Advertisement

Biodiversity Information Retrieval Through Large Scale Content-Based Identification: A Long-Term Evaluation

  • Alexis JolyEmail author
  • Hervé Goëau
  • Hervé Glotin
  • Concetto Spampinato
  • Pierre Bonnet
  • Willem-Pier Vellinga
  • Jean-Christophe Lombardo
  • Robert Planqué
  • Simone Palazzo
  • Henning Müller
Chapter
Part of the The Information Retrieval Series book series (INRE, volume 41)

Abstract

Identifying and naming living plants or animals is usually impossible for the general public and often a difficult task for professionals and naturalists. Bridging this gap is a key challenge towards enabling effective biodiversity information retrieval systems. This taxonomic gap was actually already identified as one of the main ecological challenges to be solved during the Rio de Janeiro United Nations “Earth Summit” in 1992. Since 2011, the LifeCLEF challenges conducted in the context of the CLEF evaluation forum have been boosting and evaluating the advances in this domain. Data collections with an unprecedented volume and diversity have been shared with the scientific community to allow repeatable and long-term experiments. This paper describes the methodology of the conducted evaluation campaigns as well as providing a synthesis of the main results and lessons learned along the years.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The organization of the PlantCLEF task is supported by the French project Floris’Tic (Tela Botanica, INRIA, CIRAD, INRA, IRD) funded in the context of the national investment program PIA. The organization of the BirdCLEF task is supported by the Xeno-Canto foundation for nature sounds as well as the French CNRS project SABIOD.ORG and EADM MADICS, and Floris’Tic. The annotations of some soundscapes were prepared with the late wonderful Lucio Pando at Explorama Lodges, with the support of Pam Bucur, Marie Trone and H. Glotin. The organization of the SeaCLEF task is supported by the Ceta-mada NGO and the French project Floris’Tic.

