ (2016) Heat shock protein 60 affects behavioral improvement in a rat model of Parkinson’s disease grafted with human umbilical cord mesenchymal stem cell-derived dopaminergic-like neurons. Neurochem Res 41(6):1238–1249.  https://doi.org/10.1007/s11064-015-1816-6CrossRefPubMedGoogle Scholar
  141. Zielonka D, Mielcarek MG, Landwehrmeyer B (2015) Update on Huntington’s disease: advances in care and emerging therapeutic options. Parkinsonism Relat Disord 21(3):169–178CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Celeste Caruso Bavisotto
    • 1
    • 2
    • 3
    Email author
  • Federica Scalia
    • 1
    • 2
  • Alessandro Pitruzzella
    • 1
    • 2
  • Magdalena Górska-Ponikowska
    • 4
    • 5
  • Claudia Marino
    • 6
  • Giulio Taglialatela
    • 6
  1. 1.Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Section of Human AnatomyUniversity of PalermoPalermoItaly
  2. 2.Euro-Mediterranean Institute of Science and Technology (IEMEST)PalermoItaly
  3. 3.Institute of BiophysicsNational Research CouncilPalermoItaly
  4. 4.Department of Medical ChemistryMedical University of GdanskGdańskPoland
  5. 5.Institute of Biomaterials and Biomolecular Systems, Department of BiophysicsUniversity of StuttgartStuttgartGermany
  6. 6.Mitchell Center for Neurodegenerative Diseases, Department of NeurologyUniversity of Texas Medical BranchGalvestonUSA

Personalised recommendations