Advertisement

Pediatric Rheumatology for Adult Rheumatologists

  • Natalie Rosenwasser
  • Karen OnelEmail author
Chapter

Abstract

The pediatric rheumatic diseases represent a broad group of diseases that range in severity and duration. In this chapter we aim to highlight the major similarities and differences between pediatric onset rheumatic diseases and their adult counterparts. Certain diseases are restricted to childhood and therefore may be unfamiliar to the adult rheumatologist. Even in diseases which are felt to be similar irrespective of age of presentation, the unique features of growth and development in childhood may present particular changes to both diagnosis and management of these illnesses.

Keywords

Myalgias Arthralgias Chest and abdominal pain Adult-onset Still’s disease (AOSD) SJIA 

References

  1. 1.
    Petty RE, Laxer RM, Wedderburn LR. Chapter 15 – Juvenile idiopathic arthritis. In: Petty RE, Laxer RM, Lindsley CB, Wedderburn LR, editors. Textbook of pediatric rheumatology. 7th ed. Philadelphia: W.B. Saunders; 2016. p. 188–204.e6. Cimaz R, Biggioggero M. Osteoporosis. Curr Rheumatol Rep. 2001;3:365–70.Google Scholar
  2. 2.
    Henderson CJ, Specker BL, Sierra RI, et al. Total-body bone mineral content in non-corticosteroid-treated postpubertal females with juvenile rheumatoid arthritis: frequency of osteopenia and contributing factors. Arthritis Rheum. 2000;43:531–40.CrossRefGoogle Scholar
  3. 3.
    Haugen M, Lien G, Flato B, et al. Young adults with juvenile arthritis in remission attain normal peak bone mass at the lumbar spine and forearm. Arthritis Rheum. 2000;43:1504–10.CrossRefGoogle Scholar
  4. 4.
    Thornton J, Pye SR, O’Neill TW, et al. Bone health in adult men and women with a history of juvenile idiopathic arthritis. J Rheumatol. 2011;38:1689–93.CrossRefGoogle Scholar
  5. 5.
    Burnham JM. Inflammatory disease and bone health in childhood. Curr Opin Rheumatol. 2012;24:548–53.CrossRefGoogle Scholar
  6. 6.
    Sauernmann R, Levin AV, Feldman BM, et al. Risk factor for development of uveitis differ between girls and boys with juvenile idiopathic arthritis. Arthritis Rheum. 2010;62:1824–8.CrossRefGoogle Scholar
  7. 7.
    Angeles-Han ST, Pelajo CF, Vogler LB, et al. Risk markers of juvenile idiopathic arthritis associated uveitis in the childhood arthritis and rheumatology research alliance (CARRA) registry. J Rheumatol. 2013;40:2088–96.CrossRefGoogle Scholar
  8. 8.
    Peterson LS, Mason T, Nelson AM, et al. Psychosocial outcomes and health status of adults who have had juvenile rheumatoid arthritis: a controlled, population-based study. Arthritis Rheum. 1997;40:2235–40.CrossRefGoogle Scholar
  9. 9.
    De Benedetti F, Schneider R. Chapter 16 – Systemic juvenile idiopathic arthritis. In: Petty RE, Laxer RM, Lindsley CB, Wedderburn LR, editors. Textbook of pediatric rheumatology. 7th ed. Philadelphia: W.B. Saunders; 2016. p. 205–16.e6.Google Scholar
  10. 10.
    Petty RE, Southwood TR, Manners P, et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol. 2004;31(2):390–2.PubMedGoogle Scholar
  11. 11.
    Gerfaud-Valentin M, Jamilloux Y, Iwaz J, et al. Adult-onset still’s disease. Autoimmun Rev. 2014;13(7):708–22.CrossRefGoogle Scholar
