Advertisement

Proso Millet (Panicum miliaceum L.) Breeding: Progress, Challenges and Opportunities

  • Dipak K. SantraEmail author
  • Rituraj Khound
  • Saurav Das
Chapter

Abstract

Proso millet (Panicum miliaceum L.) is an annual cereal crop domesticated approximately 10,000 years ago in the semiarid regions of China. It is primarily grown in India, Nigeria, Niger, and China. Proso millet is used in Europe and North America as fodder and birdseed despite its highly nutritive and health-promoting benefits. Recently, the high content of different minerals and amino acids along with a low glycemic index and gluten-free property of the grains have attracted the industry and scientific communities. Proso millet has been used as a rotational crop in the winter wheat-fallow cropping system in the western Great Plains of the USA owing to its high water-use efficiency. This practice not only prevents the loss of organic matter from the no-till soil but also reduces weed and disease pressure. Regardless of the impeccable environmental and health benefits of proso millet, it remains as an under researched and underutilized crop. Plant breeders across the globe are trying to develop superior varieties using both classical and advanced breeding procedures. However, the lack of a genetic map and adequate genomic resources has slowed the crop improvement process. Proso millet germplasm representing a wide genetic diversity is conserved in gene banks maintained by several countries. The rapid growth in genomic research in the form of a linkage map development, novel molecular marker identification and availability of next-generation sequencing, together with high-throughput phenotyping promise to accelerate proso millet breeding. The development of proso millet cultivars which are high yielding, lodging and seed-shattering tolerant, direct combine-ready and nutrient enriched, would promote its increased cultivation, and use in the food industry.

Keywords

Gluten-free Glycemic index Molecular marker Semiarid Small millet Rotational crop Water-use efficiency 

Notes

Acknowledgments

The authors acknowledge informal contributions on various aspects of proso millet genetic and breeding (often unpublished) by global proso millet scientists at various national and international scientific meetings.

References

  1. Acosta DAV, Denicol AC, Tribulo P et al (2016) Effects of rumen-protected methionine and choline supplementation on the preimplantation embryo in Holstein cows. Theriogenology 85:1669–1679PubMedCrossRefPubMedCentralGoogle Scholar
  2. Agdag M, Nelson L, Baltensperger D et al (2006) Row spacing affects grain yield and other agronomic characters of proso millet.  https://doi.org/10.1081/CSS-120000266CrossRefGoogle Scholar
  3. Ambavane AR, Sawardekar SV, Sawantdesai SA, Gokhale NB (2015) Studies on mutagenic effectiveness and efficiency of gamma rays and its effect on quantitative traits in finger millet (Eleusine coracana L. Gaertn). J Radiat Res Appl Sci 8(1):120–125.  https://doi.org/10.1016/j.jrras.2014.12.004CrossRefGoogle Scholar
  4. Anderson RL (2011) Synergism: a rotation effect of improved growth efficiency. Adv Agron 112:205–226CrossRefGoogle Scholar
  5. Anderson RL, Bowman RA, Nielsen DC et al (1999) Alternative crop rotations for the central great plains. J Prod Agric 12:95–99CrossRefGoogle Scholar
  6. Araki M, Numaoka A, Kawase M, Fukunaga K (2012) Origin of waxy common millet, Panicum miliaceum L. in Japan. Genet Resour Crop Evol 59:1303–1308CrossRefGoogle Scholar
  7. Araus JL, Cairns JE (2014) Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci 19:52–61PubMedCrossRefPubMedCentralGoogle Scholar
