Heat Shock Protein 60: An Effective Target Candidate in Neurological Diseases Treatment

  • Babita Sharma
  • Madhu Smita
  • Ishu Khangwal
  • Rajat Maheshwari
  • Arun Kumar Dangi
Part of the Heat Shock Proteins book series (HESP, volume 18)


The accumulation of intra- and extracellular misfolded proteins is found to play an imperative role in the progression of several neurological disorders including epilepsy, Alzheimer’s disease, brain tumors, etc. which ultimately causes death worldwide. Heat shock protein (Hsp60) was found to be an important biomolecule that plays an essential role in the removal or degradation of these misfolded proteins and also act as a biomarker in disease prognosis. In neurological diseases, these systems are compromised due to deregulation or mutation of Hsp60 resulting in a large amount of aggregated proteins accumulation. Therefore, the development of novel and more efficient Hsp60 modulators is essential that can modulate the Hsp60 and involved pathways for the treatment of neurological diseases. For this propose, several In silico computational tools are developed, and many tools are under development. In this chapter, we discuss the role of Hsp60 in some more prominent neurological diseases and modulators developed in this direction. Further, we also highlight advanced computational tools that could be used for designing more Hsp60 modulators.


Alzheimer disease Brain tumor Epilepsy Heat shock protein 60 Hsp60 modulators neurological disorders 



Alzheimer’s disease


Frontotemporal lobar degeneration


Heat shock protein


Integrated neurodegenerative disease database


Photodynamic therapy


Spontaneous recurrent seizures


Temporal lobe epilepsy



The author acknowledges Maharshi Dayanand University, Rohtak for providing infrastructure and lab facility for the compilation of this interesting and informative book chapter.