  12. 12.
    Minoia F, Davi S, Horne A, et al. Clinical features, treatment and outcome of macrophage activation syndrome complicating systemic juvenile idiopathic arthritis A multinational, multicenter study of 362 patients. Arthritis Rheumatol. 2014;66:3160–9.CrossRefGoogle Scholar
  13. 13.
    Sawhney S, Woo P, Murray KJ. Macrophage activation syndrome: a potentially fatal complication of rheumatic disorders. Arch Dis Child. 2001;85(5):421–6.CrossRefGoogle Scholar
  14. 14.
    Klein-Gitelman M, Lane JC. Chapter 23 – Systemic lupus erythematosus. In: Petty RE, Laxer RM, Lindsley CB, Wedderburn LR, editors. Textbook of pediatric rheumatology. 7th ed. Philadelphia: W.B. Saunders; 2016. p. 285–317.e14.Google Scholar
  15. 15.
    Tucker LB, Uribe AG, Fernández M, et al. Adolescent onset of lupus results in more aggressive disease and worse outcomes: results of a nested matched case-control study within LUMINA, a multiethnic US cohort (LUMINA LVII). Lupus. 2008;17:314–22.CrossRefGoogle Scholar
  16. 16.
    Tucker LB, Menon S, Schaller JG, Isenberg DA. Adult- and childhood onset systemic lupus erythematosus: a comparison of onset, clinical features, serology, and outcome. Br J Rheumatol. 1995;34:866–72.CrossRefGoogle Scholar
  17. 17.
    Radanova M, Vasilev V, Deliyska B, et al. Anti-C1q autoantibodies specific against the globular domain of the C1qB-chain from patient with lupus nephritis inhibit C1q binding to IgG and CRP. Immunobiology. 2012;217:684–91.CrossRefGoogle Scholar
  18. 18.
    Slingsby JH, Norsworthy P, Pearce G, et al. Homozygous hereditary C1q deficiency and systemic lupus erythematosus. A new family and the molecular basis of C1q deficiency in three families. Arthritis Rheum. 1996;39:663–70.CrossRefGoogle Scholar
  19. 19.
    Provost TT, Arnett FC, Reichlin M. Homozygous C2 deficiency, lupus erythematosus, and anti-Ro (SSA) antibodies. Arthritis Rheum. 1983;26:1279–82.CrossRefGoogle Scholar
  20. 20.
    Fielder AH, Walport MJ, Batchelor JR, et al. Family study of the major histocompatibility complex in patients with systemic lupus erythematosus: importance of null alleles of C4A and C4B in determining disease susceptibility. Br Med J (Clin Res Ed). 1983;286:425–8.CrossRefGoogle Scholar
  21. 21.
    Rider LG, Shah M, Mamyrova G, et al. The myositis autoantibody phenotypes of the juvenile idiopathic inflammatory myopathies. Medicine (Baltimore). 2013;92:223–43.CrossRefGoogle Scholar
  22. 22.
    Wedderburn LR, Rider LG. Juvenile dermatomyositis: new developments in pathogenesis, assessment and treatment. Best Pract Res Clin Rheumatol. 2009;23:665–78.CrossRefGoogle Scholar
  23. 23.
    Eimer MJ, Brickman WJ, Seshadri R, et al. Clinical status and cardiovascular risk profile of adults with a history of juvenile dermatomyositis. J Pediatr. 2011;159:795–801.CrossRefGoogle Scholar
  24. 24.
    Rider LG, Lindsley CB, Miller FW. Chapter 26 – Juvenile dermatomyositis. In: Petty RE, Laxer RM, Lindsley CB, Wedderburn LR, editors. Textbook of pediatric rheumatology. 7th ed. Philadelphia: W.B. Saunders; 2016. p. 351–83.e18.Google Scholar
  25. 25.
