Advertisement

Evaluation of Patients with Heart Valve Disease

  • Jose Zamorano
  • Ciro Santoro
  • Álvaro Marco del Castillo
Chapter

Abstract

The evaluation of patients with valvular heart disease is complex and requires an exemplary diagnostic effort. Even though there are several tools to reach a diagnosis, it is often severity that generates a lot of controversy. Echocardiography has always been the first approach; however, some valvular diseases have been traditionally difficult to assess using this modality alone. Also, some specific patients with poor acoustic windows represent a tremendous challenge. That is why other diagnostic techniques have experienced and are experiencing an amazing development, and has been the use of multimodal approaches that has increased the overall performance of valvular disease assessment.

Keywords

Echocardiography Computed tomography Magnetic resonance Catheterization 

References

  1. 1.
    Otto CM. Textbook of clinical echocardiography. 5th ed. Philadelphia: Elsevier Saunders; 2013.Google Scholar
  2. 2.
    Schaefer BM, Lewin MB, Stout KK, et al. Usefulness of bicuspid aortic valve phenotype to predict elastic properties of the ascending aorta. Am J Cardiol. 2007;99(5):686–90.CrossRefGoogle Scholar
  3. 3.
    Fedak PW, Verma S, David TE, et al. Clinical and pathophysiological implications of a bicuspid aortic valve. Circulation. 2002;106(8):900–4.CrossRefGoogle Scholar
  4. 4.
    Koos R, Mahnken AH, Kuhl HP, et al. Quantification of aortic valve calcification using multislice spiral computed tomography: comparison with atomic absorption spectroscopy. Investig Radiol. 2006;41:485–9.CrossRefGoogle Scholar
  5. 5.
    Messika-Zeitoun D, Aubry M-C, Detaint D, et al. Evaluation and clinical implications of aortic valve calcification measured by electron-beam computed tomography. Circulation. 2004;110:356–62.CrossRefGoogle Scholar
  6. 6.
    Budoff MJ, Takasu J, Katz R, et al. Reproducibility of CT measurements of aortic valve calcification, mitral annulus calcification, and aortic wall calcification in the multiethnic study of atherosclerosis. Acad Radiol. 2006;13:166–72.CrossRefGoogle Scholar
  7. 7.
    Hung J. Mitral valve anatomy, quantification of mitral regurgitation and timing of surgical intervention for mitral regurgitation. In: Otto CM, editor. The practice of clinical echocardiography. 4th ed. Philadelphia: Elsevier-Saunders; 2012. p. 330–50.Google Scholar
  8. 8.
    Evangelista A, Tornos P. Aortic valve regurgitation: quantitation of disease severity and timing of surgical intervention. In: Otto CM, editor. The practice of clinical echocardiography. 4th ed. Philadelphia: Elsevier-Saunders; 2012. p. 367–88.Google Scholar
  9. 9.
    Zoghbi WA, Enriquez-Sarano M, Foster E, et al. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr. 2003;16(7):777–802.CrossRefGoogle Scholar
  10. 10.
    Sondergaard L, Lindvig K, Hildebrandt P, et al. Quantification of aortic regurgitation by magnetic resonance velocity mapping. Am Heart J. 1993;125:1081–90.CrossRefGoogle Scholar
  11. 11.
    Ambrosi P, Faugere G, Desfossez L, et al. Assessment of aortic regurgitation severity by magnetic resonance imaging of the thoracic aorta. Eur Heart J. 1995;16:406–9.CrossRefGoogle Scholar
  12. 12.
    Honda N, Machida K, Hashimoto M, et al. Aortic regurgitation: quantitation with MR imaging velocity mapping. Radiology. 1993;186:189–94.CrossRefGoogle Scholar
  13. 13.
    Kizilbash AM, Hundley WG, Willett DL, et al. Comparison of quantitative Doppler with magnetic resonance imaging for assessment of the severity of mitral regurgitation. Am J Cardiol. 1998;81:792–5.CrossRefGoogle Scholar
  14. 14.
    Hundley WG, Hong FL, Willard JE, et al. Magnetic resonance imaging assessment of the severity of mitral regurgitation: comparison with invasive techniques. Circulation. 1995;92:1151–8.CrossRefGoogle Scholar
  15. 15.
    Aurigemma G, Reichek N, Schiebler M, et al. Evaluation of aortic regurgitation by cardiac cine magnetic resonance imaging: planar analysis and comparison to Doppler echocardiography. Cardiology. 1991;78:340–7.CrossRefGoogle Scholar
  16. 16.
    Sechtem U, Pflugfelder PW, Gould RG, et al. Measurement of right and left ventricular volumes in healthy individuals with cine MR imaging. Radiology. 1987;163:697–702.CrossRefGoogle Scholar
  17. 17.
