Advertisement

Plant Biotechnology and Foxglove

  • Mohamed Ramadan Rady
Chapter

Abstract

The genus Digitalis, commonly known as the “foxglove,” is one of the most important medicinal plants belonging to the family of the Plantaginaceae. Digitalis ssp. is used exclusively for the isolation of individual cardiac glycosides, principally digoxin and lanatoside C. Cardenolides from Digitalis are well known and frequently used as pharmaceuticals for the treatment of heart disorders. An overview of recent studies which have been used using various approaches of plant tissue, organ culture, regeneration, cryopreservation, and transformation of Digitalis ssp. is presented. This chapter summarizes the recent research work of various in vitro culture of Digitalis ssp. through abiotic, biotic elicitors, and precursor feeding applied to Digitalis cultural system and their stimulating effects on the accumulation of cardenolides.

Keyword

Digitalis ssp. Biosynthesis Cell and callus culture Regeneration Cryopreservation Transformation Hairy root cultures Elicitation Cardenolides 

References

  1. Aawad ZJ, Al-Khateeb EH (2006) Using tissue culture technique for the production of cardiac glycosides from roots of Digitalis purpurea L plantlets (Var. Excelsior Mixed). Iraqi J Pharm 15(1):92–98Google Scholar
  2. Arrillaga I, Brisa MC, Segura J (1987) Somatic embryogenesis from hypocotyl callus cultures of Digitalis obscura L. Plant Cell Rep 6:223–226CrossRefGoogle Scholar
  3. Berggren B, Ohlsson AB (1991) Ultrastructure of Digitalis lanata tissue cultures. Effect of gibberellic acid and SAN 9789. Protoplasma 161:58–69CrossRefGoogle Scholar
  4. Berglund T, Ohlsson AB (1992) Effects of ethylene and aminoethoxyvinylglycine on cardenolide accumulation in tissue cultures of Digitalis lanata. J Plant Physiol 140:395–398CrossRefGoogle Scholar
  5. Bosila HA, Mohamed S, Gamal SE, Bekhit M (2003) Factors affecting callus production and glycosidal content of leaf tissue culture of Digitalis lanata Ehrh. Acta Hortic 597:289–301CrossRefGoogle Scholar
  6. Bota C, Deliu C (2011) The effect of copper sulphate on the production of flavonoids in Digitalis lanata cell cultures. Farmacia 59(1):113–118Google Scholar
  7. Brauchler C, Meimberg H, Heubl G (2004) Molecular phylogeny of the genera Digitalis L. and Isoplexis (Lindley) Loudon (Veronicaceae) based on ITS and trnL-F sequences. Plant Syst Evol 248:111–128CrossRefGoogle Scholar
  8. Cacho M, Moran M, Herrera MM, Fernandez-Tarrago J, Corchete MP (1991) Morphogenesis in leaf, hypocotyl and root explants of Digitalis thapsi L. cultured in vitro. Plant Cell Tissue Organ Cult 25:117–123Google Scholar
  9. Cacho M, Moran M, Fernandez-Tarrago J, Corchete P (1995) Calcium restriction induces cardenolide accumulation in cell suspension cultures of Digitalis thapsi L. Plant Cell Rep 14:786–789CrossRefGoogle Scholar
  10. Cacho M, Moran M, Corchete P, Fernandez-Tarrago J (1999) Effect of calcium restriction on cardenolide accumulation in two cell lines of Digitalis thapsi grown under different light regimes. Acta Physiol Plant 21(4):335–340CrossRefGoogle Scholar