    Reed AM, Griffin TA. The inflammatory milieu: cells and cytokines. In: Kagen LJ, editor. The inflammatory myopathies. New York: Humana Press; 2009. p. 29–53.CrossRefGoogle Scholar
  26. 26.
    Nagaraju K, Rider LG, Fan C, et al. Endothelial cell activation and neovascularization are prominent in dermatomyositis. J Autoimmune Dis. 2006;3:2.CrossRefGoogle Scholar
  27. 27.
    Khanna S, Reed AM. Immunopathogenesis of juvenile dermatomyositis. Muscle Nerve. 2010;41:581–92.CrossRefGoogle Scholar
  28. 28.
    López de Padilla CM, Vallejo AN, Lacomis D, et al. Extranodal lymphoid microstructures in inflamed muscle and disease severity of new-onset juvenile dermatomyositis. Arthritis Rheum. 2009;60:1160–72.CrossRefGoogle Scholar
  29. 29.
    Bilgic H, Ytterberg SR, Amin S, et al. Interleukin-6 and type I interferon-regulated genes and chemokines mark disease activity in dermatomyositis. Arthritis Rheum. 2009;60:3436–46.CrossRefGoogle Scholar
  30. 30.
    Woo TY, Callen JP, Voorhees JJ, et al. Cutaneous lesions of dermatomyositis are improved by hydroxychloroquine. J Am Acad Dermatol. 1984;10:592–600.CrossRefGoogle Scholar
  31. 31.
    Huber AM, Giannini EH, Bowyer SL, et al. Protocols for the initial treatment of moderately severe juvenile dermatomyositis: results of a children’s arthritis and rheumatology research alliance consensus conference. Arthritis Care Res. 2010;62:219–25.CrossRefGoogle Scholar
  32. 32.
    Son MB, Sundel RP. Chapter 35 – Kawasaki disease. In: Petty RE, Laxer RM, Lindsley CB, Wedderburn LR, editors. Textbook of pediatric rheumatology. 7th ed. Philadelphia: W.B. Saunders; 2016. p. 467–83.e6.Google Scholar
  33. 33.
    Song D, Yeo Y, Ha K, et al. Risk factors for Kawasaki disease-associated coronary abnormalities differ depending on age. Eur J Pediatr. 2009;168:1315–21.CrossRefGoogle Scholar
  34. 34.
    Marshall GS, Edwards KM, Lawton AR. PFAPA syndrome. Pediatr Infect Dis J. 1989;8:658–9.CrossRefGoogle Scholar
  35. 35.
    Thomas KT, Feder HM Jr, Lawton AR, Edwards KM. Periodic fever syndrome in children. J Pediatr. 1999;135:15–21.CrossRefGoogle Scholar
  36. 36.
    Padeh S, Brezniak N, Zemer D, et al. Periodic fever, aphthous stomatitis, pharyngitis, and adenopathy syndrome: clinical characteristics and outcome. J Pediatr. 1999;135:98–101.CrossRefGoogle Scholar
  37. 37.
    Feder HM Jr. Periodic fever, aphthous stomatitis, pharyngitis, adenitis: a clinical review of a new syndrome. Curr Opin Pediatr. 2000;12:253–6.CrossRefGoogle Scholar
  38. 38.
    Renko M, Salo E, Putto-Laurila A, et al. A randomized, controlled trial of tonsillectomy in periodic fever, aphthous stomatitis, pharyngitis, and adenitis syndrome. J Pediatr. 2007;151:289–92.CrossRefGoogle Scholar
  39. 39.
    Garavello W, Romagnoli M, Gaini RM. Effectiveness of adenotonsillectomy in PFAPA syndrome: a randomized study. J Pediatr. 2009;155:250–3.CrossRefGoogle Scholar
  40. 40.
    Feder HM Jr, Bialecki CA. Periodic fever associated with aphthous stomatitis, pharyngitis and cervical adenitis. Pediatr Infect Dis J. 1989;8:186–7.PubMedGoogle Scholar
  41. 41.
    Feder HM Jr. Cimetidine treatment for periodic fever associated with aphthous stomatitis, pharyngitis and cervical adenitis. Pediatr Infect Dis J. 1992;11:318–21.CrossRefGoogle Scholar
