Advertisement

Recent Advances in Wheat (Triticum spp.) Breeding

  • Amira M. I. Mourad
  • Dalia Z. Alomari
  • Ahmad M. Alqudah
  • Ahmed Sallam
  • Khaled F. M. SalemEmail author
Chapter

Abstract

Wheat (Triticum spp. L; Gramineae), a self-pollinating crop, is one of the most important cereal crops. Globally, wheat is an economic crop, utilized as food, feed, seed and industrial uses. Gene banks have conserved a large genetic resource collection of wheat germplasm including wild Triticum species. There are numerous species of Triticum with different genomes and chromosome numbers. Triticum harbors significant diversity based on ploidy level, biological status, geographical regions and morpho-agronomic traits. Introgression of novel alleles through crossing between various wheat genetic resources, e.g. modern varieties with locally-adapted varieties, enhances genetic diversity and preselection for traits of interest, which is required to ensure meaningful natural variation at the phenotype level. Improving wheat for biotic and abiotic stress tolerance traits, quality traits and yield attributes are the main objectives of wheat breeders and geneticists. Achieving these objectives can be facilitated by the application the modern genomics tools to augment traditional breeding programs. This chapter presents an overview of wheat germplasm biodiversity and conservation, objectives and stages of wheat breeding programs, cultivation and traditional breeding methods, in addition to modern plant breeding tools including marker-assisted breeding, genetic engineering and genome editing.

Keywords

Biodiversity Genetic improvement Genetic map Modern wheat breeding Traditional breeding Triticum spp. Wheat 

References

  1. Acuna TLB, Rebetzke GJ, He X et al (2014) Mapping quantitative trait loci associated with root penetration ability of wheat in contrasting environments. Mol Breed 34:631–642.  https://doi.org/10.1007/s11032-014-0063-xCrossRefGoogle Scholar
  2. Ando K, Rynearson S, Muleta KT et al (2018) Genome-wide associations for multiple pest resistances in a Northwestern United States elite spring wheat panel. PLoS One 13(2):e0191305.  https://doi.org/10.1371/journal.pone.0191305CrossRefPubMedPubMedCentralGoogle Scholar
  3. Asad MA, Bai B, Lan C et al (2014) Identification of QTL for adult-plant resistance to powdery mildew in Chinese wheat landrace Pinguan 50. Crop J 2:308–314.  https://doi.org/10.1016/j.cj.2014.04.009CrossRefGoogle Scholar
  4. Ayalew H, Liu H, Börner A et al (2018) Genome-wide association mapping of major root length QTLs under PEG induced water stress in wheat. Front Plant Sci 9:1–9.  https://doi.org/10.3389/fpls.2018.01759CrossRefGoogle Scholar
  5. Baenziger PS (2016) Wheat breeding and genetics. Ref Mod Food Sci.  https://doi.org/10.1016/B978-0-08-100596-5.03001-8Google Scholar
  6. Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712PubMedCrossRefPubMedCentralGoogle Scholar
  7. Barakat MN, Shehab El-Din TM (1993) An in vivo and in vitro analysis of a diallel cross in wheat (Triticum aestivum L.). J Genet Breed 47:211–216Google Scholar
  8. Belamkar V, Guttieri MJ, Hussain W et al (2018) Genomic selection in preliminary yield trials in a winter wheat breeding program. G3 (Bethesda) 8(8):2735–2747.  https://doi.org/10.1534/g3.118.200415CrossRefGoogle Scholar
  9. Bhusal N, Sarial AK, Sharma P, Sareen S (2017) Mapping QTLs for grain yield components in wheat under heat stress. PLoS One 12(12):e0189594.  https://doi.org/10.1371/journal.pone.0189594CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bonneau J, Taylor J, Parent B et al (2013) Multi-environment analysis and improved mapping of a yield-related QTL on chromosome 3B of wheat. Theor Appl Genet 126:747–761.  https://doi.org/10.1007/s00122-012-2015-3CrossRefPubMedPubMedCentralGoogle Scholar