  11. Chavan SP, Nitnaware KM, Lokhande VH, Nikam TD (2011) Influence of growth regulators and elicitors on cell growth and α-tocopherol and pigment productions in cell cultures of Carthamus tinctorius L. Appl Microbiol Biotechnol 89:1701–1707CrossRefGoogle Scholar
  12. Corchete MP, Jimenez MA, Moran M, Cacho M, Fernandez-Tarrago J (1991) Effect of calcium, manganese and lithium on growth and cardenolide content in cell suspension cultures of Digitalis thapsi L. Plant Cell Rep 10:394–396CrossRefGoogle Scholar
  13. Corduan G, Spix C (1975) Haploid callus and regeneration of plants from anthers of Digitalis purpurea L. Planta (Berl) 124:1–11CrossRefGoogle Scholar
  14. Corduk NE, Aki C (2010) Direct shoot organogenesis of Digitalis trojana Ivan., an endemic medicinal herb of Turkey. Afr J Biotechnol 9(11):1587–1591CrossRefGoogle Scholar
  15. Diettrich B, Popov AS, Pfeiffer B, Neumann D, Butenko R, Luckner M (1982) Cryopreservation of Digitalis lanata cell cultures. Planta Med 46(10):82–87CrossRefGoogle Scholar
  16. Eisenbeiss M, Kreis W, Reinhard E (1999) Cardenolide biosynthesis in light- and dark-grown Digitalis lanata shoot cultures. Plant Physiol Biochem 37(1):13–23CrossRefGoogle Scholar
  17. Elbaz HA, Stueckle TA, Wang HL, O’Doherty GA, Lowry DT, Sargent LM, Wang L, Dinu CZ, Rojanasakul Y (2012) Digitoxin and a synthetic monosaccharide analog inhibit cell viability in lung cancer cells. Toxicol Appl Pharmacol 258:51–60CrossRefGoogle Scholar
  18. Fatima Z, Mujib A, Fatima S, Arshi A, Umar S (2009) Callus induction, biomass growth, and plant regeneration in Digitalis lanata Ehrh.: influence of plant growth regulators and carbohydrates. Turk J Bot 33:393–405Google Scholar
  19. Gartner DE, Seitz HU (1993) Enzyme activities in cardenolide-accumulating, mixotrophic shoot cultures of Digitalis purpurea L. J Plant Physiol 141:269–275CrossRefGoogle Scholar
  20. Ghanem SA, Aboul-Enein AM, El-Sawy A, Rady MR, Ibrahem MM (2010) In vitro propagation and cardiac glycosides content of Digitalis lanata. Int J Acad Res 2(6):349–356Google Scholar
  21. Goldner EM, Seitz U, Reinhard E (1991) Cryopreservation of Digitalis lanata Ehrh. cell cultures: preculture and freeze tolerance. Plant Cell Tissue Organ Cult 24:19–24CrossRefGoogle Scholar
  22. Gurel E, Yucesan B, Aglic E, Gurel S, Verma SK, Sokmen M, Sokmen A (2011) Regeneration and cardiotonic glycoside production in Digitalis davisiana Heywood (Alanya Foxglove). Plant Cell Tissue Organ Cult 104:217–225CrossRefGoogle Scholar
  23. Hagimori M, Matsumoto T, Obi Y (1982) Studies on the production of Digitalis cardenolides by plant tissue culture. II. Effect of light and plant growth substances on digitoxin formation by undifferentiated cells and shoot-forming cultures of Digitalis purpurea L. grown in liquid media. Plant Physiol 69:653–656CrossRefGoogle Scholar
  24. Hagimori M, Matsumoto T, Obi Y (1983) Effects of mineral salts, initial pH and precursors on digitoxin formation by shoot-forming cultures of Digitalis purpurea L. grown in liquid media. Agric Biol Chem 47(3):565–571Google Scholar
  25. Herrera MT, Cacho M, Corchete MP, Fernandez-Tarrago J (1990) One step shoot tip multiplication and rooting of Digitalis thapsi L. Plant Cell Tissue Organ Cult 22:179–182CrossRefGoogle Scholar