References

  1. Baillie J, Hilton-Taylor C, Stuart SN (2004) 2004 IUCN red list of threatened species: a global species assessment. IUCN, GlandGoogle Scholar
  2. Bakic V, Mouine S, Ouertani-Litayem S, Verroust-Blondet A, Yahiaoui I, Goëau H, Joly A (2013) Inria’s participation at imageclef 2013 plant identification task. In: CLEF (online working notes/labs/workshop)Google Scholar
  3. Böttcher T, Schmidt C, Zellhöfer D, Schmitt I (2012) Btu dbis’plant identification runs at imageclef 2012. In: CLEF (online working notes/labs/workshop)Google Scholar
  4. Cai J, Ee D, Pham B, Roe P, Zhang J (2007) Sensor network for the monitoring of ecosystem: bird species recognition. In: 3rd International conference on intelligent sensors, sensor networks and information, 2007. ISSNIP 2007.  https://doi.org/10.1109/ISSNIP.2007.4496859
  5. Chen Q, Abedini M, Garnavi R, Liang X (2014) Ibm research australia at lifeclef2014: plant identification task. In: Working notes of CLEF 2014 conferenceGoogle Scholar
  6. Choi S (2015a) Fish identification in underwater video with deep convolutional neural network: snumedinfo at lifeclef fish task 2015. In: CLEF (working notes)Google Scholar
  7. Choi S (2015b) Plant identification with deep convolutional neural network: snumedinfo at lifeclef plant identification task 2015. In: Working notes of CLEF 2015 conferenceGoogle Scholar
  8. Dávid Papp FM, Szũcs G (2017) Image matching for individual recognition with sift, ransac and mcl. In: Working notes of CLEF 2017 (cross language evaluation forum)Google Scholar
  9. Gaston KJ, O’Neill MA (2004) Automated species identification: why not? Philos Trans Roy Soc Lond B: Biol Sci 359(1444):655–667CrossRefGoogle Scholar
  10. Ghazi EAOM Berrin Yanikoglu, Ozdemir MC (2015) Sabanci-okan system in lifeclef 2015 plant identification competition. In: Working notes of CLEF 2015 conferenceGoogle Scholar
  11. Glotin H, Clark C, LeCun Y, Dugan P, Halkias X, Sueur J (2013a) Proceedings of 1st workshop on machine learning for bioacoustics - ICML4B. ICML, Atlanta. http://sabiod.org/ICML4B2013_book.pdf
  12. Glotin H, LeCun Y, Artières T, Mallat S, Tchernichovski HX O (2013b) Proceedings of neural information processing scaled for bioacoustics, from neurons to big data. NIPS International Conference, Tahoe. http://sabiod.org/nips4b
  13. Goëau H, Bonnet P, Joly A, Boujemaa N, Barthélémy D, Molino JF, Birnbaum P, Mouysset E, Picard M (2011a) The imageclef 2011 plant images classification task. In: CLEF 2011Google Scholar
  14. Goëau H, Bonnet P, Joly A, Boujemaa N, Barthelemy D, Molino JF, Birnbaum P, Mouysset E, Picard M (2011b) The CLEF 2011 plant images classification task. In: Petras V, Forner P, Clough P, Ferro N (eds) CLEF 2011 working notes. CEUR workshop proceedings (CEUR-WS.org). ISSN 1613-0073. http://ceur-ws.org/Vol-1177/
  15. Goëau H, Bonnet P, Joly A, Yahiaoui I, Barthélémy D, Boujemaa N, Molino JF (2012a) Imageclef2012 plant images identification task. In: CLEF 2012, RomeGoogle Scholar
  16. Goëau H, Bonnet P, Joly A, Yahiaoui I, Barthelemy D, Boujemaa N, Molino JF (2012b) The ImageCLEF 2012 plant identification task. In: Forner P, Karlgren J, Womser-Hacker C, Ferro N (eds) CLEF 2012 working notes, CEUR workshop proceedings (CEUR-WS.org). ISSN 1613-0073. http://ceur-ws.org/Vol-1178/
  17. Goëau H, Bonnet P, Joly A, Bakic V, Barthélémy D, Boujemaa N, Molino JF (2013a) The imageclef 2013 plant identification task. In: CLEF, ValenciaGoogle Scholar
  18. Goëau H, Joly A, Bonnet P, Bakic V, Barthélémy D, Boujemaa N, Molino JF (2013b) The imageclef plant identification task 2013. In: Proceedings of the 2nd ACM international workshop on multimedia analysis for ecological data. ACM, New York, pp 23–28Google Scholar
  19. Goëau H, Joly A, Bonnet P, Selmi S, Molino JF, Barthélémy D, Boujemaa N (2014) The lifeclef 2014 plant images identification task. In: CLEF, SheffieldGoogle Scholar
  20. Goëau H, Bonnet P, Joly A (2015) The lifeclef 2015 plant images identification task. In: CLEF, ToulouseGoogle Scholar
  21. Goëau H, Bonnet P, Joly A (2016a) The lifeclef plant identification task 2016. In: CEUR-WS (ed) CLEF, Evora. CLEF2016 working notesGoogle Scholar
  22. Goëau H, Glotin H, Vellinga W, Planqué R, Joly A (2016b) Lifeclef bird identification task 2016: the arrival of deep learning. In: Working notes of CLEF 2016 - conference and labs of the evaluation forum, Évora, 5–8 September, 2016, pp 440–449. http://ceur-ws.org/Vol-1609/16090440.pdf
  23. Goëau H, Bonnet P, Joly A (2017a) Plant identification based on noisy web data: the amazing performance of deep learning (lifeclef 2017). CLEF working notes 2017Google Scholar
  24. Goëau H, Glotin H, Vellinga W, Planquè B, Joly A (2017b) Lifeclef bird identification task 2017. In: Working notes of CLEF 2017 - conference and labs of the evaluation forum, Dublin, Ireland, September 11–14, 2017. http://ceur-ws.org/Vol-1866/invited_paper_8.pdf
  25. Joalland P, Paris S, Glotin H (2014) Efficient instance-based fish species visual identification by global representation. In: Working notes for CLEF 2014 conference, Sheffield, September 15–18, 2014, pp 785–789. URL http://ceur-ws.org/Vol-1180/CLEF2014wn-Life-JoallandEt2014.pdf
