Advertisement

Plant Biotechnology and Milk Thistle

  • Mohamed Ramadan Rady
Chapter

Abstract

Silybum marianum is one of the most extensively studied medicinal herbs with well-known hepatoprotective activity. This chapter gives an overview of the various approaches used to optimize induction of cell, suspension, organ, root, and transgenic cultures from S. marianum. Additionally, examples of using these different approaches are shown and discussion for the production of silymarin from S. marianum tissue culture is also detailed. This chapter summarizes the recent research work of various in vitro culture, abiotic and biotic elicitors, and precursor feeding applied to S. marianum cultural system and their stimulating effects on the accumulation of silymarin.

Keywords

Silybum marianum Biosynthesis Cell and callus culture Regeneration Root cultures Transformation Hairy root cultures Elicitation Flavonolignans 

References

  1. Abbasi BH, Khan MA, Mahmood T, Ahmad M, Chaudhary MF, Khan Mir A (2010) Shoot regeneration and free-radical scavenging activity in Silybum marianum L. Plant Cell Tissue Organ Cult 101:371–376CrossRefGoogle Scholar
  2. Abbasi BH, Ali H, Yucesan B, Saeed S, Rehman K, Khan MA (2016) Evaluation of biochemical markers during somatic embryogenesis in Silybum marianum L. 3 Biotech 6:71CrossRefPubMedPubMedCentralGoogle Scholar
  3. Abraham F, Bhatt A, Keng CL, Indrayanto G, Sulaiman SF (2011) Effect of yeast extract and chitosan on shoot proliferation, morphology and antioxidant activity of Curcuma mangga in vitro plantlets. Afr J Biotechnol 10(40):7787–7795CrossRefGoogle Scholar
  4. Ahmad N, Fatima N, Ahmad I, Anis M (2015) Effect of PGRs in adventitious root culture in vitro: present scenario and future prospects. Rend Fis Acc Lincei 26:307–321CrossRefGoogle Scholar
  5. Al-Hawamdeh FM, Shibli RA, Al-Qudah TS (2013) In-vitro production of silymarin from Silybum marianum L. Med Aromat Plants S1:001Google Scholar
  6. Al-Hawamdeh FM, Shibli RA, Al-Qudah TS (2014) In vitro propagation of Silybum marianum L. Jordan J Agric Sci 10(1):120–129Google Scholar
  7. Angelova Z, Georgiev S, Roos W (2006) Elicitation of plants. Biotechnol Biotechnol Equip 20:72–83CrossRefGoogle Scholar
  8. Baenas N, Garcia-Viguera C, Moreno DA (2014) Elicitation: a tool for enriching the bioactive composition of foods. Molecules 19(9):13541–13563CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bais HP, Loyola-Vargas VM, Flores HE, Vivanco JM (2001) Root-specific metabolism: the biology and biochemistry of underground organs. In Vitro Cel Dev Biol Plant 37:730–741CrossRefGoogle Scholar
  10. Bekheet SA (2015) Effect of drought stress induced by mannitol and polyethylene glycol on growth and silymarin content of milk thistle callus cultures. World J Pharm Res 4(8):116–127Google Scholar
  11. Bekheet SA, Taha HS, Gabr AMM (2013) Protocol for in vitro morphogenesis and hairy root cultures of Milk thistle (Silybum marianum L. Gaertn). J Appl Sci Res 9(1):860–866Google Scholar
  12. Bekheet SA, El-Bahr MK, Ali SA, Hamed MA (2014) Callus production of globe artichoke and milk thistle: in vitro hypolipidemic and antioxidant activities. World J Pharm Res 3(4):01–17Google Scholar
  13. Belchi-Navarro S, Pedreno MA, Corchete P (2011) Methyl jasmonate increases silymarin production in Silybum marianum (L.) Gaernt cell cultures treated with β-cyclodextrins. Biotechnol Lett 33:179–184CrossRefPubMedPubMedCentralGoogle Scholar
