Advertisement

Hybrid Breeding in Rye (Secale cereale L.)

  • Thomas MiedanerEmail author
  • Friedrich Laidig
Chapter

Abstract

Rye is a robust and stress-tolerant cereal, grown on 4.4 million hectares, mainly in Northeastern Europe. Grain yields range, on average, from 2.0 to 5.8 mt ha−1 on farm level depending on the country, but reached >10 mt ha−1 in multi-locational official trials in Germany. Rye grain is used for bread making, distilling, homegrown feed and bioenergy production. Hybrid breeding has gained much attention caused by higher grain yields and a higher gain from selection compared to open-pollinated cultivars. Prerequisites are self-fertility, cytoplasmic-male sterility (CMS) with effective nuclear encoded genes to restore fertility (Rf) and distinct heterotic pools. Elaborated breeding plans are available. Commercial rye hybrids are crosses between a CMS single cross as seed parent and a restorer synthetic as pollinator. Molecular breeding was promoted in the last decade by the availability of PCR-based markers and the production of medium- to high-density single nucleotide polymorphism (SNP) assays. Markers are used for introgressing monogenic traits, developing landscapes of quantitative trait loci (QTL), and genomic selection. In the future, disease resistances to snow mold, stem rust, and Fusarium head blight, resilience to drought and heat stress, optimized feeding quality and yield improvement by broadening the genetic basis of hybrid breeding are important goals.

Keywords

Breeding progress Hybrid breeding Molecular markers QTL Secale SNP Winter rye 

Notes

Acknowledgement

The authors wish to recognize the very significant contributions made to hybrid rye breeding by Prof. Dr. Dr.h.c. Hartwig H. Geiger, University of Hohenheim, Germany.