  8. Baltensperger DD (2002) Progress with proso, pearl and other millets. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria, pp 100–103Google Scholar
  9. Baltensperger D, Lyon D, Anderson R et al (1995a) Producing and marketing proso millet in the high plains. Coop Ext Fact Sheet EC95-137-C, University of Nebraska, LincolnGoogle Scholar
  10. Baltensperger DD, Nelson LA, Frickel GE (1995b) Registration of ‘Earlybird’proso millet. Crop Sci 35(4):1204–1205CrossRefGoogle Scholar
  11. Baltensperger DD, Nelson LA, Frickel GE, Anderson RL (1995c) Registration of ‘Huntsman’ proso millet. Crop Sci 35(3):941CrossRefGoogle Scholar
  12. Baltensperger DD, Nelson LA, Frickel GE, Anderson RL (1997) Registration of ‘Sunrise’ proso millet. Crop Sci 37(4):1380CrossRefGoogle Scholar
  13. Baltensperger DD, Frickel GE, Nelson LA et al (2004) Registration of ‘Horizon’ proso millet. Crop Sci 44:688–689CrossRefGoogle Scholar
  14. Bobkov S, Suvorova G (2012) Temperature stress in anther culture of proso millet (Panicum miliaceum L.). In: Yan C, Baili F (eds) Proceedings of the 1st international broomcorn millet symposium: advances in broomcorn millet research. ISBN 978-7-81092-742-0, pp 82–88Google Scholar
  15. Boncompagni E, Orozco-Arroyo G, Cominelli E et al (2018) Antinutritional factors in pearl millet grains: phytate and goitrogens content variability and molecular characterization of genes involved in their pathways. PLoS One 13:e0198394PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33(1):41–52.  https://doi.org/10.1016/j.biotechadv.2014.12.006CrossRefPubMedPubMedCentralGoogle Scholar
  17. Byrne PF, Volk GM, Gardner C et al (2018) Sustaining the future of plant breeding: the critical role of the USDA-ARS national plant germplasm system. Crop Sci 58:451–468CrossRefGoogle Scholar
  18. Carpenter JL, Hopen HJ (1983) A comparison of the biology of wild and cultivated proso millet (Panicum miliaceum). Weed Sci 33:795–799CrossRefGoogle Scholar
  19. Chandra D, Chandra S, Pallavi, Sharma AK (2016) Review of finger millet (Eleusine coracana (L.) Gaertn): a power house of health benefiting nutrients. Food Sci Human Wellness 5:149–155CrossRefGoogle Scholar
  20. Changmei S, Dorothy J (2014) Millet – the frugal grain. Int J Sci Res Rev 3(4):75–90Google Scholar
  21. Chen D, Neumann K, Friedel S et al (2014) Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis. Plant Cell Online 26:4636–4655CrossRefGoogle Scholar
  22. Cho Y II, Chung JW, Lee GA et al (2010) Development and characterization of twenty-five new polymorphic microsatellite markers in proso millet (Panicum miliaceum L.). Genes Genom 32:267–273CrossRefGoogle Scholar
  23. Comis D (2002) Glomalin: hiding place for a third of the world’s stored soil carbon. USDA ARS Online Magazine, pp 4–7Google Scholar
  24. De Wet JMJ, Brink DE, Rao KEP, Mengesha MH (1983) Diversity in kodo millet, Paspalum scrobiculatum. Econ Bot 37:159–163CrossRefGoogle Scholar
  25. Diao X, Jia G (2017) Origin and domestication of foxtail millet. In: Doust A, Diao X (eds) Genetics and genomics of Setaria. Plant genetics and genomics: crops and models, vol 19. Springer, Cham, pp 61–72CrossRefGoogle Scholar
  26. Dussert Y, Snirc A, Robert T (2015) Inference of domestication history and differentiation between early- and late-flowering varieties in pearl millet. Mol Ecol 24:1387–1402PubMedCrossRefPubMedCentralGoogle Scholar
  27. Dwivedi S, Upadhyaya H, Senthilvel S et al (2011) In: Janick J (ed) Millets: genetic and genomic resources. Plant breeding reviews. Wiley, Hoboken, pp 247–375Google Scholar