  14. Biedermann D, Vavrikov E, Cvak L, Kren V (2014) Chemistry of silybin. Nat Prod Rep 31:1138–1157CrossRefPubMedPubMedCentralGoogle Scholar
  15. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bota C, Deliu C (2011) The effect of copper sulphate on the production of flavonoids in Digitalis lanata cell cultures. Farmacia 59(1):11–118Google Scholar
  17. Cacho M, Moran M, Corchete P, Fernandez-Tarrago J (1999) Influence of medium composition on the accumulation of flavonolignans in cultured cells of Silybum marianum L. Gaertn. Plant Sci 144:77–84CrossRefGoogle Scholar
  18. Chen Z, Silva H, Klessig DF (1993) Active oxygen species in the induction of plant systemic resistance by salisylic acid. Science 262:1883–1886CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cimino C, Cavalli SV, Spina F, Natalucci C, Priolo N (2006) Callus cultures for biomass production of milk thistle as a potential source of milk clotting peptidases. Electron J Biotechnol 9(3):1–4CrossRefGoogle Scholar
  20. Corchete P (2008) Silybum marianum (L.) Gaertn: the source of silymarin. In: Ramawat KG, Merillon JM (eds) Bioactive molecules and medicinal plants chapter 6, pp 123–148CrossRefGoogle Scholar
  21. Cui XH, Chakrabarty D, Lee EJ, Paek KY (2010) Production of adventitious roots and secondary metabolites by Hypericum perforatum L. in a bioreactor. Bioresour Technol 101:4708–4716CrossRefPubMedPubMedCentralGoogle Scholar
  22. Dewick PM (2002) Medicinal natural products. A Biosynthetic Approach. Second Edition Chichester, UK: WileyGoogle Scholar
  23. Doares SH, Syrovets T, Weiler EW, Ryan CA (1995) Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc Natl Acad Sci U S A 92:4095–4098CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dubreuil-Maurizi C, Vitecek J, Marty L, Branciard L, Frettinger P, Wendehenne D, Meyer AJ, Mauch F, Poinssot B (2011) Glutathione deficiency of the Arabidopsis mutant pad2-1 affects oxidative stress-related events, defense gene expression, and the hypersensitive response. Plant Physiol 157(4):2000–2012CrossRefPubMedPubMedCentralGoogle Scholar
  25. Eari S, Aghdasi M, Ahmadzadeh E, Mianabadi M (2017) Influence of plant growth regulators on callus induction, silymarin production and antioxidant activity in Milk Thistle (Silybum marianum L. Gaertn.) under tissue culture medium. J Med Plants By-Products 1:59–69Google Scholar
  26. Elhaak M, Zayed Mattar M, Gad D, Dietz K (2016) Optimization of Silybum marianum L. callus production and magnifying callus silymarin accumulation by elicitors or precursors. Intr J Adv Pharm Biol Chem 5(2):148–163Google Scholar
  27. Elsharnouby ME, Hassan FAS (2018) Improvement of silymarin content in cell cultures of Silybum marianum by copper sulphate elicitor. Acta Sci Pol Hortorum Cultus 17(2):105–114CrossRefGoogle Scholar
  28. El-Sherif F, Khattab S, Ghoname E, Salem N, Radwan K (2011) Effect of gamma irradiation on enhancement of some economic traits and molecular changes in Hibiscus Sabdariffa L. Life Science J 8(3):220–229Google Scholar
  29. El-Sherif F, Khattab S, Ibrahim AK, Ahmed SA (2013) Improved silymarin content in elicited multiple shoot cultures of Silybum marianum L. Physiol Mol Biol Plants 19(1):127–136CrossRefPubMedPubMedCentralGoogle Scholar
  30. El-wekeel A, AbouZid S, Sokkar N, Elfishway A (2012) Studies on flavanolignans from cultured cells of Silybum marianum. Acta Physiol Plant 34:1445–1449CrossRefGoogle Scholar
  31. Feveriro P, Carbal JMS, Fonceca MMR, Novais JM, Salom M (1986) Callus and suspension culture of Silybum marianum biosynthesis of proteins with clotting activity. Biotechnol Lett 8(1):19–24CrossRefGoogle Scholar