  1. Abramovitch RB (2018) Mycobacterium tuberculosis reporter strains as tools for drug discovery and development. IUBMB Life 70:818–825PubMedCrossRefPubMedCentralGoogle Scholar
  2. Åkerfelt M, Morimoto RI, Sistonen L (2010) Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 11:545PubMedPubMedCentralCrossRefGoogle Scholar
  3. Amor S, Peferoen LA, Vogel DY, Breur M, van der Valk P, Baker D, van Noort JM (2014) Inflammation in neurodegenerative diseases–an update. Immunology 142:151–166PubMedPubMedCentralCrossRefGoogle Scholar
  4. Benarroch EE (2011) Heat shock proteins multiple neuroprotective functions and implications for neurologic disease. Neurology 76:660–667PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bendl J, Stourac J, Sebestova E, Vavra O, Musil M, Brezovsky J et al (2016) HotSpot Wizard 2.0: automated design of site-specific mutations and smart libraries in protein engineering. Nucleic Acids Res 44:W479–W487PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bie AS, Fernandez-Guerra P, Birkler RI, Nisemblat S, Pelnena D, Lu X, Deignan JL, Lee H, Dorrani N, Corydon TJ, Palmfeldt J (2016) Effects of a mutation in the HSPE1 gene encoding the mitochondrial co-chaperonin HSP10 and its potential association with a neurological and developmental disorder. Front Mol Biosci 3:65PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bross P, Naundrup S, Hansen J, Nielsen MN, Christensen JH, Kruhøffer M, Palmfeldt J, Corydon TJ, Gregersen N, Ang D, Georgopoulos C (2008) The Hsp60-(p. V98I) mutation associated with hereditary spastic paraplegia SPG13 compromises chaperonin function both in vitro and in vivo. J Biol Chem 283(23):15694–15700PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bross P, Magnoni R, SigaardBie A (2012) Molecular chaperone disorders: defective Hsp60 in neurodegeneration. Curr Top Med Chem 12(22):2491–2503CrossRefGoogle Scholar
  9. Campanella C, Bucchieri F, Merendino AM, Fucarino A, Burgio G, Corona DF, de Macario EC (2012) The odyssey of Hsp60 from tumor cells to other destinations includes plasma membrane-associated stages and Golgi and exosomal protein-trafficking modalities. PLoS One 7(7):e42008PubMedPubMedCentralCrossRefGoogle Scholar
  10. Cappello F, Marino Gammazza A, Palumbo Piccionello A, Campanella C, Pace A, Conway de Macario E, Macario AJ (2014) Hsp60 chaperonopathies and chaperonotherapy: targets and agents. Expert Opin Ther Targets 18(2):185–208CrossRefGoogle Scholar
  11. Cardinale A, Chiesa R, Sierks M (2014) Protein misfolding and neurodegenerative diseases. Int J Biochem Cell Biol 2014:2014Google Scholar
  12. Carlson HA (2002) Protein flexibility and drug design: how to hit a moving target. Curr Opin Chem Biol 6:447–452PubMedCrossRefPubMedCentralGoogle Scholar
  13. Chang CC, Lui CC, Lee CC, Chen SD, Chang WN, Lu CH, Chuang YC (2012) Clinical significance of serological biomarkers and neuropsychological performances in patients with temporal lobe epilepsy. BMC Neurol 12:15PubMedPubMedCentralCrossRefGoogle Scholar
  14. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717PubMedPubMedCentralCrossRefGoogle Scholar
  15. de Ruyck J, Brysbaert G, Blossey R, Lensink MF (2016) Molecular docking as a popular tool in drug design, an in silico travel. Adv Appl Bioinforma Chem: AABC 9:1Google Scholar
  16. Gammazza AM, Colangeli R, Orban G, Pierucci M, Di Gennaro G, Bello ML, Muscat R (2015) Hsp60 response in experimental and human temporal lobe epilepsy. Sci Rep 5:9434PubMedCentralCrossRefGoogle Scholar
  17. Genest O, Hoskins JR, Camberg JL, Doyle SM, Wickner S (2011) Heat shock protein 90 from Escherichia coli collaborates with the DnaK chaperone system in client protein remodeling. Proc Natl Acad Sci 108:8206–8211PubMedCrossRefPubMedCentralGoogle Scholar
  18. Gu B, Daltone KA (2017) Models and detection of spontaneous recurrent seizures in laboratory rodents. Zool Res 38(4):171–179PubMedPubMedCentralCrossRefGoogle Scholar
  19. Hansen JJ, Dürr A, Cournu-Rebeix I, Georgopoulos C, Ang D, Nielsen MN, Davoine CS, Brice A, Fontaine B, Gregersen N, Bross P (2002) Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am J Hum Genet 70(5):1328–1332PubMedPubMedCentralCrossRefGoogle Scholar
  20. Hansen J, Svenstrup K, Ang D, Nielsen MN, Christensen JH, Gregersen N, Bross P (2007) A novel mutation in the HSPD1 gene in a patient with hereditary spastic paraplegia. J Neurol 254(7):897–900CrossRefGoogle Scholar