  26. Joly A, Champ J, Buisson O (2014a) Instance-based bird species identification with undiscriminant features pruning - lifeclef2014. In: Working notes of CLEF 2014 conferenceGoogle Scholar
  27. Joly A, Goëau H, Bonnet P, Bakić V, Barbe J, Selmi S, Yahiaoui I, Carré J, Mouysset E, Molino JF, et al (2014b) Interactive plant identification based on social image data. Ecol Inf 23:22–34CrossRefGoogle Scholar
  28. Joly A, Lombardo JC, Champ J, Saloma A (2016) Unsupervised individual whales identification: spot the difference in the ocean. In: Working notes of CLEF 2016 (cross language evaluation forum)Google Scholar
  29. Joly A, Goëau H, Glotin H, Spampinato C, Bonnet P, Vellinga WP, Lombardo JC, Planqué R, Palazzo S, Müller H (2017) Lifeclef 2017 lab overview: multimedia species identification challenges. In: International conference of the cross-language evaluation forum for European languages. Springer, Berlin, pp 255–274Google Scholar
  30. Kahl S, Wilhelm-Stein T, Hussein H, Klinck H, Kowerko D, Ritter M, Eibl M (2017) Large-scale bird sound classification using convolutional neural networks. In: CLEF 2017Google Scholar
  31. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105Google Scholar
  32. Kumar N, Belhumeur PN, Biswas A, Jacobs DW, Kress WJ, Lopez IC, Soares JVB (2012) Leafsnap: a computer vision system for automatic plant species identification. In: European conference on computer vision, pp 502–516Google Scholar
  33. Lasseck M (2015) Towards automatic large-scale identification of birds in audio recordings. In: Mothe J, Savoy J, Kamps J, Pinel-Sauvagnat K, Jones GJF, SanJuan E, Cappellato L, Ferro N (eds) Experimental IR meets multilinguality, multimodality, and interaction. Proceedings of the sixth international conference of the CLEF association (CLEF 2015). Lecture notes in computer science (LNCS) 9283. Springer, Heidelberg, pp 364–375CrossRefGoogle Scholar
  34. Lee DJ, Schoenberger RB, Shiozawa D, Xu X, Zhan P (2004) Contour matching for a fish recognition and migration-monitoring system. In: Optics east, international society for optics and photonics, pp 37–48Google Scholar
  35. Nakayama H (2013) Nlab-utokyo at imageclef 2013 plant identification task. In: CLEF 2013Google Scholar
  36. Nilsback ME, Zisserman A (2008) Automated flower classification over a large number of classes. In: Proceedings of the indian conference on computer vision, graphics and image processingGoogle Scholar
  37. Sánchez J, Perronnin F, Mensink T, Verbeek J (2013) Image classification with the fisher vector: Theory and practice. Int J Comput Vis 105(3):222–245MathSciNetCrossRefGoogle Scholar
  38. Sevilla A, Glotin H (2017) Audio bird classification with inception-v4 extended with time-frequency attention mechanisms. In: Working notes CLEF 2017, conference of the evaluation forum, Dublin. http://ceur-ws.org/Vol-1866/paper_177.pdf
  39. Silvertown J, Harvey M, Greenwood R, Dodd M, Rosewell J, Rebelo T, Ansine J, McConway K (2015) Crowdsourcing the identification of organisms: a case-study of ispot. ZooKeys (480):125CrossRefGoogle Scholar
  40. Spampinato C, Palazzo S, Joalland P, Paris S, Glotin H, Blanc K, Lingrand D, Precioso F (2016) Fine-grained object recognition in underwater visual data. Multimedia Tools Appl 75(3):1701–1720. https://doi.org/10.1007/s11042-015-2601-x CrossRefGoogle Scholar
  41. Stowell D, Wood M, Stylianou Y, Glotin H (2016) Bird detection in audio: a survey and a challenge. In: 26th IEEE international workshop on machine learning for signal proceedings, MLSP, pp 1–6.  https://doi.org/10.1109/MLSP.2016.7738875
  42. Sullivan BL, Aycrigg JL, Barry JH, Bonney RE, Bruns N, Cooper CB, Damoulas T, Dhondt AA, Dietterich T, Farnsworth A, et al (2014) The ebird enterprise: an integrated approach to development and application of citizen science. Biol Conserv 169:31–40CrossRefGoogle Scholar
  43. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9Google Scholar
  44. Towsey M, Planitz B, Nantes A, Wimmer J, Roe P (2012) A toolbox for animal call recognition. Bioacoustics 21(2):107–125CrossRefGoogle Scholar
  45. Trifa VM, Kirschel AN, Taylor CE, Vallejo EE (2008) Automated species recognition of antbirds in a mexican rainforest using hidden markov models. J Acoust Soc Am 123:2424CrossRefGoogle Scholar
  46. Voorhees EM, et al (1999) The trec-8 question answering track report. In: Trec, vol 99, pp 77–82Google Scholar
  47. Zhuang P, Xing L, Liu Y, Guo S, Qiao Y (2017) Marine animal detection and recognition with advanced deep learning models. In: Working notes of CLEF 2017Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alexis Joly
    • 1
    Email author
  • Hervé Goëau
    • 2
  • Hervé Glotin
    • 3
  • Concetto Spampinato
    • 4
  • Pierre Bonnet
    • 2
  • Willem-Pier Vellinga
    • 5
  • Jean-Christophe Lombardo
    • 6
  • Robert Planqué
    • 5
  • Simone Palazzo
    • 4
  • Henning Müller
    • 7
  1. 1.InriaLIRMMMontpellierFrance
  2. 2.CIRADUMR AMAPMontpellier Cedex 5France
  3. 3.Université de ToulonAix Marseille Univ, CNRS, LIS, DYNI TeamMarseilleFrance
  4. 4.University of CataniaCataniaItaly
  5. 5.Xeno-Canto FoundationAmsterdamThe Netherlands
  6. 6.InriaLIRMMMontpellierFrance
  7. 7.HES-SOSierreSwitzerland

Personalised recommendations