  26. Koga M, Hirashima K, Nakahara T (2000) The transformation system in foxglove (Digitalis purpurea L.) using Agrobacterium rhizogenes and traits of the regenerants. Plant Biotechnol 17(2):99–104CrossRefGoogle Scholar
  27. Kreis W (2017) The foxgloves (digitalis) revisited. Planta Med 83:962–976CrossRefGoogle Scholar
  28. Kreis W, Hensel KA, Stuhlemmer U (1998) Cardenolide biosynthesis in foxglove. Planta Med 64:491–499CrossRefGoogle Scholar
  29. Kreis W, Haug B, Yücesan B (2015) Somaclonal variation of cardenolide content in Heywood’s foxglove, a source for the antiviral cardenolide glucoevatromonoside, regenerated from permanent shoot culture and callus. In Vitro Cell Dev Biol Plant 51:35–41CrossRefGoogle Scholar
  30. Lapena L, Perez-Bermudez P, Segura J (1992) Factors affecting shoot proliferation and vitrification in Digitalis obscura cultures. In Vitro Cell Dev Biol 28:121–124CrossRefGoogle Scholar
  31. Lehmann U, Moldenhauer D, Thomar S, Diettrich B, Luckner M (1995) Regeneration of plants from Digitalis lanata cells transformed with Agrobacterium tumefaciens carrying bacterial genes encoding neomycin phosphotransferase II and β-glucuronidase. J Plant Physiol 147:53–57CrossRefGoogle Scholar
  32. Li Y, Gao Z, Piao C, Lu K, Wang Z, Cui ML (2014) A stable and efficient Agrobacterium tumefaciens-mediated genetic transformation of the medicinal plant Digitalis purpurea L. Appl Biochem Biotechnol 172(4):1807–1817CrossRefGoogle Scholar
  33. Linsmaier E, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127CrossRefGoogle Scholar
  34. Luckner M, Wichtl M (2000) Digitalis – Geschichte, Biologie, Chemie, Physiologie, Molekularbiologie, Pharmakologie, medizinische Anwendung. Wissenschaftliche Verlagsgesellschaft, StuttgartGoogle Scholar
  35. Lui JHC, Staba EJ (1981) Effects of age and growth regulators on serially propagated Digitalis lanata leaf and root cultures. Planta Med 41:90–95CrossRefGoogle Scholar
  36. Mohammed A, Yücesan B, Demir-Ordu O, Cihangir C, Eker I, Kreis W, Gürel E (2015) In vitro regeneration and cardenolide determination of an endemic foxglove, Digitalis cariensis (Aegean Foxglove). In Vitro Cell Dev Biol Plant 51:438–444CrossRefGoogle Scholar
  37. Munkert J, Geiger D, Meitinger N, Rieck C, Petersen J, Kreis W (2016) Production of natural and semisynthetic cardenolides–a synthetic biology approach. Abstracts/New Biotechnol 33:S1–S213.  https://doi.org/10.1016/j.nbt.2016.06.1358CrossRefGoogle Scholar
  38. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  39. Nitseh JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87CrossRefGoogle Scholar
  40. Ohlsson AB (1990) Effects of abscisic acid on cardenolide accumulation and growth in Digitalis lanata tissue cultures. J Plant Physiol 136:510–512CrossRefGoogle Scholar
  41. Ohlsson AB, Berglund T (1989) Effects of high MnSO4 levels on cardenolide accumulation by Digitalis lanata tissue cultures in light and darkness. J Plant Physiol 135:505–507CrossRefGoogle Scholar
  42. Ohlsson AB, Bjork L (1988) Effect of gibberellic acid on cardenolide accumulation by Digitalis lanata tissue culture grown in light and darkness. J Plant Physiol 133:535–538CrossRefGoogle Scholar
  43. Ohlsson AB, Bjork L, Gatenbeck S (1983) Effect of light on cardenolide production by Digitalis lanata tissue cultures. Phytochemistry 22(11):2447–2450CrossRefGoogle Scholar