References

  1. Antoniou T, Marquardt RR, Cansfield PE (1981) Isolation, partial characterization, and antinutritional activity of a factor (pentosans) in rye grain. J Agric Food Chem 29:1240–1247PubMedCrossRefPubMedCentralGoogle Scholar
  2. Auinger H-J, Schönleben M, Lehermeier C et al (2016) Model training across multiple breeding cycles significantly improves genomic prediction accuracy in rye (Secale cereale L.). Theor Appl Genet 129:2043–2053PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bauer E, Schmutzer T, Barilar I et al (2017) Towards a whole-genome sequence for rye (Secale cereale L.). Plant J 89:853–869PubMedCrossRefPubMedCentralGoogle Scholar
  4. Behre KE (1992) The history of rye cultivation in Europe. Veg Hist Archaeobotany 1(3):141–156CrossRefGoogle Scholar
  5. Besondere Ernte-und Qualitätsermittlung (BEE) (2017) Reihe: Daten-Analyse. (Special Harvest and Quality Survey. Series: Data analysis) (In German). https://www.bmel-statistik.de/landwirtschaft/ernte-und-qualitaet/. Accessed 26 June 2019
  6. Boros D (2007) Quality aspects of rye for feed purposes. Vortr Pflanzenzüchtg 71:80–85Google Scholar
  7. Buksa K, Nowotna A, Praznik W et al (2010) The role of pentosans and starch in baking wholemeal rye bread. Food Res Int 43:2045–2051CrossRefGoogle Scholar
  8. Crespo-Herrera LA, Garkava-Gustavsson L, Åhman I (2017) A systematic review of rye (Secale cereale L.) as a source of resistance to pathogens and pests in wheat (Triticum aestivum L.). Hereditas 154:14PubMedPubMedCentralCrossRefGoogle Scholar
  9. DESTATIS (2017) Wachstum und Ernte, Feldfrüchte, Aug./Sept., Ausgabe 09, Fachserie 3, Reihe 3.2.1 – 09/2017. https://www.destatis.de/DE/Publikationen/Thematisch/LandForstwirtschaft/ErnteFeldfruechte/FeldfruechteAugustSeptember.html. Accessed 07 Mar 2018
  10. DLG (2006) Zum Einsatz von Roggen in der Fütterung. http://www.dlg.org/fileadmin/downloads/fachinfos/futtermittel/Roggen_Fuetterung.pdf. Accessed 01 Mar 2018
  11. EFSA (2011) EFSA Panel on dietetic products, nutrition and allergies (NDA); Scientific opinion on the substantiation of health claims related to rye fibre and changes in bowel function (ID 825), reduction of post–prandial glycaemic responses (ID 826) and maintenance of normal blood LDL–cholesterol concentrations (ID 827) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J 9:2258CrossRefGoogle Scholar
  12. Eklund M, Strang EJP, Rosenfelder P et al (2016) Ileal endogenous loss and standardized ileal digestibility of amino acids in rye genotypes for pigs. J Anim Sci 94:310–312CrossRefGoogle Scholar
  13. EU (2007) Commission Regulation (EC) No 1126/2007. Retrieved from http://eur–lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:255:0014:0017:EN:PDF. Accessed 14 Feb 2018
  14. EU (2017) EU Cereals Balance Sheets 2016/17 and 2017/18. Internet: https://ec.europa.eu/agriculture/sites/agriculture/files/cereals/presentations/–oilseeds/balance–sheets–and–forecasts_en.pdf. Accessed 29 June 2018
  15. Falke KC, Sušić Z, Hackauf B et al (2008) Establishment of introgression libraries in hybrid rye (Secale cereale L.) from an Iranian primitive accession as a new tool for rye breeding and genomics. Theor Appl Genet 117:641–652PubMedCrossRefPubMedCentralGoogle Scholar
  16. Falke KC, Sušić Z, Wilde P et al (2009) Testcross performance of rye introgression lines developed by marker–assisted backcrossing using an Iranian accession as donor. Theor Appl Genet 118:1225–1238PubMedCrossRefPubMedCentralGoogle Scholar
  17. Falke KC, Wilde P, Wortmann H et al (2010) Correlation between per se and testcross performance in rye (Secale cereale L.) introgression lines estimated with a bivariate mixed linear model. Crop Sci 50:1863–1873CrossRefGoogle Scholar
  18. FAO (2018) Production. Crops. FAO, Rome. http://www.fao.org/faostat/en/#data/QC. Accessed 9 Mar 2018
  19. Fengler AI, Marquardt RR (1988) Water-soluble pentosans from rye: II. Effects of rate of dialysis and on the retention of nutrients by the chick. Cereal Chem 65:298–302Google Scholar
  20. Fischer S, Melchinger AE, Korzun V et al (2010) Molecular marker assisted broadening of the Central European heterotic groups in rye with Eastern European germplasm. Theor Appl Genet 120:291–299PubMedCrossRefPubMedCentralGoogle Scholar
