• Matlock A. JeffriesEmail author


Osteoarthritis (OA) is a chronic musculoskeletal disease characterized by progressive loss of joint function and is the leading cause of chronic disability in the USA. A variety of factors, including age, obesity, genetic and epigenetic factors, mechanical trauma, and systemic inflammation, contribute to the development and progression of OA. The unifying clinical presenting feature of OA is pain, characterized as worse with activity and improved with rest. OA most commonly involves the peripheral large joints, including knees and hips, as well as small distal joints of the fingers and proximal joint of the thumb. We have no diagnostic nor prognostic biomarkers for OA; diagnosis is made based on clinical symptoms. There are no disease-modifying treatments available for OA, and management strategies include combinations of physical therapy, rehabilitation, muscle strengthening, and pharmacological therapy to reduce pain. Drugs used most commonly in the treatment of OA include oral and topical NSAIDs and intra-articular corticosteroids. Joint replacement surgery remains the most effective treatment for large-joint OA, although up to one-third of patients will have persistent pain even after arthroplasty.


Osteoarthritis Review Diagnosis Management Pathophysiology 


  1. 1.
    Dieppe PA, Lohmander LS. Pathogenesis and management of pain in osteoarthritis. Lancet. 2005;365:965–73.PubMedCrossRefGoogle Scholar
  2. 2.
    Hunter DJ, Schofield D, Callander E. The individual and socioeconomic impact of osteoarthritis. Nat Rev Rheumatol. 2014;10:437–41.PubMedCrossRefGoogle Scholar
  3. 3.
    Johnson VL, Hunter DJ. The epidemiology of osteoarthritis. Best Pract Res Clin Rheumatol. 2014;28:5–15.PubMedCrossRefGoogle Scholar
  4. 4.
    Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 2012;64:1697–707.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Valdes AM, Spector TD. Genetic epidemiology of hip and knee osteoarthritis. Nat Rev Rheumatol. 2011;7:23–32.PubMedCrossRefGoogle Scholar
  6. 6.
    Simon TC, Jeffries MA. The epigenomic landscape in osteoarthritis. Curr Rheumatol Rep. 2017;19:30.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Wyatt LA, Moreton BJ, Mapp PI, Wilson D, Hill R, Ferguson E, Scammell BE, Walsh DA. Histopathological subgroups in knee osteoarthritis. Osteoarthr Cartil. 2017;25:14–22.PubMedCrossRefGoogle Scholar
  8. 8.
    Shabestari M, Vik J, Reseland JE, Eriksen EF. Bone marrow lesions in hip osteoarthritis are characterized by increased bone turnover and enhanced angiogenesis. Osteoarthr Cartil. 2016;24:1745–52.PubMedCrossRefGoogle Scholar
  9. 9.
    Piperno M, Reboul P, Hellio le Graverand MP, Peschard M, Annefeld M, Richard M, Vignon E. Osteoarthritic cartilage fibrillation is associated with a decrease in chondrocyte adhesion to fibronectin. Osteoarthr Cartil. 1998;6:393–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Bland JH, Cooper SM. Osteoarthritis: a review of the cell biology involved and evidence for reversibility. Management rationally related to known genesis and pathophysiology. Semin Arthritis Rheum. 1984;14:106–33.PubMedCrossRefGoogle Scholar
  11. 11.
    Li H, Wang D, Yuan Y, Min J. New insights on the MMP-13 regulatory network in the pathogenesis of early osteoarthritis. Arthritis Res Ther. 2017;19:248.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Loughlin J, Reynard LN. Osteoarthritis: epigenetics of articular cartilage in knee and hip OA. Nat Rev Rheumatol. 2015;11:6–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Loeser RF, Collins JA, Diekman BO. Ageing and the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 2016;12:412–20.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Sokolove J, Lepus CM. Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther Adv Musculoskelet Dis. 2013;5:77–94.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Scanzello CR, Plaas A, Crow MK. Innate immune system activation in osteoarthritis: is osteoarthritis a chronic wound? Curr Opin Rheumatol. 2008;20:565–72.PubMedCrossRefGoogle Scholar
  16. 16.