  44. Pádua RM, Meitinger N, Dias de Souza JF, Waibel R, Gmeiner P, Braga FC, Kreis W (2012) Biotransformation of 21-O-acetyl-deoxycorticosterone by cell suspension cultures of Digitalis lanata (strain W.1.4). Steroids 77:1373–1380CrossRefGoogle Scholar
  45. Patil JG, Ahire ML, Nitnaware KM, Panda S, Bhatt VP, Kishor PBK, Nikam TD (2013) In vitro propagation and production of cardiotonic glycosides in shoot cultures of Digitalis purpurea L. by elicitation and precursor feeding. Appl Microbiol Biotechnol 97:2379–2393CrossRefGoogle Scholar
  46. Pérez-Alonso N, Wilken D, Gerth A, Jahn A, Nitzsche HM, Kerns G, Capote-Perez A, Jiménez E (2009) Cardiotonic glycosides from biomass of Digitalis purpurea L. cultured in temporary immersion systems. Plant Cell Tissue Organ Cult 99:151–156CrossRefGoogle Scholar
  47. Perez-Alonso N, Capote A, Gerth A, Jimenez E (2012) Increased cardenolides production by elicitation of Digitalis lanata shoots cultured in temporary immersion systems. Plant Cell Tissue Organ Cult 110:153–162CrossRefGoogle Scholar
  48. Pérez-Alonso N, Chong-Perez B, Capote A, Perez A, Izquierdo Y, Angenon G, Jimenez E (2014a) Agrobacterium tumefaciens-mediated genetic transformation of Digitalis purpurea L. Plant Biotechnol Rep 8:387–397CrossRefGoogle Scholar
  49. Pérez-Alonso N, Labrada FA, Capote A, Pérez A, Sosa R, Mollineda A, Gonzalez EJ (2014b) Stimulation of cardenolides production in Digitalis purpurea L. shoot cultures by elicitors addition. Rev Colomb Biotecnol XVI(1):51–61CrossRefGoogle Scholar
  50. Pérez-Alonso N, Martín R, Capote A, Pérez A, Hernández-Díaz EK, Rojas L, Jiménez E, Quiala E, Angenon G, Garcia-Gonzales R, Chong-Pérez B (2018) Efficient direct shoot organogenesis, genetic stability and secondary metabolite production of micropropagated Digitalis purpurea L. Ind Crop Prod 116:259–266CrossRefGoogle Scholar
  51. Perez-Bermudez P, Brisa MC, Cornejo MJ, Segura J (1984) In vitro morphogenesis from excised leaf explants of Digitalis obscura L. Plant Cell Rep 3:8–9CrossRefGoogle Scholar
  52. Perez-Bermudez P, Garcia AAM, Tunon I, Gavidia I (2010) Digitalis purpurea P5βR2, encoding steroid 5β-reductase, is a novel defense-related gene involved in cardenolide biosynthesis. New Phytol 185:687–700CrossRefGoogle Scholar
  53. Pradel H, Dumke-Lehmann U, Diettrich B, Luckner M (1997) Hairy root cultures of Digitalis lanata. Secondary metabolism and plant regeneration. J Plant Physiol 151:209–215CrossRefGoogle Scholar
  54. Roden DM (2001) Drugs effecting renal and cardiovascular system. In: Gilman GA, Hardman JG, Limbird LE (eds) The pharmacological basis of therapeutics. McGraw Hill, New York, p 920Google Scholar
  55. Sahin G, Verma SK, Gurel E (2013) Calcium and magnesium elimination enhances accumulation of cardenolides in callus cultures of endemic Digitalis species of Turkey. Plant Physiol Biochem 73:139–143CrossRefGoogle Scholar
  56. Saito K, Yamazaki M, Shimomura K, Yoshimatsu K, Murakoshi I (1990) Genetic transformation of foxglove (Digitalis purpurea) by chimeric foreign genes and production of cardioactive glycosides. Plant Cell Rep 9:121–124CrossRefGoogle Scholar
  57. Sales E, Nebauer SG, Arrillaga I, Segura J (2001) Cryopreservation of Digitalis obscura selected genotypes by encapsulation-dehydration. Planta Med 67:833–838CrossRefGoogle Scholar