  21. Frederiksen SE, Petersen G (1998) A taxonomic revision of Secale (Triticeae, Poaceae). Nord J Bot 18:399–420CrossRefGoogle Scholar
  22. Geiger HH (1971) Cytoplasmatisch–genische Pollensterilität in Roggenformen iranischer Abstammung. Naturwissenschaften 58:98–99. (in German)PubMedCrossRefPubMedCentralGoogle Scholar
  23. Geiger HH, Miedaner T (1999) Hybrid rye and Heterosis. In: Coors JG, Pandey S (eds) Genetics and exploitation of heterosis in crops. Crop Sci Soc America, Madison, pp 439–450Google Scholar
  24. Geiger HH, Miedaner T (2009) Rye Breeding. In: Carena MJ (ed) Cereals (Handbook of plant breeding), 1st edn. Springer, New York, pp 157–181Google Scholar
  25. Geiger HH, Schnell FW (1970) Cytoplasmic male sterility in rye (Secale cereale L.). Crop Sci 10:590–593CrossRefGoogle Scholar
  26. Geiger HH, Yuan Y, Miedaner T et al (1995) Environmental sensitivity of cytoplasmic genic male sterility (CMS) in Secale cereale L. In: Kück U, Wricke G (eds) Genetic mechanisms for hybrid breeding. Adv Plant Breed 18:7–17Google Scholar
  27. Goddard M, Hayes B (2007) Genomic selection. J Anim Breed Genet 124:323–330CrossRefGoogle Scholar
  28. Hackauf B, Bauer E, Korzun V et al (2017a) Fine mapping of the restorer gene Rfp3 from an Iranian primitive rye (Secale cereale L.). Theor Appl Genet 130:1179–1189PubMedCrossRefPubMedCentralGoogle Scholar
  29. Hackauf B, Haffke S, Fromme FJ et al (2017b) QTL mapping and comparative genome analysis of agronomic traits including grain yield in winter rye. Theor Appl Genet 130:1801–1817PubMedCrossRefPubMedCentralGoogle Scholar
  30. Haffke S, Kusterer B, Fromme FJ et al (2014) Analysis of covariation of grain yield and dry matter yield for breeding dual use hybrid rye. Bioenergy Res 7:424–429CrossRefGoogle Scholar
  31. Haffke S, Wilde P, Schmiedchen B et al (2015) Toward a selection of broadly adapted germplasm for yield stability of hybrid rye under normal and managed drought stress conditions. Crop Sci 55:1026–1034CrossRefGoogle Scholar
  32. Hagenblad J, Oliveira HR, Forsberg NEG et al (2016) Geographical distribution of genetic diversity in Secale landrace and wild accessions. BMC Plant Biol 16:23PubMedPubMedCentralCrossRefGoogle Scholar
  33. Haseneyer G, Schmutzer T, Seidel M et al (2011) From RNA-seq to large-scale genotyping-genomics resources for rye (Secale cereale L.). BMC Plant Biol 11:131PubMedPubMedCentralCrossRefGoogle Scholar
  34. Haussmann BIG, Parzies HK, Presterl T et al (2004) Plant genetic resources in crop improvement. Plant Genet Resour 2:3–21CrossRefGoogle Scholar
  35. Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49(1):12CrossRefGoogle Scholar
  36. Hepting L (1978) Analyse eines 7 × 7–Sortendialles zur Ermittlung geeigneten Ausgangsmaterials für die Hybridzüchtung bei Roggen (Analysis of a 7 × 7–variety diallel for determination of suitable base materials for hybrid breeding in rye) (In German.) Z. Pflanzenzüchtg 80:188–197Google Scholar
  37. Hillman G (1978) On the origins of domestic rye – Secale cereale: the finds from aceramic Can Hasan III in Turkey. Anatol Stud 28:157–174CrossRefGoogle Scholar
  38. Hirst KK (2017) Rye: the domestication history of Secale cereale. https://www.thoughtco.com/rye–the–domestication–history–4092612. Accessed 29 June 2018
  39. Hübner M, Wilde P, Schmiedchen B et al (2013) Hybrid rye performance under natural drought stress in Europe. Theo Appl Genet 126:475–482CrossRefGoogle Scholar
  40. Kalih R, Maurer HP, Hackauf B et al (2014) Effect of rye dwarfing gene on plant height, heading stage, and Fusarium head blight in triticale (xTriticosecale Wittmack). Theor Appl Genet 127:1527–1536PubMedPubMedCentralCrossRefGoogle Scholar
  41. Kobyljanskij VD (1983) The system of the genus Secale L. Trudy Prikl Bot 79:24–38Google Scholar
  42. Korzun V, Börner A, Melz G (1996) RFLP mapping of the dwarfing (Ddw1) and hairy peduncle (Hp) genes on chromosome 5 of rye (Secale cereale L.). Theor Appl Genet 92:1073–1077.  https://doi.org/10.1007/BF00224051CrossRefPubMedPubMedCentralGoogle Scholar
  43. Laidig F, Piepho HP, Rentel D et al (2017) Breeding progress, variation, and correlation of grain and quality traits in winter rye hybrid and population varieties and national on-farm progress in Germany over 26 years. Theor Appl Genet 130:981–998.  https://doi.org/10.1007/s00122–2865–9CrossRefPubMedPubMedCentralGoogle Scholar