  11. Börner A (2006) Preservation of plant genetic resources in the biotechnology era. Biotechnol J 1:1393–1404.  https://doi.org/10.1002/biot.200600131CrossRefPubMedPubMedCentralGoogle Scholar
  12. Börner A, Chebotar S, Korzun V (2000a) Molecular characterization of the genetic integrity of wheat (Triticum aestivum L.) germplasm after long-term maintenance. Theor Appl Genet 100:494–497.  https://doi.org/10.1007/s001220050064CrossRefGoogle Scholar
  13. Börner A, Röder MS, Unger O, Meinel A (2000b) The detection and molecular mapping of a major gene for non-specific adult plant disease resistance against stripe rust (Puccinia striiformis) in wheat. Theor Appl Genet 100:1095–1099CrossRefGoogle Scholar
  14. Börner A, Schumann E, Fürste A et al (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploidy wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52.  https://doi.org/10.1016/j.biotechadv.2014.12.006CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bowne JB, Erwin TA, Juttner J et al (2012) Drought responses of leaf tissues from wheat cultivars of differing drought tolerance at the metabolite level. Mol Plant 5:418–429.  https://doi.org/10.1093/mp/ssr114CrossRefPubMedPubMedCentralGoogle Scholar
  17. Breiman A, Graur D (1995) Wheat evolution. Isr J Plant Sci 43:85–98CrossRefGoogle Scholar
  18. Briggle LW (1967) Morphology of the wheat plant. In: Quisenberry KS, Reitz LP (eds) Wheat and wheat improvement. Amer Soc Agron Inc, Madison, pp 89–116Google Scholar
  19. Briggle LW, Reitz LP (1963) Classification of Triticum species and of wheat varieties grown in the United States, Tech Bull 1278. USDA, Washington DCGoogle Scholar
  20. Castro AM, Tacaliti MS, Gimenez D et al (2008) Mapping quantitative trait loci for growth responses to exogenously applied stress induced hormones in wheat. Euphytica 164:719–727.  https://doi.org/10.1007/s10681-008-9694-5CrossRefGoogle Scholar
  21. Chang M, He L, Cai L (2018) An overview of genome-wide association studies. In: Huang T (ed) Computational systems biology. Humana Press, New York, pp 97–108CrossRefGoogle Scholar
  22. Cheng M, Fry JE, Pang S et al (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980.  https://doi.org/10.1104/pp.115.3.971CrossRefPubMedPubMedCentralGoogle Scholar
  23. Clark AJ, Sarti-Dvorjak D, Brown-Guedira G et al (2016) Identifying rare FHB-resistant segregants in intransigent backcross and F2 winter wheat populations. Front Microbiol 7:277.  https://doi.org/10.3389/fmicb.2016.00277CrossRefPubMedPubMedCentralGoogle Scholar
  24. Connorton JM, Jones ER, Rodríguez-Ramiro I et al (2017) Wheat vacuolar iron transporter TaVIT2 transports Fe and Mn and is effective for biofortification. Plant Physiol 174:2434–2444.  https://doi.org/10.1104/pp.17.00672CrossRefPubMedPubMedCentralGoogle Scholar
  25. Cuadrado A, Cardoso M, Jouve N (2008) Physical organization of simple sequence repeats (SSRs) in Triticeae: structural, functional and evolutionary implications. Cytogenet Genome Res 120:210–219.  https://doi.org/10.1159/000121069CrossRefPubMedPubMedCentralGoogle Scholar
  26. Daba SD, Tyagi P, Brown-Guedira G, Mohammadi M (2018) Genome-wide association studies to identify loci and candidate genes controlling kernel weight and length in a historical United States wheat population. Front Plant Sci 9:1–14.  https://doi.org/10.3389/fpls.2018.01045CrossRefGoogle Scholar
  27. Danci M, Danci O, Berbentea F et al (2010) Factors that influence wheat (Triticum aestivum) somaclones and gametoclones regeneration. J Hort Forest Biotech 14(2):243–249Google Scholar