  21. Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579CrossRefGoogle Scholar
  22. Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858CrossRefGoogle Scholar
  23. Hauser AS, Attwood MM, Rask-Andersen M, Schiöth HB, Gloriam DE (2017) Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 16:829PubMedCrossRefPubMedCentralGoogle Scholar
  24. Itoh H, Komatsuda A, Wakui H, Miura AB, Tashima Y (1999) Mammalian HSP60 is a major target for an immunosuppressant mizoribine. J Biol Chem 274(49):35147–35151PubMedCrossRefPubMedCentralGoogle Scholar
  25. Jorgensen WL (2004) The many roles of computation in drug discovery. Science (80- ) 303:1813–1818CrossRefGoogle Scholar
  26. Kato S, Kato M, Hirano A, Takikawa M, Ohama E (2001) The immunohistochemical expression of stress-response protein (srp) 60 in human brain tumours: relationship of srp 60 to the other five srps, proliferating cell nuclear antigen and p53 protein. Histol Histopathol 16(3):809–820Google Scholar
  27. Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Ulrich Hartl F (2013) Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82:323–355CrossRefGoogle Scholar
  28. Laser H, Mack TG, Wagner D, Coleman MP (2003) Proteasome inhibition arrests neurite outgrowth and causes “dying-back” degeneration in primary culture. J Neurosci Res 74(6):906–916PubMedCrossRefPubMedCentralGoogle Scholar
  29. Leelananda SP, Lindert S (2016) Computational methods in drug discovery. Beilstein J Org Chem 12:2694PubMedPubMedCentralCrossRefGoogle Scholar
  30. Liu XY, Yang JL, Chen LJ, Zhang Y, Yang ML, Wu YY, Wei YQ (2008) Comparative proteomics and correlated signaling network of rat hippocampus in the pilocarpine model of temporal lobe epilepsy. Proteomics 8(3):582–603CrossRefGoogle Scholar
  31. M van Noort J, Bugiani M, Amor S (2017) Heat shock proteins: old and novel roles in neurodegenerative diseases in the central nervous system. CNS Neurol Disord-Drug Targets 16:244–256CrossRefGoogle Scholar
  32. Macario AJ, de Macario EC (2005) Sick chaperones, cellular stress, and disease. N Engl J Med 353(14):1489–1501CrossRefGoogle Scholar
  33. Magen D, Georgopoulos C, Bross P, Ang D, Segev Y, Goldsher D, Heno B (2008) Mitochondrial hsp60 chaperonopathy causes an autosomal-recessive neurodegenerative disorder linked to brain hypomyelination and leukodystrophy. Am J Hum Genet 83(1):30–42PubMedPubMedCentralCrossRefGoogle Scholar
  34. Maiti P, Manna J, Veleri S, Frautschy S (2014) Molecular chaperone dysfunction in neurodegenerative diseases and effects of curcumin. Biomed Res Int 2014:2014CrossRefGoogle Scholar
  35. McKeever PE (1999) The brain, spinal cord and meninges. Diagn Surg Pathol 1:408–409Google Scholar
  36. Meng Q, Li BX, Xiao X (2018) Toward developing chemical modulators of Hsp60 as potential therapeutics. Front Mol Biosci 5:35PubMedPubMedCentralCrossRefGoogle Scholar
  37. Mizuno K, Tsujino M, Takada M, Hayashi M, Atsumi K, Asano K, Matsuda T (1974) Studies on bredinin. J Antibiot 27(10):775–782PubMedCrossRefPubMedCentralGoogle Scholar
  38. Nagumo Y, Kakeya H, Yamaguchi J, Uno T, Shoji M, Hayashi Y, Osada H (2004) Structure–activity relationships of epolactaene derivatives: structural requirements for inhibition of Hsp60 chaperone activity. Bioorg Med Chem Lett 14(17):4425–4429PubMedCrossRefPubMedCentralGoogle Scholar
  39. Nagumo Y, Kakeya H, Shoji M, Hayashi Y, Dohmae N, Osada H (2005) Epolactaene binds human Hsp60 Cys442 resulting in the inhibition of chaperone activity. Biochem J 387(3):835–840PubMedPubMedCentralCrossRefGoogle Scholar
  40. Nakamoto H, Amaya Y, Komatsu T, Suzuki T, Dohmae N, Nakamura Y et al (2018) Stimulation of the ATPase activity of Hsp90 by zerumbone modification of its cysteine residues destabilizes its clients and causes cytotoxicity. Biochem J 475:2559–2576. BCJ20180230PubMedCrossRefPubMedCentralGoogle Scholar
  41. Nakamura H, Minegishi H (2013) HSP60 as a drug target. Curr Pharm Des 19(3):441–451PubMedCrossRefPubMedCentralGoogle Scholar
  42. Natalello A et al (2013) Biophysical characterization of two different stable misfolded monomeric polypeptides that are chaperone-amenable substrates. J Mol Biol 425:1158–1171PubMedCrossRefPubMedCentralGoogle Scholar