  44. Łapiński M, Stojałowski S (2001) Occurrence of male sterility-inducing cytoplasm in rye (Secale spp.) populations. Pant Breed Seed Sci 48:7–23Google Scholar
  45. Lundqvist A (1956) Self-incompatibility in rye. I. Genetic control in the diploid. Hereditas 42:293–348CrossRefGoogle Scholar
  46. Madej L, Raczynska-Bojanowska K, Rybka K (1990) Variability of the content of soluble non–digestible polysaccharides in rye inbred lines. Plant Breed 104:334–339CrossRefGoogle Scholar
  47. Mahone GS, Frisch M, Miedaner T et al (2013) Identification of quantitative trait loci in rye introgression lines carrying multiple donor chromosome segments. Theo Appl Genet 126:49–58CrossRefGoogle Scholar
  48. Martis MM, Zhou R, Haseneyer G et al (2013) Reticulate evolution of the rye genome. Plant Cell 25:3685–3698PubMedPubMedCentralCrossRefGoogle Scholar
  49. Marulanda JJ, Mi X, Melchinger AE et al (2016) Optimum breeding strategies using genomic selection for hybrid breeding in wheat, maize, rye, barley, rice and triticale. Theor Appl Genet 129:1901–1913PubMedCrossRefPubMedCentralGoogle Scholar
  50. Masojć P, Milczarski P (2008) Relationship between QTLs for preharvest sprouting and alpha–amylase activity in rye grain. Mol Breed 23:75–84CrossRefGoogle Scholar
  51. Miedaner T (2014) Kulturpflanzen. Springer Spektrum, Berlin/Heidelberg. [in German]CrossRefGoogle Scholar
  52. Miedaner T, Wilde P (2019) Selection strategies for disease-resistant hybrid rye. In: Ordon F, Friedt W (eds) Advances in crop breeding techniques. Burleigh Dodds Science Publishing, Cambridge. (forthcoming)Google Scholar
  53. Miedaner T, Glass C, Dreyer F et al (2000) Mapping of genes for male–fertility restoration in 'Pampa' CMS winter rye (Secale cereale L.). Theor Appl Genet 101:1226–1233CrossRefGoogle Scholar
  54. Miedaner T, Wilde P, Wortmann H (2005) Combining ability of non-adapted sources for male–fertility restoration in Pampa CMS of hybrid rye. Plant Breed 124:39–43CrossRefGoogle Scholar
  55. Miedaner T, Hübner M, Korzun V et al (2012) Genetic architecture of complex agronomic traits examined in two testcross populations of rye (Secale cereale L.). BMC Genomics 13:706.  https://doi.org/10.1186/1471–2164–13–706CrossRefPubMedPubMedCentralGoogle Scholar
  56. Miedaner T, Schwegler DD, Wilde P et al (2014) Association between line per se and testcross performance for eight agronomic and quality traits in winter rye. Theor Appl Genet 127:33–41PubMedCrossRefPubMedCentralGoogle Scholar
  57. Miedaner T, Schmitt A-K, Klocke B et al (2016) Analyzing genetic diversity for virulence and resistance phenotypes in populations of stem rust (Puccinia graminis f. sp. secalis) and winter rye (Secale cereale L.). Phytopathology 106:1335–1343PubMedCrossRefPubMedCentralGoogle Scholar
  58. Miedaner T, Herter CP, Goßlau H et al (2017) Correlated effects of exotic pollen-fertility restorer genes on agronomic and quality traits of hybrid rye. Plant Breed 136:224–229CrossRefGoogle Scholar
  59. Miedaner T, Haffke S, Siekmann D et al (2018) Dynamic quantitative trait loci (QTL) for plant height predict biomass yield in hybrid rye (Secale cereale L.). Biomass Bioenergy 115:10–15. Doi  https://doi.org/10.1016/j.biombioe.2018.04.001. Accessed 23 Apr 2018CrossRefGoogle Scholar
  60. Miedaner T, Korzun V, Bauer E (2019) Genomics-based hybrid rye breeding. In: Miedaner T, Korzun V (eds) Applications of genetic and genomic research in small-grain cereals. pp. 329–348. Elsevier, Amsterdam, NL. ISBN 9780081021637CrossRefGoogle Scholar
  61. Newell MA, Butler TJ (2013) Forage rye improvement in the southern United States: a review. Crop Sci 53:38–47CrossRefGoogle Scholar
  62. Oelke EA, Oplinger ES, Bahri H et al (1990) Rye. In: Alternative field crops manual. University of Wisconsin Extension, Madison and University of Minnesota, St. Paul. http://www.hort.purdue.edu/newcrop/afcm/rye.html. Accessed 1 Mar 2018
  63. Ossent HP (1938) Zehn Jahre Roggenzüchtung in Müncheberg. Züchter 10:255–261. (in German)CrossRefGoogle Scholar
  64. Parat F, Schwertfirm G, Rudolph U et al (2016) Geography and end use drive the diversification of worldwide winter rye populations. Mol Ecol 25:500–514PubMedCrossRefPubMedCentralGoogle Scholar