  32. Gabay R, Plitmann U, Danin A (1994) Factors affecting the dominance of Silybum marianum L. (Asteraceae) in its specific habitats. Flora 189:201–206CrossRefGoogle Scholar
  33. Gabr AMM, Ghareeb H, El Shabrawi HM, Smetanska I, Bekheet SA (2016) Enhancement of silymarin and phenolic compound accumulation in tissue culture of Milk thistle using elicitor feeding and hairy root cultures. J Genet Eng Biotechnol 14(2):327–333CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension culture of soybean root cells. Exp Cell Res 50 (1):151–158Google Scholar
  35. Graham LS, Sticklen MB (1994) Plant chitinases. Can J Bot 72:1057–1083CrossRefGoogle Scholar
  36. Han YS, Van der Heijden R, Verpoorte R (2001) Biosynthesis of anthraquinones in cell cultures of the Rubiaceae. Plant Cell Tissue Organ Cult 67:201–220CrossRefGoogle Scholar
  37. Hasanloo T, Rahnama H, Sepehrifar R, Shams MR (2008a) The influence of yeast extract on the production of flavonolignans in hairy root cultures of Silybum marianum L. Gaertn. IFMBE Proc 21:358–361CrossRefGoogle Scholar
  38. Hasanloo T, Khavari-Nejad RA, Majidi E, Shams MR (2008b) Flavonolignan production in cell suspension culture of Silybum marianum. Pharm Biol 46(12):876–882CrossRefGoogle Scholar
  39. Hasanloo T, Sepehrifar R, Rahnama H, Shams MR (2009) Evaluation of the yeast-extract signaling pathway leading to silymarin biosynthesis in milk thistle hairy root culture. World J Microbiol Biotechnol 25:1901–1909CrossRefGoogle Scholar
  40. Hasanloo T, Ahmadi M, Nekoei SMK, Jouzani GS (2013) Improvement of silymarin production in hairy root cultures of Silybum marianum (L.) Gaertn using fungal elicitors. Romanian Biotechnol Lett 18(3):8221–8232Google Scholar
  41. Hasanloo T, Eskandari S, Najafi F (2014) Chitosan (middle-viscous) as an effective elicitor for silymarin production in Silybum marianum hairy root cultures. Res J Pharm 1:9–13Google Scholar
  42. Hasanloo T, Eskandari S, Kowsari M (2015) Trichoderma strains- Silybum marianum hairy root cultures interactions. Res J Pharm 2(2):33–46Google Scholar
  43. Hidalgo D, Martınez-Marquez A, Cusido R, Bru-Martınez R, Palazon J, Corchete P (2017) Silybum marianum cell cultures stably transformed with Vitis vinifera stilbene synthase accumulate t-resveratrol in the extracellular medium after elicitation with methyl jasmonate or methylated β-cyclodextrins. Eng Life Sci 17:686–694CrossRefGoogle Scholar
  44. Iqbal SM, Srivastava PS (2000) In vitro micropropagation of Silybum marianum L. from various explants and silybin Content. J Plant Biochem Biotechnol 9:81–87CrossRefGoogle Scholar
  45. Iri S, Aghdasi M, Mianabadi M (2013) Induction of root formation to produce silymarin in Silybium marianum plant in tissue culture condition. J Plant Process Funct 2(2):1–12Google Scholar
  46. Jabeen Z, Rahman KU, Zia MA, Jhan N (2019) Establishment of an efficient and reproducible in vitro protocol for callogenesis of Silybum marianum. Int J Biosci 14(1):402–410CrossRefGoogle Scholar
  47. Jamwal K, Bhattacharya S, Puri S (2018) Plant growth regulator mediated consequences of secondary metabolites in medicinal plants. J Appl Res Med Aromatic Plants 9:26–38CrossRefGoogle Scholar
  48. John SA, Koperuncholan M (2012) Direct root regeneration and indirect organogenesis in Silybum marianum and preliminary phytochemical, antibacterial studies of its callus. Int J Pharm 2(2):392–400Google Scholar