    Larsson S, Englund M, Struglics A, Lohmander LS. Interleukin-6 and tumor necrosis factor alpha in synovial fluid are associated with progression of radiographic knee osteoarthritis in subjects with previous meniscectomy. Osteoarthr Cartil. 2015;23:1906–14.PubMedCrossRefGoogle Scholar
  17. 17.
    Attur M, Krasnokutsky S, Statnikov A, et al. Low-grade inflammation in symptomatic knee osteoarthritis: prognostic value of inflammatory plasma lipids and peripheral blood leukocyte biomarkers. Arthritis Rheumatol. 2015;67:2905–15.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Li G, Yin J, Gao J, Cheng TS, Pavlos NJ, Zhang C, Zheng MH. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Arthritis Res Ther. 2013;15:223.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Neogi T, Nevitt M, Niu J, Sharma L, Roemer F, Guermazi A, Lewis CE, Torner J, Javaid K, Felson D. Subchondral bone attrition may be a reflection of compartment-specific mechanical load: the MOST Study. Ann Rheum Dis. 2010;69:841–4.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Bellido M, Lugo L, Roman-Blas JA, Castañeda S, Caeiro JR, Dapia S, Calvo E, Largo R, Herrero-Beaumont G. Subchondral bone microstructural damage by increased remodelling aggravates experimental osteoarthritis preceded by osteoporosis. Arthritis Res Ther. 2010;12:R152.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    van der Kraan PM, van den Berg WB. Osteophytes: relevance and biology. Osteoarthr Cartil. 2007;15:237–44.PubMedCrossRefGoogle Scholar
  22. 22.
    Davidson ENB, Vitters EL, Bennink MB, van de Loo FA, van den Berg WB, van der Kraan PM. Inducible chondrocyte-specific overexpression of BMP2 in young mice results in severe aggravation of osteophyte formation in experimental OA without altering cartilage damage. Osteoarthr Cartil. 2013;21:S67.CrossRefGoogle Scholar
  23. 23.
    Mooney RA, Hamada D, Maynard R, Kates SL, Zuscik MJ. TNFα is a critical mediator of synovial hyperplasia and osteophyte formation in high fat-fed mice. Osteoarthr Cartil. 2014;22:S337.CrossRefGoogle Scholar
  24. 24.
    Kuttapitiya A, Assi L, Laing K, et al. Microarray analysis of bone marrow lesions in osteoarthritis demonstrates upregulation of genes implicated in osteochondral turnover, neurogenesis and inflammation. Ann Rheum Dis. 2017;76:1764–73.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Driban JB, Price L, Lo GH, Pang J, Hunter DJ, Miller E, Ward RJ, Eaton CB, Lynch JA, McAlindon TE. Evaluation of bone marrow lesion volume as a knee osteoarthritis biomarker–longitudinal relationships with pain and structural changes: data from the Osteoarthritis Initiative. Arthritis Res Ther. 2013;15:R112.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Mathiessen A, Conaghan PG. Synovitis in osteoarthritis: current understanding with therapeutic implications. Arthritis Res Ther. 2017;19:18.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Sellam J, Berenbaum F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol. 2010;6:625–35.PubMedCrossRefGoogle Scholar
  28. 28.
    Guermazi A, Hayashi D, Roemer FW, et al. Synovitis in knee osteoarthritis assessed by contrast-enhanced magnetic resonance imaging (MRI) is associated with radiographic tibiofemoral osteoarthritis and MRI-detected widespread cartilage damage: the MOST study. J Rheumatol. 2014;41:501–8.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Haugen IK, Bøyesen P, Slatkowsky-Christensen B, Sesseng S, van der Heijde D, Kvien TK. Associations between MRI-defined synovitis, bone marrow lesions and structural features and measures of pain and physical function in hand osteoarthritis. Ann Rheum Dis. 2012;71:899–904.PubMedCrossRefGoogle Scholar
  30. 30.