  28. Davis DR, Epp MD, Riordan HD (2004) Changes in USDA food composition data for 43 garden crops, 1950 to 1999. J Am Coll Nutr 23:669–682PubMedCrossRefPubMedCentralGoogle Scholar
  29. Demir P, Onde S, Severcan F (2015) Phylogeny of cultivated and wild wheat species using ATR–FTIR spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 135:757–763.  https://doi.org/10.1016/j.saa.2014.07.025CrossRefPubMedPubMedCentralGoogle Scholar
  30. Dong H, Wang R, Yuan Y et al (2018) Evaluation of the potential for genomic selection to improve spring wheat resistance to fusarium head blight in the Pacific northwest. Front Plant Sci 9:1–15.  https://doi.org/10.3389/fpls.2018.00911CrossRefGoogle Scholar
  31. Echeverry-Solarte M, Kumar A, Kianian S et al (2015) New QTL alleles for quality-related traits in spring wheat revealed by RIL population derived from supernumerary × non-supernumerary spikelet genotypes. Theor Appl Genet 128(5):893–912.  https://doi.org/10.1007/s00122-015-2478-0CrossRefPubMedGoogle Scholar
  32. El-Aref HM (2002) Employment of maize immature embryo culture for improving drought tolerance. 3rd Scientific Conference of Agriculture Sciences, Fac Agric, Assiut Univ, Assiut, Egypt, 20–22 Oct, pp 463–477Google Scholar
  33. Eltaher S, Sallam A, Belamkar V et al (2018) Genetic diversity and population structure of F3:6 Nebraska winter wheat genotypes using genotyping-by-sequencing. Front Genet 9:76.  https://doi.org/10.3389/fgene.2018.00076CrossRefPubMedPubMedCentralGoogle Scholar
  34. Friebe B, Gill BS (1996) Chromosome banding and genome analysis in diploid and cultivated polyploid wheats. In: Jauhar PP (ed) Methods of genome analysis in plants. CRC Press, Boca Raton, pp 39–60Google Scholar
  35. Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat–alien translocations conferring resistance to diseases and pests: current status. Euph 91:59–87CrossRefGoogle Scholar
  36. Gaj T, Gersbach CA, Barbas CFB (2013) ZFN, TALEN and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405.  https://doi.org/10.1016/j.tibtech.2013.04.004CrossRefPubMedPubMedCentralGoogle Scholar
  37. Gale MD, Youssefian S (1985) Dwarfing genes in wheat. In: Russell GE (ed) Progress in plant breeding. Butterworth, London, pp 1–35Google Scholar
  38. Gao J, Wang G, Ma S et al (2015) CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol 87:99–110.  https://doi.org/10.1007/s11103-014-0263-0CrossRefPubMedPubMedCentralGoogle Scholar
  39. Garcia M, Eckermann P, Haefele S et al (2019) Genome-wide association mapping of grain yield in a diverse collection of spring wheat (Triticum aestivum L.) evaluated in southern Australia. PLoS One 14:1–19.  https://doi.org/10.25909/5becfa45c176fCrossRefGoogle Scholar
  40. Gil-Humanes J, Wang Y, Liang Z et al (2017) High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J 89:1251–1262CrossRefGoogle Scholar
  41. Golovnina KA, Glushkov SA, Blinov AG et al (2007) Molecular phylogeny of the genus Triticum L. Plant Syst Evol 264:195–216CrossRefGoogle Scholar
  42. Goncharov NP, Golovnina KA, Kondratenko EY (2009) Taxonomy and molecular phylogeny of natural and artificial wheat species. Breed Sci 59:492–498CrossRefGoogle Scholar
  43. Griffing B (1956) Concept of general and specific combining ability in relation to diallel system. Aust J Bio Sci 9:463–493CrossRefGoogle Scholar
  44. Gupta PK, Varsheny RK, Sharma PC, Ramesh B (1999) Molecular markers and their applications in wheat breeding. Plant Breed 118:369–390CrossRefGoogle Scholar
  45. Habib I, Rauf M, Qureshi J et al (2014) Optimization of somatic embryogenesis and Agrobacterium-mediated transformation of elite wheat (Triticum aestivum) cultivars of Pakistan. Int J Agric Biol 16:1098–1104Google Scholar