  28. Fahlgren N, Feldman M, Gehan MA et al (2015) A versatile phenotyping system and analytics platform reveals diverse temporal responses to water availability in Setaria. Mol Plant 8:1520–1535PubMedCrossRefPubMedCentralGoogle Scholar
  29. FAOSTAT (2018) Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#data/QC/visualize
  30. Fuller DQ (2014) Finger millet: origins and development. In: Encyclopedia of global archaeology. Springer, New York, pp 2783–2785CrossRefGoogle Scholar
  31. Ge Y, Geng B, Vincent S, James S (2016) Temporal dynamics of maize plant growth, water use, and leaf water content using automated high throughput RGB and hyperspectral imaging. Comput Electron Agric 127:625–632CrossRefGoogle Scholar
  32. Golzarian MR, Frick RA, Rajendran K et al (2011) Accurate inference of shoot biomass from high-throughput images of cereal plants. Plant Methods 7:1–11CrossRefGoogle Scholar
  33. Gomashe SS (2017) Proso millet, Panicum miliaceum (L.): genetic improvement and research needs. In: Patil JV (ed) Millets and sorghum: biology and genetic improvement. Wiley, Chichester, pp 150–169CrossRefGoogle Scholar
  34. Goron TL, Raizada MN (2015) Genetic diversity and genomic resources available for the small millet crops to accelerate a new green revolution. Front Plant Sci 6:157.  https://doi.org/10.3389/fpls.2015.00157CrossRefPubMedPubMedCentralGoogle Scholar
  35. Graybosch RA, Baltensperger DD (2009) Evaluation of the waxy endosperm trait in proso millet (Panicum miliaceum). Plant Breed 128:70–73CrossRefGoogle Scholar
  36. Habiyaremye C, Matanguihan JB, D’Alpoim Guedes J et al (2017a) Proso millet (Panicum miliaceum L.) and its potential for cultivation in the pacific northwest, US: a review. Front Plant Sci 7:1–17Google Scholar
  37. Habiyaremye C, Barth V, Highet K et al (2017b) Phenotypic responses of twenty diverse proso millet (Panicum miliaceum L.) accessions to irrigation. Sustain 9(3):389:1–389:38914CrossRefGoogle Scholar
  38. Haussmann BIG, Hess DE, Omanya GO et al (2004) Genomic regions influencing resistance to the parasitic weed Striga hermonthica in two recombinant inbred populations of sorghum. Theor Appl Genet 109:1005–1016CrossRefGoogle Scholar
  39. Henry WB, Nielsen DC, Vigil MF et al (2008) Proso millet yield and residue mass following direct harvest with a stripper-header. Agron J 100(3):580–584CrossRefGoogle Scholar
  40. Heyser JW, Nabors MW (1982) Regeneration of proso millet from embryogenic calli derived from various plant parts 1. Crop Sci 22(5):1070–1074CrossRefGoogle Scholar
  41. Hou S, Sun Z, Li Y et al (2017) Transcriptomic analysis, genic SSR development, and genetic diversity of proso millet (Panicum miliaceum ; Poaceae). Appl Plant Sci 5:1600137.  https://doi.org/10.3732/apps.1600137CrossRefGoogle Scholar
  42. Hu YG, Zhu J, Liu F et al (2008) Genetic diversity among Chinese landraces and cultivars of broomcorn millet (Panicum miliaceum) revealed by the polymerase chain reaction. Ann Appl Biol 153:357–364CrossRefGoogle Scholar
  43. Hu X, Wang J, Lu P, Zhang H (2009) Assessment of genetic diversity in broomcorn millet (Panicum miliaceum L.) using SSR markers. J Genet Genom 36:491–500CrossRefGoogle Scholar
  44. Hunt HV, Vander Linden M, Liu X et al (2008) Millets across Eurasia: chronology and context of early records of the genera Panicum and Setaria from archaeological sites in the Old World. Veg Hist Archaeobotany 17:5–18CrossRefGoogle Scholar