    Haugen IK, Mathiessen A, Slatkowsky-Christensen B, Magnusson K, Bøyesen P, Sesseng S, van der Heijde D, Kvien TK, Hammer HB. Synovitis and radiographic progression in non-erosive and erosive hand osteoarthritis: is erosive hand osteoarthritis a separate inflammatory phenotype? Osteoarthr Cartil. 2016;24:647–54.PubMedCrossRefGoogle Scholar
  31. 31.
    Spector TD, Cicuttini F, Baker J, Loughlin J, Hart D. Genetic influences on osteoarthritis in women: a twin study. BMJ. 1996;312:940–3.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Magnusson K, Scurrah K, Ystrom E, Ørstavik RE, Nilsen T, Steingrímsdóttir ÓA, Ferreira P, Fenstad AM, Furnes O, Hagen KB. Genetic factors contribute more to hip than knee surgery due to osteoarthritis – a population-based twin registry study of joint arthroplasty. Osteoarthr Cartil. 2017;25:878–84.PubMedCrossRefGoogle Scholar
  33. 33.
    Rodriguez-Fontenla C, Calaza M, Evangelou E, et al. Assessment of osteoarthritis candidate genes in a meta-analysis of nine genome-wide association studies. Arthritis Rheumatol. 2014;66:940–9.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Valdes AM, Evangelou E, Kerkhof HJM, et al. The GDF5 rs143383 polymorphism is associated with osteoarthritis of the knee with genome-wide statistical significance. Ann Rheum Dis. 2011;70:873–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Miyamoto Y, Mabuchi A, Shi D, et al. A functional polymorphism in the 5′ UTR of GDF5 is associated with susceptibility to osteoarthritis. Nat Genet. 2007;39:529.PubMedCrossRefGoogle Scholar
  36. 36.
    Egli RJ, Southam L, Wilkins JM, Lorenzen I, Pombo-Suarez M, Gonzalez A, Carr A, Chapman K, Loughlin J. Functional analysis of the osteoarthritis susceptibility-associated GDF5 regulatory polymorphism. Arthritis Rheum. 2009;60:2055–64.PubMedCrossRefGoogle Scholar
  37. 37.
    Daans M, Luyten FP, Lories RJU. GDF5 deficiency in mice is associated with instability-driven joint damage, gait and subchondral bone changes. Ann Rheum Dis. 2011;70:208–13.PubMedCrossRefGoogle Scholar
  38. 38.
    Reynard LN, Bui C, Syddall CM, Loughlin J. CpG methylation regulates allelic expression of GDF5 by modulating binding of SP1 and SP3 repressor proteins to the osteoarthritis susceptibility SNP rs143383. Hum Genet. 2014;133:1059–73.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Styrkarsdottir U, Thorleifsson G, Helgadottir HT, et al. Severe osteoarthritis of the hand associates with common variants within the ALDH1A2 gene and with rare variants at 1p31. Nat Genet. 2014;46:498–502.PubMedCrossRefGoogle Scholar
  40. 40.
    den Hollander W, Boer CG, Hart DJ, et al. Genome-wide association and functional studies identify a role for matrix Gla protein in osteoarthritis of the hand. Ann Rheum Dis. 2017;76:2046–53.CrossRefGoogle Scholar
  41. 41.
    Jeffries MA, Donica M, Baker LW. Genome-wide DNA methylation study identifies significant epigenomic changes in osteoarthritic subchondral bone and similarity to overlying cartilage. Arthritis Rheumatol. 2016;68(6):1403–14.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Jeffries MA, Donica M, Baker LW. Genome-wide DNA methylation study identifies significant epigenomic changes in osteoarthritic cartilage. Arthritis Rheumatol. 2014;66(10):2804–15.PubMedCrossRefGoogle Scholar
  43. 43.