  46. Haile JK, Nachit MM, Hammer K, Röder M (2012) QTL mapping of resistance to race Ug99 of Puccinia graminis f. sp. tritici in durum wheat (Triticum durum Desf.). Mol Breed 30:1479–1493.  https://doi.org/10.1007/s11032-012-9734-7CrossRefGoogle Scholar
  47. Haile JK, Diaye AN, Clarke F et al (2018) Genomic selection for grain yield and quality traits in durum wheat. Mol Breed 38:1–18CrossRefGoogle Scholar
  48. He J, Zhao X, Laroche A et al (2014) Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci 5:1–8.  https://doi.org/10.3389/fpls.2014.00484CrossRefGoogle Scholar
  49. International Wheat Genome Sequencing C (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788.  https://doi.org/10.1126/science.1251788CrossRefGoogle Scholar
  50. Ishida Y, Hiei Y, Komari T (2015) High efficiency wheat transformation mediated by Agrobacterium tumefaciens. In: Ogihara Y, Takumi S, Handa H (eds) Advances in wheat genetics: from genome to field. Springer, Tokyo, pp 167–173CrossRefGoogle Scholar
  51. Ishino Y, Shinagawa H, Makino K et al (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli and identification of the gene product. J Bacteriol 169:5429–5433PubMedPubMedCentralCrossRefGoogle Scholar
  52. Jain SM (2001) Tissue culture-derived variation in crop improvement. Euph 118:153–166CrossRefGoogle Scholar
  53. Jiang W, Zhou H, Bi H et al (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:1–12.  https://doi.org/10.1093/nar/gkt780CrossRefGoogle Scholar
  54. Juliana P, Singh RP, Singh PK et al (2018) Genome-wide association mapping for resistance to leaf rust, stripe rust and tan spot in wheat reveals potential candidate genes. Theor Appl Genet 131:1405–1422.  https://doi.org/10.1007/s00122-018-3086-6CrossRefPubMedPubMedCentralGoogle Scholar
  55. Kenaschuk EO (1975) Flax breeding and genetics. In: Harapiak JT (ed) Oilseed and pulse crops in western Canada – a symposium. Western Co-operative Fertilizers Ltd, Calgary, pp 203–221Google Scholar
  56. Khan S (2015) QTL mapping: a tool for improvement in crop plants. Res J Recent Sci 4:7–12Google Scholar
  57. Khan MK, Pandey A, Choudhary S et al (2014) From RFLP to DArT: molecular tools for wheat (Triticum spp.) diversity analysis. Genet Resour Crop Evol 61:1001–1032.  https://doi.org/10.1007/s10722-014-0114-5CrossRefGoogle Scholar
  58. Kihara H (1984) Origin and history of ‘Daruma’-a parental variety of Norin 10. Sakamoto S (ed) Proceedings of the International wheat genetics, 6th, Kyoto, Japan 28 Nov–3 Dec 1983, Plant Germ-Plasm Institute, Faculty of Agriculture, Kyoto University, pp 13–19Google Scholar
  59. Kim D, Alptekin B, Budak H (2018) CRISPR/Cas9 genome editing in wheat. Funct Integr Genomics 18:31–41.  https://doi.org/10.1007/s10142-017-0572-xCrossRefPubMedPubMedCentralGoogle Scholar
  60. Kulwal P, Kumar N, Khurana P et al (2005) Mapping of a major QTL for pre-harvest sprouting tolerance on chromosome 3A in bread wheat. Theor Appl Genet 111:1052–1059.  https://doi.org/10.1007/s00122-005-0021-4CrossRefPubMedGoogle Scholar
  61. Kumar J, Pretep A, Solanki R et al (2011) Advances in genomics resources for improving food legume crops. J Agric Sci 150:289–318CrossRefGoogle Scholar
  62. Langridge P (2003) Molecular breeding of wheat and barley. In: Tuberosa R, Philips RL, Gale M (eds) Proceedings of the international congress, in the wake of the double helix: from the green revolution to the gene revolution, Bologna, Italy, pp 279–286Google Scholar
  63. Li JF, Zhang D, Sheen J (2014) Cas9-based genome editing in Arabidopsis and tobacco. Methods Enzymol 546:459–472.  https://doi.org/10.1016/B978-0-12-801185-0.00022-2CrossRefPubMedGoogle Scholar
  64. Liang Z, Chen K, Li T et al (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:14261.  https://doi.org/10.1038/ncomms14261CrossRefPubMedPubMedCentralGoogle Scholar