  58. Sales E, Segura J, Arrillaga I (2003) Agrobacterium tumefaciens-mediated genetic transformation of the cardenolide-producing plant Digitalis minor L. Planta Med 69:143–147CrossRefGoogle Scholar
  59. Seitz HU, Gartner DE (1994) Enzymes in cardenolide-accumulating shoot cultures of Digitalis purpurea L. Plant Cell Tissue Organ Cult 38:337–344CrossRefGoogle Scholar
  60. Seitz U, Alfermann AW, Reinhard E (1983) Stability of biotransformation capacity in Digitalis lanata cell cultures after cryogenic storage. Plant Cell Rep 2:273–276CrossRefGoogle Scholar
  61. Trosset JY, Carbonell P (2015) Synthetic biology for pharmaceutical drug discovery. Drug Des Devel Ther 9:6285–6302CrossRefGoogle Scholar
  62. Vela S, Gavidia I, Perez-Bermijdez P, Segura J (1991) Micropropagation of juvenile and adult Digitalis obscura and cardenolide content of clonally propagated plants. In Vitro Cell Dev Biol 27:143–146CrossRefGoogle Scholar
  63. Verma SK, Yucesan BB, Şahin G, Gurel S, Gurel E (2011a) Direct shoot regeneration from leaf explants of Digitalis lamarckii, an endemic medicinal species. Turk J Bot 35:689–695Google Scholar
  64. Verma SK, Yucesan BB, Gurel S, Gurel E (2011b) Indirect somatic embryogenesis and shoot organogenesis from cotyledonary leaf segments of Digitalis lamarckii Ivan., an endemic medicinal species. Turk J Biol 35:743–750Google Scholar
  65. Verma SK, Sahin G, Yucesan B, Eker I, Sahbaz N, Gurel S, Gurel E (2012) Direct somatic embryogenesis from hypocotyl segments of Digitalis trojana Ivan and subsequent plant regeneration. Ind Crop Prod 40:76–80CrossRefGoogle Scholar
  66. Verma SK, Sahin G, Gurel E (2016) Somatic embryogenesis, pigment accumulation and synthetic seed production in Digitalis davisiana Heywood. Indian J Exp Biol 54:245–253PubMedGoogle Scholar
  67. Verma SK, Das AK, Gantait S, Gurel S, Gurel E (2018) Influence of auxin and its polar transport inhibitor on the development of somatic embryos in Digitalis trojana. 3 Biotech 8:99CrossRefGoogle Scholar
  68. White PR (1943) A handbook of plant tissue culture. Jaques Cattell Press, TempeCrossRefGoogle Scholar
  69. Yücesan B, Müller-Uri F, Kreis W, Gürel E (2014) Cardenolide estimation in callus-mediated regenerants of Digitalis lamarckii Ivanina (dwarf foxglove). In Vitro Cell Dev Biol Plant 50:137–142CrossRefGoogle Scholar
  70. Yücesan B, Mohammed A, Eker I, Sameeullah M, Demir-Ordu O, Cihangir C, Şahbaz N, Kaya O, Müller-Uri F, Kreis W, Gürel E (2016) In vitro propagation and cardenolide profiling of Digitalis ferruginea subsp. schischkinii, a medicinally important foxglove species with limited distribution in Northern Turkey. In Vitro Cell Dev Biol Plant 52:322–329CrossRefGoogle Scholar
  71. Yücesan BB, Eker I, Lazzarini LES, Aslam N, Mohammed A, Pinto JEBP, Kreis W, Gürel E (2018) Shoot-tip cultivation and cardenolide content analysis of natural populations of Digitalis lanata Ehrh. subsp. lanata (wooly foxglove) in Thrace region. Int J Agric Wildl Sci 4:55–62Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohamed Ramadan Rady
    • 1
  1. 1.Department of Plant BiotechnologyNational Research CentreGizaEgypt

Personalised recommendations