Advertisement

The Nature of the Phase Transition in the Cuprates as Revealed by the Stiffnessometer

  • Itzik KaponEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The Stiffnessometer, as explained in Chap.  2, gives an opportunity to measure stiffness close to Tc, and to gain new insight with respect to the superconducting phase transition. In this chapter, we utilize this new tool to examine the phase transition in LSCO, and the possibility for bulk 2D SC. We start by recapitulating the Stiffnessometer method, but here we generalize the London equation and represent the stiffness as a tensor. This, as will be shown, will allow to measure both inplane and out ot plane stiffness. We will then show and discuss the results, and compare them to measurements of Low Energy \(\mu \)SR.

References

  1. 1.
    Kapon I, Golubkov K, Gavish N, Keren A (2017) Stiffnessometer, a magnetic-field-free superconducting stiffness meter and its application. arXiv:1705.00624
  2. 2.
    Hecht F (2012) New development in freefem++. J Numer Math 20:251–265MathSciNetCrossRefGoogle Scholar
  3. 3.
    Panagopoulos C, Tallon JL, Rainford BD, Xiang T, Cooper JR, Scott CA (2002) Evidence for a generic quantum transition in high-\({T}_{c}\) cuprates. Phys Rev B 66:064501. https://link.aps.org/doi/10.1103/PhysRevB.66.064501
  4. 4.
    Suzuki T, Goto T, Chiba K, Shinoda T, Fukase T, Kimura H, Yamada K, Ohashi M, Yamaguchi Y (1998) Observation of modulated magnetic long-range order in \({\rm La}_{1.88}{\rm Sr}_{0.12}{\rm CuO}_4\). Phys Rev B 57:R3229. https://link.aps.org/doi/10.1103/PhysRevB.57.R3229
  5. 5.
    Kimura H, Hirota K, Matsushita H, Yamada K, Endoh Y, Lee S-H, Majkrzak CF, Erwin R, Shirane G, Greven M, Lee YS, Kastner MA, Birgeneau RJ (1999) Neutron-scattering study of static antiferromagnetic correlations in La\(_{2-x}\)Sr\(_{x}\)Cu\(_{1-y}\)Zn\(_{y}\)O\(_{4}\). Phys Rev B 59:6517–6523. https://link.aps.org/doi/10.1103/PhysRevB.59.6517
  6. 6.
    Eckstein W (2013) Computer simulation of ion-solid interactions, vol. 10. Springer Science & Business MediaGoogle Scholar
  7. 7.
    Homes CC, Dordevic SV, Strongin M, Bonn DA, Liang R, Hardy WN, Komiya S, Ando Y, Yu G, Kaneko N et al (2004) A universal scaling relation in high-temperature superconductors. Nature 430:539.  https://doi.org/10.1038/nature02673ADSCrossRefGoogle Scholar
  8. 8.
    Shibauchi T, Kitano H, Uchinokura K, Maeda A, Kimura T, Kishio K (1984) Anisotropic penetration depth in \({{\rm La}} _{2-x}{{\rm Sr}}_{x}{{\rm CuO}}_{4}\). Phys Rev Lett 72:2263–2266. https://link.aps.org/doi/10.1103/PhysRevLett.72.2263
  9. 9.
    Dordevic SV, Komiya S, Ando Y, Wang YJ, Basov DN (2005) Josephson vortex state across the phase diagram of \({{\rm La}}_{2-x}{{\rm Sr}}_{x}{{\rm CuO}}_{4}\): a magneto-optics study. Phys Rev B 71, 054503. https://link.aps.org/doi/10.1103/PhysRevB.71.054503
  10. 10.
    Davis SI, Ullah RR, Adamo C, Watson CA, Kirtley JR, Beasley MR, Kivelson SA, Moler KA (2018) Spatially modulated susceptibility in thin film \({{\rm La}}_{2-x}{{\rm Ba}}_{x}{{\rm CuO}}_{4}\). Phys Rev B 98:014506. https://link.aps.org/doi/10.1103/PhysRevB.98.014506
  11. 11.
    Pekker D, Refael G, Demler E (2010) Finding the elusive sliding phase in the superfluid-normal phase transition smeared by c-axis disorder. Phys Rev Lett 105:085302. https://link.aps.org/doi/10.1103/PhysRevLett.105.085302
  12. 12.
    Nelson DR, Kosterlitz JM (1977) Universal jump in the superfluid density of two-dimensional superfluids. Phys Rev Lett 39:1201. https://link.aps.org/doi/10.1103/PhysRevLett.39.1201ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PhysicsTechnion - Israel Institute of TechnologyHaifaIsrael

Personalised recommendations