  65. Linnaeus C (1753) Species plantarum, exhibentes plantas rite cognitas, ad genera relatas, cum differentiis specificus, nominibus trivialibus, synonymis selectis, locis natalibus, secundum systema sexuale digestas. T1 Impensis Laurentii Salvii, HolmiaeGoogle Scholar
  66. Liu J, Xu Z, Fan X et al (2018a) A genome wide association study of wheat spike related traits in China. Front Plant Sci 9:1–14.  https://doi.org/10.3389/fpls.2018.01584CrossRefGoogle Scholar
  67. Liu Y, Liu Y, Zhang Q et al (2018b) Genome wide association analysis of quantitative trait loci for salinity tolerance related morphological indices in bread wheat. Euphytica 214:176.  https://doi.org/10.1007/s10681-018-2265-5CrossRefGoogle Scholar
  68. Mackintosh CA, Lewis J, Radmer LE et al (2007) Overexpression of defense response genes in transgenic wheat enhances resistance to Fusarium head blight. Plant Cell Rep 26:479–488PubMedCrossRefPubMedCentralGoogle Scholar
  69. Marais G, Botes W (2009) Recurrent mass selection for routine improvement of common wheat: a review. In: Lichtfouse E (ed) Organic farming, pest control and remediation of soil pollutants, Sustainable agricuture review, vol 1. Springer, Dordrecht, pp 85–105CrossRefGoogle Scholar
  70. Marais GF, Pretorius ZA, Marais AS, Wellings CR (2003) Transfer of rust resistance genes from Triticum species to common wheat. S Afr J Plant Soil 20(4):193–198.  https://doi.org/10.1080/02571862.2003.10634934CrossRefGoogle Scholar
  71. Marcussen T, Sandve SR, Heier L et al (2014) Ancient hybridizations among the ancestral genomes of bread wheat. Science 345(6194):1250092.  https://doi.org/10.1126/science.1250092CrossRefPubMedPubMedCentralGoogle Scholar
  72. Mercado JA, Sancho C, Jimenez B, Peran U, Pliego A, Quesada M (2000) Assessment of in vitro growth of apical stem sections and adventitious organogenesis to evaluate salinity tolerance in cultivated tomato. Pl cell Tiss Org Cult 62:101–106CrossRefGoogle Scholar
  73. McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions in genomes (TILLING). Plant Physiol 123:439–442PubMedPubMedCentralCrossRefGoogle Scholar
  74. Mohammadi M, Sharifi P, Karimizadeh R, Shefazadeh MK (2012) Relationships between grain yield and yield components in bread wheat under different water availability (dryland and supplemental irrigation conditions). Not Bot Hort Agrobo 40:195–200CrossRefGoogle Scholar
  75. Mourad AMI, Sallam A, Belamkar V et al (2018a) Genetic architecture of common bunt resistance in winter wheat using genome wide association study. BMC Plant Biol 18:1–14.  https://doi.org/10.1186/s12870-018-1435-xCrossRefGoogle Scholar
  76. Mourad AMI, Sallam A, Belamkar V et al (2018b) Genome-wide association study for identification and validation of novel SNP markers for Sr6 stem rust resistance gene in bread wheat. Front Plant Sci 9:1–12.  https://doi.org/10.3389/fpls.2018.00380CrossRefGoogle Scholar
  77. Mwadzingeni L, Shimelis H, Tesfay S, Tsilo TJ (2016) Screening of bread wheat genotypes for drought tolerance using phenotypic and proline analyses. Front Plant Sci 7:1276.  https://doi.org/10.3389/fpls.2016.01276CrossRefPubMedPubMedCentralGoogle Scholar
  78. Nachit MM (1992) Durum wheat breeding for Mediterranean dryland of North Africa and West Asia. In: Rajram S, Saari EE, Hetel GP (eds) Durum wheats: challenges and opportunities. CIMMYT, Ciudad Obregon, pp 14–27Google Scholar
  79. Navakode S, Weidner A, Lohwasser U et al (2009) Molecular mapping of quantitative trait loci (QTLs) controlling aluminium tolerance in bread wheat. Euphytica 166:283–290.  https://doi.org/10.1007/s10681-008-9845-8CrossRefGoogle Scholar