  49. Khalili M, Hasanloo T, Tabar SKK, Rahnama H (2009) Influence of exogenous salicylic acid on flavonolignans and lipoxygenase activity in the hairy root cultures of Silybum marianum. Cell Biol Int 33:988–994CrossRefGoogle Scholar
  50. Khalili M, Hasanloo T, Kazemi Tabar SK, Sepehrifar R (2010a) Effect of salicylic acid on antioxidant activity in Milk Thistle hairy root cultures. J of Medicinal Plants 9(35):51–60Google Scholar
  51. Khalili M, Hasanloo T, SKk T (2010b) Ag+ enhanced silymarin production in hairy root cultures of Silybum marianum (L.) Gaertn. Plant Omics J 3(4):109–114Google Scholar
  52. Khan MA, Abbasi BH, Ahmed N, Ali H (2013) Effects of light regimes on in vitro seed germination and silymarin content in Silybum marianum. Ind Crop Prod 46:105–110CrossRefGoogle Scholar
  53. Khan MA, Abbasi BH, Khan Z, Shi ZK (2014) Thidiazuron enhanced regeneration and silymarin content in Silybum marianum L. Pak J Bot 46(1):185–190Google Scholar
  54. Khan MA, Abbasi BH, Shah NA, Yucesan B, Ali H (2015a) Analysis of metabolic variations throughout growth and development of adventitious roots in Silybum marianum L. (Milk thistle), a medicinal plant. Plant Cell Tissue Organ Cult 123:501–510CrossRefGoogle Scholar
  55. Khan MA, Abbasi BH, Ali H, Ali M, Adil M, Hussain I (2015b) Temporal variations in metabolite profiles at different growth phases during somatic embryogenesis of Silybum marianum L. Plant Cell Tissue Organ Cult 120:127–139CrossRefGoogle Scholar
  56. Kim Y, Wyslouzil BE, Weathers PJ (2002) Secondary metabolism of hairy root cultures in bioreactors. In Vitro Cell Dev Bio Plant 38:1–10CrossRefGoogle Scholar
  57. Kim NC, Graf TN, Sparacino CM, Wani MC, Wall ME (2003) Complete isolation and characterization of silybins and isosilybins from milk thistle (Silybum marianum). Org Biomol Chem 1:1684–1689CrossRefGoogle Scholar
  58. Kim JH, Baek MH, Chung BY, Wi SG, Kim JS (2004) Alterations in the photosynthetic pigments and antioxidant machineries of red pepper (Capsicum annuum L.) seedlings from gamma-irradiated seeds. J Plant Biol 47:314–321CrossRefGoogle Scholar
  59. Lee DYW, Liu YZ (2003) Molecular structure and stereochemistry of silybin A,silybin B, isosilybin A, and isosilybin B, isolated from Silybum marianum (milkthistle). J Nat Prod 66:1171–1174CrossRefGoogle Scholar
  60. Liu S-Q, Cai Q-G (1990) Callus formation from protoplasts and plant regeneration from tissue culture of Silybum marianum Gaertn. Acta Bot Sin 32(1):19–25Google Scholar
  61. Lv Y, Gao S, Xu S, Du G, Zhou J, Chen J (2017a) Spatial organization of silybin biosynthesis in milk thistle [Silybum marianum (L.) Gaertn]. The Plant J 92(6):995–1004CrossRefGoogle Scholar
  62. Lv Y-W, Rui-Jie W, Lv Y-W, Ze-Shang Y, Wang Y-J (2017b) In vitro propagation of silybum marianum (l.) gaertn. and genetic fidelity assessment of micropropagated plants. Pak J Bot 49(2):673–680Google Scholar
  63. Madrid E, Corchete P (2010) Silymarin secretion and its elicitation by methyl jasmonate in cell cultures of Silybum marianum is mediated by phospholipase D-phosphatidic acid. J Exp Bot 61(3):747–754CrossRefGoogle Scholar
  64. Manaf HH, Rabie KAE, Abd El-Aal MS (2009) In vitro callus formation and plant regeneration of S. marianum L. Gaertin. Annals Agric Sci Ain Shams Univ 54(2):283–289Google Scholar
  65. Manaf HH, Rabie KAE, Ibrahim IS, Eltantawy MEI (2016) Effects of BAP, NAA and NaCl on growth characters and silymarin concentration of Silybum marianum callus. J Biol Chem Environ Sci 11(4):139–151Google Scholar