  45. Hunt HV, Denyer K, Packman LC et al (2010) Molecular basis of the waxy endosperm starch phenotype in broomcorn millet (Panicum miliaceum L.). Mol Biol Evol 27:1478–1494PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hunt HV, Campana MG, Lawes MC et al (2011) Genetic diversity and phylogeography of broomcorn millet (Panicum miliaceum L.) across Eurasia. Mol Ecol 20:4756–4771PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hunt HV, Moots HM, Graybosch RA et al (2013) Waxy phenotype evolution in the allotetraploid cereal broomcorn millet: mutations at the GBSSI locus in their functional and phylogenetic context. Mol Biol Evol 30:109–122PubMedCrossRefGoogle Scholar
  48. Hunt HV, Badakshi F, Romanova O et al (2014) Reticulate evolution in Panicum (Poaceae): the origin of tetraploid broomcorn millet, P. miliaceum. J Exp Bot 65:3165–3175PubMedPubMedCentralCrossRefGoogle Scholar
  49. Jia J, Li H, Zhang X et al (2017) Genomics-based plant germplasm research (GPGR). Crop J 5:166–174CrossRefGoogle Scholar
  50. Jnawali P, Kumar V, Tanwar B (2016) Celiac disease: overview and considerations for development of gluten-free foods. Food Sci Human Wellness 5:169–176CrossRefGoogle Scholar
  51. Kalinová J (2007) Nutritionally important components of proso millet (Panicum miliaceum L.). Food 1:91–100Google Scholar
  52. Kalinova J, Moudry J (2006) Content and quality of protein in proso millet (Panicum miliaceum L.) varieties. Plant Foods Hum Nutr 61:45–49PubMedCrossRefPubMedCentralGoogle Scholar
  53. Karam D, Westra P, Nissen SJ et al (2004) Genetic diversity among proso millet (Panicum miliaceum) biotypes assessed by AFLP technique. Planta Daninha 22:167–174CrossRefGoogle Scholar
  54. Khound R, Santra M, Baenziger PS, Santra DK (2013) Effect of cold-mediated pretreatment on microspore culture in winter and spring wheat. Am J Plant Sci 4:2259–2264CrossRefGoogle Scholar
  55. Kole C, Muthamilarasan M, Henry R et al (2015) Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. Front Plant Sci 6:1–16CrossRefGoogle Scholar
  56. Lágler R, Gyulai G, Humphreys M et al (2005) Morphological and molecular analysis of common millet (P. miliaceum) cultivars compared to an aDNA sample from the 15th century (Hungary). Euphytica 146(1–2):77–85CrossRefGoogle Scholar
  57. Liu M, Xu Y, He J et al (2016) Genetic diversity and population structure of broomcorn millet (Panicum miliaceum L.) cultivars and landraces in China based on microsatellite markers. Int J Mol Sci 17:1–18Google Scholar
  58. Lu H, Zhang J, Wu N et al (2009a) Phytoliths analysis for the discrimination of foxtail millet (Setaria italica) and common millet (Panicum miliaceum). PLoS One 4(2):e4448PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lu H, Zhang J, Liu K-B et al (2009b) Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proc Natl Acad Sci 106:7367–7372PubMedCrossRefGoogle Scholar
  60. Lyon DJ, Baltensperger DD (1993) Proso millet (Panicum miliaceum) tolerance to several postemergence herbicides. Weed Technol 7:230–233CrossRefGoogle Scholar
  61. M’Ribu HK, Hilu KW (1994) Detection of interspecific and intraspecific variation in Panicum millets through random amplified polymorphic DNA. Theor Appl Genet 88:412–416PubMedCrossRefPubMedCentralGoogle Scholar
  62. Ma L, Cao YH, Cheng MH et al (2013) Phylogenetic diversity of bacterial endophytes of Panax notoginseng with antagonistic characteristics towards pathogens of root-rot disease complex. Antonie Van Leeuwenhoek 103:299–312PubMedCrossRefPubMedCentralGoogle Scholar
  63. McSweeney MB, Ferenc A, Smolkova K et al (2017) Glycaemic response of proso millet-based (Panicum miliaceum) products. Int J Food Sci Nutr 68:873–880PubMedCrossRefPubMedCentralGoogle Scholar