  80. Nawara HM, Mattar MZ, Salem KFM, Eissa OA (2017) Diallel study on some in vitro callus traits of bread wheat (Triticum aestivum L.) under salt stress. Int J Agric Environ Res 3(1):1988–2006Google Scholar
  81. Nonaka S (1984) History of wheat breeding in Japan. In: Sakamoto S (ed) Proceedings of the International wheat genetics, 6th, Kyoto, Japan 28 Nov–3 Dec 1983. Plant Germplasm Institute, Faculty Agriculture, Kyoto University, pp 593–599Google Scholar
  82. Norman A, Taylor J, Edwards J, Kuchel H (2018) Optimising genomic selection in wheat: effect of marker density, population size and population structure on prediction accuracy. G3 (Bethesda) 8:2889–2899.  https://doi.org/10.1534/g3.118.200311CrossRefGoogle Scholar
  83. Novoselović D, Bentley AR, Šimek R et al (2016) Characterizing Croatian wheat germplasm diversity and structure in a European context by DArT markers. Front Plant Sci 7:184.  https://doi.org/10.3389/fpls.2016.00184CrossRefPubMedPubMedCentralGoogle Scholar
  84. Paliwal R, Röder MS, Kumar U et al (2012) QTL mapping of terminal heat tolerance in hexaploid wheat (T. aestivum L.). Theor Appl Genet 125:561–575.  https://doi.org/10.1007/s00122-012-1853-3CrossRefPubMedPubMedCentralGoogle Scholar
  85. Pariyar SR, Dababat AA, Sannemann W et al (2016) Genome-wide association study in wheat identifies resistance to the cereal cyst nematode Heterodera filipjevi. Phytopathology 106(10):1128–1138PubMedCrossRefPubMedCentralGoogle Scholar
  86. Pignone D, De Paola D, Rapanà N, Janni M (2015) Single seed descent: a tool to exploit durum wheat (Triticum durum Desf.) genetic resources. Genet Resour Crop Evol 62:1029–1035.  https://doi.org/10.1007/s10722-014-0206-2CrossRefGoogle Scholar
  87. Poland J, Endelman J, Dawson J et al (2012) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5:103–113.  https://doi.org/10.3835/plantgenome2012.06.0006CrossRefGoogle Scholar
  88. Quarrie S, Gulli M, Calestani C et al (1994) Location of a gene regulating drought-induced abscisic acid production on the long arm of chromosome 5A of wheat. Theor Appl Genet 89:794–800.  https://doi.org/10.1007/BF00223721CrossRefGoogle Scholar
  89. Rasheed A, Wen W, Gao F et al (2016) Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet 129:1443–1860.  https://doi.org/10.1007/s00122-016-2743-xCrossRefGoogle Scholar
  90. Rasheed A, Ogbonnaya FC, Lagudah E et al (2018) The goat grass genome’s role in wheat improvement. Nat Plants 4:56–58.  https://doi.org/10.1038/s41477-018-0105-1CrossRefPubMedPubMedCentralGoogle Scholar
  91. Röder MS, Korzun V, Wendehake K et al (1998) A microsatellite map of wheat. Genetics 149:2007–2023PubMedPubMedCentralGoogle Scholar
  92. Rong W, Qi L, Wang A et al (2014) The ERF transcription factor Ta ERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol J 12:468–479.  https://doi.org/10.1111/pbi.12153CrossRefGoogle Scholar
  93. Rosearne GM, Herrera-Foessel SA, Singh R et al (2013) Quantitative trait loci of stripe rust resistance in wheat. Theor Appl Genet 126:2427–2449.  https://doi.org/10.1007/s00122-013-2159-9CrossRefGoogle Scholar
  94. Sakamura T (1918) Kurze mitteilung über die chromosomenzahlen und die verwandt-schaftsverhältnisse der Triticum arten. Bot Mag Tokyo 32:150–153CrossRefGoogle Scholar
  95. Salem KFM (2004) The inheritance and molecular mapping of genes for post-anthesis drought tolerance (PADT) in wheat. Ph.D. Dissertation. Martin Luther University, Halle-Wittenberg, Germany, 124 pGoogle Scholar
  96. Salem KFM (2015) Allelic state at the microsatellite locus Xgwm261 marking the dwarfing gene Rht8 in Egyptian bread wheat (Triticum aestivum L.) genotypes released from 1947 to 2004. Genetika 47:741–750CrossRefGoogle Scholar