    Rushton MD, Reynard LN, Barter MJ, Refaie R, Rankin KS, Young DA, Loughlin J. Characterization of the cartilage DNA methylome in knee and hip osteoarthritis. Arthritis Rheumatol. 2014;66:2450–60.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    den Hollander W, Ramos YFM, Bos SD, et al. Knee and hip articular cartilage have distinct epigenomic landscapes: implications for future cartilage regeneration approaches. Ann Rheum Dis. 2014;73:2208–12.CrossRefGoogle Scholar
  45. 45.
    Vidal-Bralo L, Lopez-Golan Y, Mera-Varela A, et al. Specific premature epigenetic aging of cartilage in osteoarthritis. Aging. 2016. Scholar
  46. 46.
    Caramés B, Taniguchi N, Otsuki S, Blanco FJ, Lotz M. Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. Arthritis Rheum. 2010;62:791–801.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Caramés B, Olmer M, Kiosses WB, Lotz MK. The relationship of autophagy defects to cartilage damage during joint aging in a mouse model. Arthritis Rheumatol. 2015;67:1568–76.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Hart DJ, Spector TD. The relationship of obesity, fat distribution and osteoarthritis in women in the general population: the Chingford Study. J Rheumatol. 1993;20:331–5.PubMedGoogle Scholar
  49. 49.
    Zheng H, Chen C. Body mass index and risk of knee osteoarthritis: systematic review and meta-analysis of prospective studies. BMJ Open. 2015;5:e007568.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Jiang L, Rong J, Wang Y, Hu F, Bao C, Li X, Zhao Y. The relationship between body mass index and hip osteoarthritis: a systematic review and meta-analysis. Joint Bone Spine. 2011;78:150–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Jiang L, Xie X, Wang Y, Wang Y, Lu Y, Tian T, Chu M, Shen Y. Body mass index and hand osteoarthritis susceptibility: an updated meta-analysis. Int J Rheum Dis. 2016;19:1244–54.PubMedCrossRefGoogle Scholar
  52. 52.
    Thijssen E, van Caam A, van der Kraan PM. Obesity and osteoarthritis, more than just wear and tear: pivotal roles for inflamed adipose tissue and dyslipidaemia in obesity-induced osteoarthritis. Rheumatology. 2015;54:588–600.PubMedCrossRefGoogle Scholar
  53. 53.
    Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11:85–97.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Bovenzi M, Petronio L, DiMarino F. Epidemiological survey of shipyard workers exposed to hand-arm vibration. Int Arch Occup Environ Health. 1980;46:251–66.PubMedCrossRefGoogle Scholar
  55. 55.
    Castano Betancourt M, Marchi E, Lipay M. Occupations associated with early onset of osteoarthritis, severity and clinical hand osteoarthritis in a population of elementary workers. Osteoarthr Cartil. 2018;26:S220.CrossRefGoogle Scholar
  56. 56.
    Williams PT. Effects of running and walking on osteoarthritis and hip replacement risk. Med Sci Sports Exerc. 2013;45:1292–7.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Lo GH, Musa SM, Driban JB, et al. Running does not increase symptoms or structural progression in people with knee osteoarthritis: data from the osteoarthritis initiative. Clin Rheumatol. 2018;37:2497–504.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Tveit M, Rosengren BE, Nilsson J-Å, Karlsson MK. Former male elite athletes have a higher prevalence of osteoarthritis and arthroplasty in the hip and knee than expected. Am J Sports Med. 2012;40:527–33.PubMedCrossRefGoogle Scholar
  59. 59.
    Cameron KL, Shing TL, Kardouni JR. The incidence of post-traumatic osteoarthritis in the knee in active duty military personnel compared to estimates in the general population. Osteoarthr Cartil. 2017;25:S184–5.CrossRefGoogle Scholar
  60. 60.
    Hensor EMA, Dube B, Kingsbury SR, Tennant A, Conaghan PG. Toward a clinical definition of early osteoarthritis: onset of patient-reported knee pain begins on stairs. Data from the osteoarthritis initiative. Arthritis Care Res. 2015;67:40–7.CrossRefGoogle Scholar
  61. 61.