  43. Neuspiel M (2008) Mitochondrial dynamics, mechanisms and meaning: Investigations into fusion and fission proteins Mitofusin 2 and MAPL (Doctoral dissertation, University of Ottawa (Canada)Google Scholar
  44. Pace A, Barone G, Lauria A, Martorana A, Palumbo Piccionello A, Pierro P, Angileri F (2013) Hsp60, a novel target for antitumor therapy: structure-function features and prospective drugs design. Curr Pharm Des 19(15):2757–2764PubMedCrossRefPubMedCentralGoogle Scholar
  45. Padmadas N, Panda PK, Durairaj S (2018) Binding patterns associated Aß-HSP60 p458 conjugate to HLA-DR-DRB allele of human in Alzheimer’s disease: an in silico approach. Interdiscip Sci Comput Life Sci 10:93–104CrossRefGoogle Scholar
  46. Papuć E, Kurys-Denis E, Krupski W, Tatara M, Rejdak K (2015) Can antibodies against glial derived antigens be early biomarkers of hippocampal demyelination and memory loss in Alzheimer’s disease? J Alzheimers Dis 48:115–121PubMedCrossRefPubMedCentralGoogle Scholar
  47. Priya S, Sharma SK, Goloubinoff P (2013) Molecular chaperones as enzymes that catalytically unfold misfolded polypeptides. FEBS Lett 587:1981–1987PubMedCrossRefPubMedCentralGoogle Scholar
  48. Radons J (2017) The ATP-driven Hsp60 machinery: biological and clinical implications. Curr Immunol Rev 13(1):19–43Google Scholar
  49. Rappa F, Unti E, Baiamonte P, Cappello F, Scibetta N (2013) Different immunohistochemical levels of Hsp60 and Hsp70 in a subset of brain tumors and putative role of Hsp60 in neuroepithelial tumorigenesis. Eur J Histochem 57(2):e20PubMedPubMedCentralCrossRefGoogle Scholar
  50. Rodgers AB (2002) Alzheimer’s disease: unraveling the mystery, vol 1. National Institutes of HealthGoogle Scholar
  51. Rugarli EI, Langer T (2012) Mitochondrial quality control: a matter of life and death for neurons. EMBO J 31(6):1336–1349PubMedPubMedCentralCrossRefGoogle Scholar
  52. Samluk L, Chroscicki P, Chacinska A (2018) Mitochondrial protein import stress and signaling. Curr Opin Physiol 3:41–48CrossRefGoogle Scholar
  53. Scott DE, Bayly AR, Abell C, Skidmore J (2016) Small molecules, big targets: drug discovery faces the protein–protein interaction challenge. Nat Rev Drug Discov 15:533PubMedCrossRefPubMedCentralGoogle Scholar
  54. Sendrowski K, Sobaniec W (2013) Hippocampus, hippocampal sclerosis and epilepsy. Pharmacol Rep 65(3):555–565CrossRefGoogle Scholar
  55. Sliwoski G, Kothiwale S, Meiler J, Lowe EW (2014) Computational methods in drug discovery. Pharmacol Rev 66:334–395PubMedPubMedCentralCrossRefGoogle Scholar
  56. Sonkusare SK, Kaul CL, Ramarao P (2005) Dementia of Alzheimer’s disease and other neurodegenerative disorders—memantine, a new hope. Pharmacol Res 51(1):1–7PubMedCrossRefPubMedCentralGoogle Scholar
  57. Van Liefferinge J, Massie A, Portelli J, Di Giovanni G, Smolders I (2013) Are vesicular neurotransmitter transporters potential treatment targets for temporal lobe epilepsy? Front Cell Neurosci 7:139PubMedPubMedCentralGoogle Scholar
  58. Veereshwarayya V, Kumar P, Rosen KM, Mestril R, Querfurth HW (2006) Differential effects of mitochondrial heat shock protein 60 and related molecular chaperones to prevent intracellular β-amyloid-induced inhibition of complex IV and limit apoptosis. J Biol Chem 281:29468–29478CrossRefGoogle Scholar
  59. Venegas C, Heneka MT (2017) Danger-associated molecular patterns in Alzheimer’s disease. J Leukoc Biol 101(1):87–98PubMedCrossRefPubMedCentralGoogle Scholar
  60. Weinberg BA, Yu H, Rosen R, Staudt J, Ross MB, Marschke G (2017) Identifying potentially transformative research: a case study of Alzheimer’s disease research. Alzheimers Dement 13(7):860CrossRefGoogle Scholar
  61. Wyttenbach A, Carmichael J, Swartz J, Furlong RA, Narain Y, Rankin J, Rubinsztein DC (2000) Effects of heat shock, heat shock protein 40 (HDJ-2), and proteasome inhibition on protein aggregation in cellular models of Huntington’s disease. Proc Natl Acad Sci 97(6):2898–2903Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Babita Sharma
    • 1
  • Madhu Smita
    • 2
  • Ishu Khangwal
    • 1
  • Rajat Maheshwari
    • 3
  • Arun Kumar Dangi
    • 1
  1. 1.Enzyme Technology and Protein Bioinformatics Laboratory, Department of MicrobiologyMaharshi Dayanand UniversityRohtakIndia
  2. 2.Rahul Chaudhry and PartnersGurugramIndia
  3. 3.Department of MicrobiologyMaharshi Dayanand UniversityRohtakIndia

Personalised recommendations