  97. Salem KFM, Sallam A (2016) Analysis of population structure and genetic diversity of Egyptian and exotic rice (Oryza sativa L.) genotypes. C R Biol 339:1–9.  https://doi.org/10.1016/j.crvi.2015.11.003CrossRefPubMedPubMedCentralGoogle Scholar
  98. Salem KFM, Röder MS, Börner A (2004) Molecular mapping of quantitative trait loci (QTLs) determining post-anthesis drought tolerance in hexaploid wheat (Triticum aestivum L.). In: 7 Gesellschaft für Pflanzenzüchtung, GPZ-Tagung, Vortragsveranstaltung zum Thema: Klimatische und edaphische Sortenanpassung und Züchtung für Nachwachsende Rohstoffe. 3–5 March 2004, Halle/Saale, Germany Vort Pflanzenzüchtung 64, pp 21–24Google Scholar
  99. Salem KFM, Röder MS, Börner A (2007) Identification and mapping quantitative trait loci for stem reserve mobilisation in wheat (Triticum aestivum L.). Cereal Res Commun 35:1367–1374CrossRefGoogle Scholar
  100. Salem KFM, Röder MS, Börner A (2015) Assessing genetic diversity of Egyptian hexaploid wheat (Triticum aestivum L.) using microsatellite markers. Genet Resour Crop Evol 62:377–385CrossRefGoogle Scholar
  101. Salina EA, Adonina IG, Badaeva ED et al (2015) A thinopyrum intermedium chromosome in bread wheat cultivars as a source of genes conferring resistance to fungal diseases. Euphytica 204:91–101CrossRefGoogle Scholar
  102. Sallam A, Hamed ES, Hashad M, Omara M (2014) Inheritance of stem diameter and its relationship to heat and drought tolerance in wheat (Triticum aestivum L.). J Plant Breed Crop Sci 6:11–23.  https://doi.org/10.5897/JPBCS11.017CrossRefGoogle Scholar
  103. Sallam A, Hashad M, Hamed E, Omara M (2015) Genetic variation of stem characters in wheat and their relation to kernel weight under drought and heat stresses. J Crop Sci Biotechnol 18:137–146CrossRefGoogle Scholar
  104. Sallam A, Dhanapal AP, Liu S (2016) Association mapping of winter hardiness and yield traits in faba bean (Vicia faba L.). Crop Pasture Sci 67:55–68.  https://doi.org/10.1071/CP15200CrossRefGoogle Scholar
  105. Sallam A, Amro A, EL-Akhdar A et al (2018a) Genetic diversity and genetic variation in morpho-physiological traits to improve heat tolerance in spring barley. Mol Biol Rep 45:2441–2453.  https://doi.org/10.1007/s11033-018-4410-6CrossRefPubMedPubMedCentralGoogle Scholar
  106. Sallam A, Mourad AMI, Hussain W, Baenziger SP (2018b) Genetic variation in drought tolerance at seedling stage and grain yield in low rainfall environments in wheat (Triticum aestivum L.). Euphytica 214:169.  https://doi.org/10.1007/s10681-018-2245-9CrossRefGoogle Scholar
  107. Santra M, Wang H, Seifert S, Haley S (2017) Doubled haploid laboratory protocol for wheat using wheat-maize wide hybridization. In: Bhalla P, Singh M (eds) Wheat biotechnology. Methods and protocols, methods in molecular biology. Humana Press, New York, pp 235–249CrossRefGoogle Scholar
  108. Sehgal D, Vikram P, Sansaloni CP et al (2015) Exploring and mobilizing the GeneBank biodiversity for wheat improvement. PLoS One 10:e0132112.  https://doi.org/10.1371/journal.pone.0132112CrossRefPubMedPubMedCentralGoogle Scholar
  109. Shan Q, Wang Y, Li J et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:8–10.  https://doi.org/10.1038/nbt.2652CrossRefGoogle Scholar
  110. Shavrukov Y, Baho M, Lopato S, Langridge P (2016) The Ta DREB 3 transgene transferred by conventional crossings to different genetic backgrounds of bread wheat improves drought tolerance. Plant Biotechnol J 14:313–322PubMedCrossRefPubMedCentralGoogle Scholar
  111. Shcherban AB, Schichkina AA, Salina EA (2016) The occurrence of spring forms in tetraploid Timopheevi wheat is associated with variation in the first intron of the VRN-A1 gene. BMC Plant Biol 16:236PubMedCrossRefPubMedCentralGoogle Scholar