    Hawker GA, Stewart L, French MR, Cibere J, Jordan JM, March L, Suarez-Almazor M, Gooberman-Hill R. Understanding the pain experience in hip and knee osteoarthritis–an OARSI/OMERACT initiative. Osteoarthr Cartil. 2008;16:415–22.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Van Ginckel A, Bennell KL, Campbell PK, Wrigley TV, Hunter DJ, Hinman RS. Location of knee pain in medial knee osteoarthritis: patterns and associations with self-reported clinical symptoms. Osteoarthr Cartil. 2016;24:1135–42.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Altman R, Alarcón G, Appelrouth D, Bloch D, Borenstein D, Brandt K, Brown C, Cooke TD, Daniel W, Feldman D. The American College of Rheumatology criteria for the classification and reporting of osteoarthritis of the hip. Arthritis Rheum. 1991;34:505–14.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Nguyen U-SDT, Felson DT, Niu J, White DK, Segal NA, Lewis CE, Rasmussen M, Nevitt MC. The impact of knee instability with and without buckling on balance confidence, fear of falling and physical function: the Multicenter Osteoarthritis Study. Osteoarthr Cartil. 2014;22:527–34.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    McGonagle D, Tan AL, Grainger AJ, Benjamin M. Heberden’s nodes and what Heberden could not see: the pivotal role of ligaments in the pathogenesis of early nodal osteoarthritis and beyond. Rheumatology. 2008;47:1278–85.PubMedCrossRefGoogle Scholar
  66. 66.
    Banks SE. Erosive osteoarthritis: a current review of a clinical challenge. Clin Rheumatol. 2010;29:697–706.PubMedCrossRefGoogle Scholar
  67. 67.
    Zhang W, Doherty M, Leeb BF, et al. EULAR evidence-based recommendations for the diagnosis of hand osteoarthritis: report of a task force of ESCISIT. Ann Rheum Dis. 2009;68:8–17.PubMedCrossRefGoogle Scholar
  68. 68.
    Altman R, Asch E, Bloch D, et al. Development of criteria for the classification and reporting of osteoarthritis: classification of osteoarthritis of the knee. Arthritis Rheum. 1986;29:1039–49.PubMedCrossRefGoogle Scholar
  69. 69.
    Altman R, Alarcón G, Appelrouth D, Bloch D, Borenstein D, Brandt K, Brown C, Cooke TD, Daniel W, Gray R. The American College of Rheumatology criteria for the classification and reporting of osteoarthritis of the hand. Arthritis Rheum. 1990;33:1601–10.PubMedCrossRefGoogle Scholar
  70. 70.
    Addimanda O, Mancarella L, Dolzani P, Punzi L, Fioravanti A, Pignotti E, Meliconi R. Clinical and radiographic distribution of structural damage in erosive and nonerosive hand osteoarthritis. Arthritis Care Res. 2012;64:1046–53.CrossRefGoogle Scholar
  71. 71.
    Sharma L, Nevitt M, Hochberg M, et al. Clinical significance of worsening versus stable preradiographic MRI lesions in a cohort study of persons at higher risk for knee osteoarthritis. Ann Rheum Dis. 2016;75:1630–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Messier SP, Mihalko SL, Legault C, et al. Effects of intensive diet and exercise on knee joint loads, inflammation, and clinical outcomes among overweight and obese adults with knee osteoarthritis: the IDEA randomized clinical trial. JAMA. 2013;310:1263–73.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Richette P, Poitou C, Garnero P, Vicaut E, Bouillot J-L, Lacorte J-M, Basdevant A, Clément K, Bardin T, Chevalier X. Benefits of massive weight loss on symptoms, systemic inflammation and cartilage turnover in obese patients with knee osteoarthritis. Ann Rheum Dis. 2011;70:139–44.PubMedCrossRefGoogle Scholar
  74. 74.
    Smith TO, Aboelmagd T, Hing CB, MacGregor A. Does bariatric surgery prior to total hip or knee arthroplasty reduce post-operative complications and improve clinical outcomes for obese patients? Systematic review and meta-analysis. Bone Joint J. 2016;98-B:1160–6.PubMedCrossRefGoogle Scholar
  75. 75.