  64. Miller NF, Spengler RN, Frachetti M (2016) Millet cultivation across Eurasia: origins, spread, and the influence of seasonal climate. The Holocene 26:1566–1575CrossRefGoogle Scholar
  65. Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147:969–977PubMedPubMedCentralCrossRefGoogle Scholar
  66. Motta Romero H, Santra D, Rose D, Zhang Y (2017) Dough rheological properties and texture of gluten-free pasta based on proso millet flour. J Cereal Sci 74:238–243CrossRefGoogle Scholar
  67. Muduli KC, Misra RC (2007) Efficacy of mutagenic treatments in producing useful mutants in finger millet (Eleusine coracana Gaertn.). Indian J Genet Plant Breed 67(3):232–237Google Scholar
  68. Nass LL, Sigrist MS, Ribeiro CS da C, Reifschneider FJB (2012) Genetic resources: the basis for sustainable and competitive plant breeding. Crop Breed Appl Biotech 12:75–86CrossRefGoogle Scholar
  69. Nelson LA (1984) Technique for crossing proso millet. Crop Sci 24(1):205–206CrossRefGoogle Scholar
  70. Nelson LA (1990) Registration of ‘Sunup’ proso millet. Crop Sci 30:746–747CrossRefGoogle Scholar
  71. Nielsen DC, Calderón FJ (2011) Fallow effects on soil. In: Hatfield JL, Sauer TJ (eds) Soil management: building a stable base for agriculture. American Society of Agronomy and Soil Science Society of America, Madison, pp 287–300.  https://doi.org/10.2136/2011.soilmanagement.c19CrossRefGoogle Scholar
  72. Nielsen DC, Unger PW, Miller PR (2005) Efficient water use in dryland cropping systems in the great plains. Agron J 97:364–372CrossRefGoogle Scholar
  73. Nirmalakumari A, Arulselvi S, Ganapathy S et al (2007) Gamma ray induced variation for lodging resistance and its associated characters in little millet (Panicum sumatrense Roth Ex-roem and schult). Madras Agric J 94(7–12):151–155Google Scholar
  74. Oumar I, Mariac C, Pham J-L, Vigouroux Y (2008) Phylogeny and origin of pearl millet (Pennisetum glaucum [L.] R. Br) as revealed by microsatellite loci. Theor Appl Genet 117:489–497PubMedPubMedCentralCrossRefGoogle Scholar
  75. Ozainne S, Lespez L, Garnier A et al (2014) A question of timing: spatio-temporal structure and mechanisms of early agriculture expansion in West Africa. J Archaeol Sci 50:359–368CrossRefGoogle Scholar
  76. Pandey P, Ge Y, Stoerger V, Schnable JC (2017) High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging. Front Plant Sci 8:1348PubMedPubMedCentralCrossRefGoogle Scholar
  77. Pathirana R (2011) Plant mutation breeding in agriculture. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 6(032):1–20.  https://doi.org/10.1079/PAVSNNR20116032CrossRefGoogle Scholar
  78. Petolino JF (2015) Genome editing in plants via designed zinc finger nucleases. In Vitro Cell Dev Biol Plant 51(1):1–8.  https://doi.org/10.1007/s11627-015-9663-3CrossRefPubMedPubMedCentralGoogle Scholar
  79. Rajput SG, Santra DK (2016) Evaluation of genetic diversity of proso millet germplasm available in the United States using simple-sequence repeat markers. Crop Sci 56:2401CrossRefGoogle Scholar
  80. Rajput SG, Plyler-Harveson T, Santra DK (2014) Development and characterization of SSR markers in proso millet based on switchgrass genomics. Am J Plant Sci 5:175–186CrossRefGoogle Scholar
  81. Rajput SG, Santra DK, Schnable J (2016) Mapping QTLs for morpho-agronomic traits in proso millet (Panicum miliaceum L.). Mol Breed 36(4):37.  https://doi.org/10.1007/s11032-016-0460-4CrossRefGoogle Scholar
  82. Rasmussen K (1988) Ploughing, direct drilling and reduced cultivation for cereals. Danish J Plant Soil Sci 92:233–248Google Scholar