  65. Perten H (1964) Application of the falling number method for evaluating alpha-amylase activity. Cereal Chem 41:127–140Google Scholar
  66. Piepho HP, Laidig F, Drobek T, Meyer U (2014) Dissecting genetic and non-genetic sources of long-term yield in German official variety trials. Theor Appl Genet 127:1009–1018PubMedCrossRefPubMedCentralGoogle Scholar
  67. Rabanus-Wallace MT, Stein N (2019) Progress in sequencing of Triticeae genomes and future uses. In: Miedaner T, Korzun V (eds) Applications of genetic and genomic research in small–grain cereals pp. 19-47. Elsevier, Amsterdam, NL. ISBN 9780081021637CrossRefGoogle Scholar
  68. Rode J (2008) Züchtung von Industrieroggen zur Bioethanolgewinnung. Dissertation, Universität Halle-WittenbergGoogle Scholar
  69. Rodehutscord M, Rückert C, Maurer HP et al (2016) Variation in chemical composition and physical characteristics of cereal grains from different genotypes. Arch Anim Nutr 70:87–107PubMedCrossRefPubMedCentralGoogle Scholar
  70. Rosenfelder P, Mosenthin R, Spindler HK et al (2015) Standardized ileal digestibility of amino acids in eight genotypes of soft winter wheat fed to growing pigs. J Anim Sci 93:1133–1144PubMedCrossRefPubMedCentralGoogle Scholar
  71. Roux SR, Hackauf B, Linz A et al (2004) Leaf-rust resistance in rye (Secale cereale L.). 2. Genetic analysis and mapping of resistance genes Pr3, Pr4, and Pr5. Theor Appl Genet 110:192–201PubMedCrossRefPubMedCentralGoogle Scholar
  72. Sencer HA, Hawkes G (1980) On the origin of cultivated rye. Biol J Linn Soc 13:299–313CrossRefGoogle Scholar
  73. Schlegel R (2014) Rye – genetics, breeding, and cultivation. Taylor & Francis Group, Boca RatonGoogle Scholar
  74. Stojałowski S, Łapiński M, Masojć P (2004) RAPD markers linked with restorer genes for the C-source of cytoplasmic male sterility in rye (Secale cereale L.). Plant Breed 123:428–433CrossRefGoogle Scholar
  75. Stracke S, Schilling AG, Förster J et al (2003) Development of PCR-based markers linked to dominant genes for male-fertility restoration in Pampa CMS of rye (Secale cereale L.). Theor Appl Genet 106:1184–1190PubMedCrossRefPubMedCentralGoogle Scholar
  76. Tang ZX, Ross K, Ren ZL et al (2011) Secale. In: Kole C (ed) Wild crop relatives: genomic and breeding resources: cereals. Springer, Berlin/Heidelberg, pp 367–396CrossRefGoogle Scholar
  77. Villareal RL, Bañuelos O, Mujeeb-Kazi A et al (1998) Agronomic performance of chromosomes 1B and T1BL.1RS near-isolines in the spring bread wheat Seri M82. Euphytica 103:195–202CrossRefGoogle Scholar
  78. Wang Y, Mette MF, Miedaner T et al (2014) The accuracy of prediction of genomic selection in elite hybrid rye populations surpasses the accuracy of marker-assisted selection and is equally augmented by multiple field evaluation locations and test years. BMC Genomics 15:556PubMedPubMedCentralCrossRefGoogle Scholar
  79. Wang Y, Mette MF, Miedaner T et al (2015) First insights into the genotype-phenotype map of phenotypic stability in rye. J Exp Bot 66:3275–3284PubMedPubMedCentralCrossRefGoogle Scholar
  80. Wehling P, Linz A, Hackauf B et al (2003) Leaf-rust resistance in rye (Secale cereale L.). 1. Genetic analysis and mapping of resistance genes Pr1 and Pr2. Theor Appl Genet 107:432–438PubMedCrossRefPubMedCentralGoogle Scholar
  81. Wehmann F, Geiger HH, Loock A (1991) Quantitative-genetic basis of sprouting resistance in rye. Plant Breed 106:196–203CrossRefGoogle Scholar
  82. Zohary D (1971) Origin of southwest Asiatic cereals: wheats, barley, oats and rye. In: Davis PH, Harper PT, Hedge I (eds) Plant life in south-west Asia. Botan Soc Edinburgh, pp 235–260Google Scholar
  83. Zuber T, Rodehutscord M (2016) Variability in amino acid digestibility of wheat grains from diverse genotypes examined in caecectomised laying hens. Eur Poult Sci 80:e1–e18Google Scholar
  84. Zuber T, Miedaner T, Rosenfelder P et al (2016) Amino acid digestibility of different rye genotypes in caecectomised laying hens. Arch Anim Nutr 70:470–487PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.State Plant Breeding InstituteUniversity of HohenheimStuttgartGermany
  2. 2.Institute of Crop ScienceUniversity of HohenheimStuttgartGermany

Personalised recommendations