    Fransen M, McConnell S, Harmer AR, Van der Esch M, Simic M, Bennell KL. Exercise for osteoarthritis of the knee: a Cochrane systematic review. Br J Sports Med. 2015;49:1554–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Wang C, Schmid CH, Iversen MD, et al. Comparative effectiveness of Tai Chi versus physical therapy for knee osteoarthritis: a randomized trial. Ann Intern Med. 2016;165:77–86.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    McAlindon TE, Bannuru RR, Sullivan MC, et al. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthr Cartil. 2014;22:363–88.PubMedCrossRefGoogle Scholar
  78. 78.
    Bannuru RR, Schmid CH, Kent DM, Vaysbrot EE, Wong JB, McAlindon TE. Comparative effectiveness of pharmacologic interventions for knee osteoarthritis: a systematic review and network meta-analysis. Ann Intern Med. 2015;162:46–54.PubMedCrossRefGoogle Scholar
  79. 79.
    da Costa BR, Reichenbach S, Keller N, Nartey L, Wandel S, Jüni P, Trelle S. Effectiveness of non-steroidal anti-inflammatory drugs for the treatment of pain in knee and hip osteoarthritis: a network meta-analysis. Lancet. 2017;390:e21–33.PubMedCrossRefGoogle Scholar
  80. 80.
    Nissen SE, Yeomans ND, Solomon DH, et al. Cardiovascular safety of celecoxib, naproxen, or ibuprofen for arthritis. N Engl J Med. 2016;375:2519–29.PubMedCrossRefGoogle Scholar
  81. 81.
    Frakes EP, Risser RC, Ball TD, Hochberg MC, Wohlreich MM. Duloxetine added to oral nonsteroidal anti-inflammatory drugs for treatment of knee pain due to osteoarthritis: results of a randomized, double-blind, placebo-controlled trial. Curr Med Res Opin. 2011;27:2361–72.PubMedCrossRefGoogle Scholar
  82. 82.
    McAlindon TE, et al. Effect of intra-articular triamcinolone vs saline on knee cartilage volume and pain in patients with knee osteoarthritis: a randomized clinical trial. JAMA. 2017;317(19):1967–75.,,SSL+?term=Effect+of+Intra-articular+Triamcinolone+vs+Saline+on+Knee+Cartilage+Volume+and+Pain+in+Patients+With+Knee+Osteoarthritis. Accessed 5 Sep 2017.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Bodick N, Lufkin J, Willwerth C, Kumar A, Bolognese J, Schoonmaker C, Ballal R, Hunter D, Clayman M. An intra-articular, extended-release formulation of triamcinolone acetonide prolongs and amplifies analgesic effect in patients with osteoarthritis of the knee: a randomized clinical trial. J Bone Joint Surg Am. 2015;97:877–88.PubMedCrossRefGoogle Scholar
  84. 84.
    Lo GH, LaValley M, McAlindon T, Felson DT. Intra-articular hyaluronic acid in treatment of knee osteoarthritis: a meta-analysis. JAMA. 2003;290:3115–21.PubMedCrossRefGoogle Scholar
  85. 85.
    Beswick AD, Wylde V, Gooberman-Hill R, Blom A, Dieppe P. What proportion of patients report long-term pain after total hip or knee replacement for osteoarthritis? A systematic review of prospective studies in unselected patients. BMJ Open. 2012;2:e000435.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Belmont PJ Jr, Goodman GP, Waterman BR, Bader JO, Schoenfeld AJ. Thirty-day postoperative complications and mortality following total knee arthroplasty: incidence and risk factors among a national sample of 15,321 patients. J Bone Joint Surg Am. 2014;96:20–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of Oklahoma Health Sciences Center, Department of Internal Medicine, Division of Rheumatology, Immunology, and AllergyOklahoma CityUSA
  2. 2.Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology ProgramOklahoma CityUSA

Personalised recommendations