  42. 42.
    Lee WI, Yang MH, Lee KF, et al. PFAPA syndrome (Periodic Fever, Aphthous stomatitis, Pharyngitis, Adenitis). Clin Rheumatol. 1999;18:207–13.CrossRefGoogle Scholar
  43. 43.
    Stojanov S, Lapidus S, Chitkara P, et al. Periodic fever, aphthous stomatitis, pharyngitis, and adenitis (PFAPA) is a disorder of innate immunity and Th1 activation responsive to IL-1 blockade. Proc Natl Acad Sci U S A. 2011;108:7148–53.CrossRefGoogle Scholar
  44. 44.
    Saulsbury FT. Epidemiology of Henoch-Schönlein purpura. Cleve Clin J Med. 2002;69(Suppl. 2):SII87–9.PubMedGoogle Scholar
  45. 45.
    Calvino MC, Llorca J, Garcia-Porrua C, et al. Henoch-Schönlein purpura in children from northwestern Spain: a 20-year epidemiologic and clinical study. Medicine (Baltimore). 2001;80:279–90.CrossRefGoogle Scholar
  46. 46.
    Brogan P, Bagga A. Chapter 33 – Leukocytoclastic vasculitis: Henoch–Schönlein purpura and hypersensitivity vasculitis. In: Petty RE, Laxer RM, Lindsley CB, Wedderburn LR, editors. Textbook of pediatric rheumatology. 7th ed. Philadelphia: W.B. Saunders; 2016. p. 452–61.e4.Google Scholar
  47. 47.
    Ozen S, Pistorio A, Iusan SM, et al. EULAR/PRINTO/PRES criteria for Henoch-Schönlein purpura, childhood polyarteritis nodosa, childhood Wegener granulomatosis and childhood Takayasu arteritis: Ankara 2008. Part II: final classification criteria. Ann Rheum Dis. 2010;69:798–806.CrossRefGoogle Scholar
  48. 48.
    Kaku Y, Nohara K, Honda S. Renal involvement in Henoch-Schönlein purpura: a multivariate analysis of prognostic factors. Kidney Int. 1998;53:1755–9.CrossRefGoogle Scholar
  49. 49.
    Shin JI, Park JM, Shin YH, et al. Predictive factors for nephritis, relapse, and significant proteinuria in childhood Henoch-Schönlein purpura. Scand J Rheumatol. 2006;35:56–60.CrossRefGoogle Scholar
  50. 50.
    de Almeida JL, Campos LM, Paim LB, et al. Renal involvement in Henoch-Schönlein purpura: a multivariate analysis of initial prognostic factors. J Pediatr. 2007;83:259–66.Google Scholar
  51. 51.
    Evans AM, Scutter SD. Prevalence of “growing pains” in young children. [Review]. J Pediatr. 2004;145:255–8.CrossRefGoogle Scholar
  52. 52.
    Uziel Y, Hashkes PJ. Growing pains in children. Pediatr Rheumatol. 2007;5:5.CrossRefGoogle Scholar
  53. 53.
    Naish JM, Apley J. “Growing pains”: a clinical study of non-arthritic limb pains in children. Arch Dis Child. 1951;26:134–40.CrossRefGoogle Scholar
  54. 54.
    Durand CH. Some problems in current practice. So-called “growing” pains, scoliotic postures and length inequalities of the lower extremities. [French]. Semaine des Hopitaux. 1963;39:1142–5.PubMedGoogle Scholar
  55. 55.
    Apley J. Clinical Canutes. A philosophy of paediatrics. Proc R Soc Med. 1970;63:479–84.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Evans AM. Relationship between “growing pains” and foot posture in children: single-case experimental designs in clinical practice. J Am Podiatr Med Assoc. 2003;93:111–7.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of WashingtonSeattleUSA
  2. 2.Hospital for Special Surgery, Weill Cornell MedicineNew YorkUSA

Personalised recommendations