  83. Rasmussen PE, Albrecht SL, Smiley RW (1998) Soil C and N changes under tillage and cropping systems in semi-arid Pacific Northwest agriculture. Soil Tillage Res 47:197–205CrossRefGoogle Scholar
  84. Rose DJ, Santra DK (2013) Proso millet (Panicum miliaceum L.) fermentation for fuel ethanol production. Ind Crop Prod 43:602–605CrossRefGoogle Scholar
  85. Saha D, Gowda MV, Arya L et al (2016) Genetic and genomic resources of small millets. CRC Crit Rev Plant Sci 35:56–79CrossRefGoogle Scholar
  86. Saleh ASM, Zhang Q, Chen J, Shen Q (2013) Millet grains: nutritional quality, processing, and potential health benefits. Compr Rev Food Sci Food Saf 12:281–295CrossRefGoogle Scholar
  87. Santra DK (2013) Proso millet varieties for western Nebraska western Nebraska. University of Nebraska-Lincoln NebGuide, G2219Google Scholar
  88. Santra DK, Rose D (2013) Alternative uses of proso millet. University of Nebraska-Lincoln Neb Guide G, 2218, pp 3–6Google Scholar
  89. Santra DK, Heyduck RF, Baltensperger DD et al (2015) Registration of ‘Plateau’ waxy (amylose-free) proso millet. J Plant Regist 9:41CrossRefGoogle Scholar
  90. Sateesh PV (2010) Millets: future of food and farming. Millet Network of India Deccan Development Society FIAN, Hyderabad, pp 2–9Google Scholar
  91. Schnable JC, Liang Z, Maio C et al (2018) High-throughput phenotyping in millet and allied species. In: Santra DK, Johnson JJ (eds) International millet symposium and the 3rd international symposium on broomcorn millet. Program and abstracts, August 8–12, 2018, Fort Collins, CO, USAGoogle Scholar
  92. Seghatoleslami MJ, Kafi M, Majidi E (2008) Effect of drought stress at different growth stages on yield and water efficiency of five proso millet (Panicum miliaceum L.) genotypes. Pak J Bot 40:1427–1432Google Scholar
  93. Singode A, Balakrishna D, Bhat V et al (2018) Improving yield using EMS mutation in proso millet (Panicum miliaceum L). In: Santra DK, Johnson JJ (eds) The 3rd international broomcorn millet symposium, August 8–12, 2018, Fort Collins, Colorado, USA, pp 68–69Google Scholar
  94. Soda N, Verma L, Giri J (2018) CRISPR-Cas9 based plant genome editing: significance, opportunities and recent advances. Plant Physiol Biochem 13:2–11.  https://doi.org/10.1016/j.plaphy.2017.10.024CrossRefGoogle Scholar
  95. Tako E, Reed SM, Budiman J et al (2015) Higher iron pearl millet (Pennisetum glaucum L.) provides more absorbable iron that is limited by increased polyphenolic content. Nutr J 14:11.  https://doi.org/10.1186/1475-2891-14-11CrossRefPubMedPubMedCentralGoogle Scholar
  96. Taylor JRN, Belton PS, Beta T, Duodu KG (2014) Increasing the utilisation of sorghum, millets and pseudocereals: developments in the science of their phenolic phytochemicals, biofortification and protein functionality. J Cereal Sci 59:257–275CrossRefGoogle Scholar
  97. Upadhyaya HD, Sharma S, Gowda CLL et al (2011) Developing proso millet (Panicum miliaceum L.) core collection using geographic and morpho-agronomic data. Crop Past Sci 62:383–389CrossRefGoogle Scholar
  98. Upadhyaya HD, Dronavalli N, Dwivedi SL et al (2013) Mini core collection as a resource to identify new sources of variation. Crop Sci 53:2506–2517CrossRefGoogle Scholar
  99. Upadhyaya HD, Dwivedi SL, Upadhyaya HD et al (2014) Forming core collections in barnyard, kodo, and little millets using morphoagronomic descriptors. Crop Sci 54:2673–2682CrossRefGoogle Scholar
  100. Upadhyaya HD, Vetriventhan M, Dwivedi SL et al (2016) Proso, barnyard, little, and kodo millets. In: Singh M, Upadhyaya HD (eds) Genetic and genomic resources for grain cereals improvement. Academic, Waltham, pp 321–343CrossRefGoogle Scholar