  112. Shrawat AK, Armstrong CL (2018) Development and application of genetic engineering for wheat improvement. Crit Rev Plant Sci 37:335–421CrossRefGoogle Scholar
  113. Simmonds NW (1976) Evolution of crop plants. Longman, LondonGoogle Scholar
  114. Singh RP, Hodson DP, Huerta-Espino J et al (2011) The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol 49:465–481PubMedCrossRefPubMedCentralGoogle Scholar
  115. Singh A, Knox RE, DePauw RM et al (2016) Genetic mapping of common bunt resistance and plant height QTL in wheat. Theor Appl Genet 129:243–256.  https://doi.org/10.1007/s00122-015-2624-8CrossRefPubMedPubMedCentralGoogle Scholar
  116. Sivamani E, Brey CW, Talbert LE et al (2002) Resistance to wheat streak mosaic virus in transgenic wheat engineered with the viral coat protein gene. Transgenic Res 11:31–41PubMedCrossRefPubMedCentralGoogle Scholar
  117. Srivastava P, Bains NS (2018) Accelerated wheat breeding: doubled haploids and rapid generation advance. In: Gosal S, Wani S (eds) Biotechnologies of crop improvement, vol 1. Springer, Cham, pp 437–461CrossRefGoogle Scholar
  118. Sukumaran S, Reynolds MP, Sansaloni C (2018) Genome-wide association genome-wide association analyses identify QTL hotspots for yield and component traits in durum wheat grown under yield potential, drought and heat stress environments. Front Plant Sci 9:1–16.  https://doi.org/10.3389/fpls.2018.00081CrossRefGoogle Scholar
  119. Tee TS, Qualset CO (1975) Bulk populations in wheat breeding: comparison of single-seed descent and random bulk methods. Euphytica 24:393–405.  https://doi.org/10.1007/BF00028206CrossRefGoogle Scholar
  120. Tian J, Deng Z, Zhang K et al (2015) Genetic analyses of wheat and molecular marker-assisted breeding, vol 1. Springer, Beijing.  https://doi.org/10.1007/978-94-017-7390-4_1CrossRefGoogle Scholar
  121. Torres EA, Geraldi IO (2007) Partial diallel analysis of agronomic characters in rice (Oryza sativa L.). Genet Mol Biol 30(3):605–613CrossRefGoogle Scholar
  122. Tyankova N (2000) Production and cytogenetic characteristics of wheat-wheat grass hybrids and backcross derivatives. Cereal Res Commun 28:57–64Google Scholar
  123. Vijayalakshmi K, Fritz AK, Paulsen GM et al (2010) Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. Mol Breed 26:163–175.  https://doi.org/10.1007/s11032-009-9366-8CrossRefGoogle Scholar
  124. Waheed U, Harwood W, Smedley M et al (2016) Comparison of agrobacterium mediated wheat and barley transformation with nucleoside diphosphate kinase 2 (NDPK2) gene. Pak J Bot 48(6):2467–2475Google Scholar
  125. Wang Y, Cheng X, Shan Q et al (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947.  https://doi.org/10.1038/nbt.2969CrossRefPubMedPubMedCentralGoogle Scholar
  126. Wang S, Zhu Y, Zhang D et al (2017) Genome-wide association study for grain yield and related traits in elite wheat varieties and advanced lines using SNP markers. PLoS One 12:1–14Google Scholar
  127. Wang W, Pan Q, He F et al (2018) Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. CRISPR J 1:65–74.  https://doi.org/10.1089/crispr.2017.0010CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Amira M. I. Mourad
    • 1
  • Dalia Z. Alomari
    • 2
  • Ahmad M. Alqudah
    • 2
  • Ahmed Sallam
    • 1
  • Khaled F. M. Salem
    • 3
    • 4
    Email author
  1. 1.Department of Agronomy, Faculty of AgricultureAssiut UniversityAssiutEgypt
  2. 2.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Stadt SeelandGermany
  3. 3.Department of Plant Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI)University of Sadat CitySadatEgypt
  4. 4.Department of Biology, College of Science and Humanitarian StudiesShaqra UniversityQwaieahSaudi Arabia

Personalised recommendations