    Jeon MH, Choe YH, Cho SJ, et al. Multidetector CT for aortic regurgitation: a comparison with the use of echocardiography. Korean J Radiol. 2010;11:169–77.CrossRefGoogle Scholar
  18. 18.
    Alkadhi H, Wildermuth S, Bettex DA, et al. Mitral regurgitation: quantification with 16-detector row CT—initial experience. Radiology. 2005;238:454–63.CrossRefGoogle Scholar
  19. 19.
    Rebergen SA, Chin JGJ, Ottenkamp J, et al. Pulmonary regurgitation in the late postoperative follow-up of tetralogy of Fallot: volumetric quantitation by nuclear magnetic resonance velocity mapping. Circulation. 1993;88:2257–66.CrossRefGoogle Scholar
  20. 20.
    Collins MA, Pidgeon JW, Fitzgerald R. Computed tomography manifestations of tricuspid regurgitation. Br J Radiol. 1995;68:1058–60.CrossRefGoogle Scholar
  21. 21.
    Lang RM, Badano LP, Tsang W, et al. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. J Am Soc Echocardiogr. 2012;25(1):3–46.CrossRefGoogle Scholar
  22. 22.
    Barkhausen J, Ruehm SG, Goyen M, et al. MR evaluation of ventricular function: true fast imaging with steady-state free precession versus fast low-angle shot cine MR imaging: feasibility study. Radiology. 2001;219:264–9.CrossRefGoogle Scholar
  23. 23.
    Bellenger NG, Burgess MI, Ray SG, et al. Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance. Are they interchangeable? Eur Heart J. 2000;21:1387–96.CrossRefGoogle Scholar
  24. 24.
    Grothues F, Smith GC, Moon JC, et al. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol. 2002;90:29–34.CrossRefGoogle Scholar
  25. 25.
    Ostrzega E, Maddahi J, Honma H, et al. Quantification of left ventricular myocardial mass in humans by nuclear magnetic resonance imaging. Am Heart J. 1989;117:444–52.CrossRefGoogle Scholar
  26. 26.
    Keller AM, Peshock RM, Malloy CR, et al. In vivo measurement of myocardial mass using nuclear magnetic resonance imaging. J Am Coll Cardiol. 1986;8:113–7.CrossRefGoogle Scholar
  27. 27.
    Shapiro EP, Rogers WJ, Beyar R, et al. Determination of left ventricular mass by magnetic resonance imaging in hearts deformed by acute infarction. Circulation. 1989;79:706–11.CrossRefGoogle Scholar
  28. 28.
    Semelka RC, Tomei E, Wagner S, et al. Normal left ventricular dimensions and function: interstudy reproducibility of measurements with cine MR imaging. Ann Thorac Surg. 1990;174:763–8.Google Scholar
  29. 29.
    Karwatowski SP, Brecker SJ, Yang GZ, et al. A comparison of left ventricular myocardial velocity in diastole measured by magnetic resonance and left ventricular filling measured by Doppler echocardiography. Eur Heart J. 1996;17:795–802.CrossRefGoogle Scholar
  30. 30.
    Auffermann W, Wagner S, Holt WW, et al. Noninvasive determination of left ventricular output and wall stress in volume overload and in myocardial disease by cine magnetic resonance imaging. Am Heart J. 1991;121:1750–8.CrossRefGoogle Scholar
  31. 31.
    Sellers RD, Levy MJ, Amplatz K, Lillehei CW. Left retrograde cardioangiography in acquired cardiac disease: technic, indications and interpretations in 700 cases. Am J Cardiol. 1964;14:437–47.CrossRefGoogle Scholar
  32. 32.
    Forrester JS, Ganz W, Diamond G, McHugh T, Chonette DW, Swan HJC. Thermodilution cardiac output determination with a single flow-directed catheter. Am Heart J. 1972;83(3):306–11.CrossRefGoogle Scholar
  33. 33.
    Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23(7):685–713.CrossRefGoogle Scholar
  34. 34.
    Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1–39.e14.CrossRefGoogle Scholar
  35. 35.
    Teshima H, Hayashida N, Fukunaga S, et al. Usefulness of a multidetector-row computed tomography scanner for detecting pannus formation. Ann Thorac Surg. 2004;77:523–6.CrossRefGoogle Scholar
  36. 36.
    Konen E, Goitein O, Feinberg MS, et al. The role of ECG-gated MDCT in the evaluation of aortic and mitral mechanical valves: initial experience. AJR Am J Roentgenol. 2008;191:26–31.CrossRefGoogle Scholar
  37. 37.
    Milan A, Magnino C, Veglio F. Echocardiographic indexes for the non-invasive evaluation of pulmonary hemodynamics. J Am Soc Echocardiogr. 2010;23(3):225–39.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jose Zamorano
    • 1
  • Ciro Santoro
    • 1
  • Álvaro Marco del Castillo
    • 1
  1. 1.Servicio de Cardiología, Hospital Universitario Ramón y CajalMadridSpain

Personalised recommendations