  101. Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10:621–630PubMedCrossRefPubMedCentralGoogle Scholar
  102. Varshney RK, Glaszmann JC, Leung H, Ribaut JM (2010) More genomic resources for less-studied crops. Trends Biotechnol 28(9):452–460.  https://doi.org/10.1016/j.tibtech.2010.06.007CrossRefPubMedPubMedCentralGoogle Scholar
  103. Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12:1–8CrossRefGoogle Scholar
  104. Varshney RK, Singh VK, Kumar A et al (2018) Can genomics deliver climate-change ready crops? Curr Opin Plant Biol 45(B):205–211CrossRefGoogle Scholar
  105. Vetriventhan M, Upadhyaya HD (2018) Diversity and trait-specific sources for productivity and nutritional traits in the global proso millet (Panicum miliaceum L.) germplasm collection. Crop J 6(5):451–463CrossRefGoogle Scholar
  106. Vetriventhan M, Dwivedi SL, Pattanashetti SK, Singh SK (2016) Finger and foxtail millets. In: Genetic and genomic resources for grain cereals improvement. Academic, Amsterdam, pp 291–319CrossRefGoogle Scholar
  107. Vinoth A, Ravindhran R (2017) Biofortification in millets: a sustainable approach for nutritional security. Front Plant Sci 8:29PubMedPubMedCentralCrossRefGoogle Scholar
  108. Williams JT, Nyle CB (1991) Plant genetic resources: some new directions. Adv Agron 45:61–91CrossRefGoogle Scholar
  109. Wright DA, Yang BL, Spalding MH (2014) TALEN-mediated genome editing: prospects and perspectives. Biochem J 462(1):15–24.  https://doi.org/10.1042/BJ20140295CrossRefPubMedPubMedCentralGoogle Scholar
  110. Yan G, Liu H, Wang H et al (2017) Accelerated generation of selfed pure line plants for gene identification and crop breeding. Front Plant Sci 8:1786.  https://doi.org/10.3389/fpls.2017.01786CrossRefPubMedPubMedCentralGoogle Scholar
  111. Yang W, Duan L, Chen G et al (2013) Plant phenomics and high-throughput phenotyping: accelerating rice functional genomics using multidisciplinary technologies. Curr Opin Plant Biol 16:180–187PubMedCrossRefPubMedCentralGoogle Scholar
  112. Yue H, Wang L, Liu H et al (2016) De novo assembly and characterization of the transcriptome of broomcorn millet (Panicum miliaceum L.) for gene discovery and marker development. Front Plant Sci 7:1–11Google Scholar
  113. Zhao Z (2011) New archaeobotanic data for the study of the origins of agriculture in China. Curr Anthropol 52:S295–S306CrossRefGoogle Scholar
  114. Zhu C, Bortesi L, Baysal C et al (2017a) Characteristics of genome editing mutations in cereal crops. Trends Plant Sci 22(1):38–52.  https://doi.org/10.1016/j.tplants.2016.08.009CrossRefPubMedPubMedCentralGoogle Scholar
  115. Zhu C, Yang J, Shyu C (2017b) Setaria comes of age: meeting report on the second international Setaria genetics conference. Front Plant Sci 8:1–5.  https://doi.org/10.3389/fpls.2017.01562CrossRefGoogle Scholar
  116. Zotikov VI, Sidorenko VS, Bobkov SV et al (2012) Area and production of proso millet (Panicum miliaceum L.) in Russia. In: Xiaosu D (ed) Advances in broomcorn millet research. Proceedings of the 1st international millet symposium on broomcorn millet (1st ISBM), August 25–29, 2012, Yangling, ChinaGoogle Scholar
  117. Zou C, Zhu X, Liu R et al (2018) The Genome of broomcorn millet (Panicum miliaceum L.). In: Santra DK, Johnson JJ (eds) International millet symposium and the 3rd international symposium on broomcorn millet. Program and abstracts, August 8–12, 2018, Marriot Inn, Fort Collins, CO, USA, p 61Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of Nebraska-Lincoln, Panhandle Research and Extension CenterScottsbluffUSA

Personalised recommendations