  66. Mittler R, Vanderauwera S, Gollery M, Breusegem FV (2004) Abiotic stress series. Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498CrossRefGoogle Scholar
  67. Montesano M, Brader G, Palva ET (2003) Pathogen derived elicitors: searching for receptors in plants. Mol Plant Pathol 4:73–79CrossRefGoogle Scholar
  68. Morazzoni P, Bombardelli E (1995) Silybum marianum (Carduus marianum). Fitoterapia 66:3–42Google Scholar
  69. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  70. Nikolova MT, Ivancheva SV (2005) Quantitative flavonoid variations of Artemisia vulgaris L. and Veronica chamaedrys L. in relation to altitude and polluted environment. Acta Biol Szeged 49:29–32Google Scholar
  71. Owolabi LO, Yupanqui CT, Siripongvutikorn S (2018) Enhancing secondary metabolites (emphasis on phenolics and antioxidants) in plants through elicitation and metabolomics. Pak J Nutr 17:411–420CrossRefGoogle Scholar
  72. Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S, Vianello A (2013) Plant flavonoids—biosynthesis, transport and involvement in stress responses. Int J Mol Sci 14:14950–14973CrossRefPubMedPubMedCentralGoogle Scholar
  73. Poppe L, Petersen M (2016) Variation in the flavonolignan composition of fruits from different Silybum marianum chemotypes and suspension cultures derived therefrom. Phytochemistry 131:68–75CrossRefGoogle Scholar
  74. Pourjabar A, Mohammadi SA, Ghahramanzadeh R, Gh S (2012) Effect of genotype, explant type and growth regulators on the accumulation of flavonoides of (Silybum marianum L.) in in vitro culture. Int J Biol Biomol Agric Food Biotech Eng 6(7):514–516Google Scholar
  75. Pourjabar A, Azimi MR, Mostafaie A, Kahrizi D, Cheghamirza K (2018) Proteome analysis of Milk thistle (Silybum marianum L.) cell suspension cultures in response to methyl jasmonate and yeast extract elicitors. Appl Ecol Environ Res 17(1):547–560CrossRefGoogle Scholar
  76. Rabie KAE, Abd El-Aal MS, Manaf HH (2010) Enhanced silymarin accumulation as influence of medium composition in cell suspension cultures of Silybum marianum (L.) Gaertin. J of Plant Production 1(2):319–332Google Scholar
  77. Rady MR, Matter MA, Ghareeb HA, Hanafy MS, Saker MM, Eid SA, Hammoda FM, Imbaby SI, Nazief NH (2014) In vitro cultures of Silybum marianum and silymarin accumulation. J Genetic Eng Biotechnol 12:75–79CrossRefGoogle Scholar
  78. Rahimi S, Hasanloo T (2016) The effect of temperature and pH on biomass and bioactive compounds production in Silybum marianum hairy root cultures. Res J Pharm 3(2):53–59Google Scholar
  79. Rahimi S, Hasanloo T, Bihamta MR (2010) Enhanced production of silymarin by Ag+ elicitor in cell suspension cultures of Silybum marianum. Pharm Biol 48(6):708–715CrossRefGoogle Scholar
  80. Rahimi S, Hasanloo T, Najafi F, Khavari-Nejad RA (2011) Enhancement of silymarin accumulation using precursor feeding in Silybum marianum hairy root cultures. Plant Omic J 4(1):34–39Google Scholar
  81. Rahnama H, Hasanloo T, Shams MR, Sepehrifar R (2008) Silymarin production by hairy root culture of Silybum marianum (L.) Gaertn. Iran J Biotechnol 6(2):113–118Google Scholar
  82. Rahnama H, Razi Z, Dadgar MN, Hasanloo T (2013) Enhanced production of flavonolignans in hairy root cultures of Silybum marianum by over-expression of chalcone synthase gene. J Plant Biochem Biotechnol 22(1):138–143CrossRefGoogle Scholar
  83. Riasat R, Riasat Z, Abbasi BH, Liu C, Khan MA (2015) Silybum marianum: adventitious roots induction along with free radical scavenging activity. J Plant Bio Res 4(1):12–21Google Scholar
  84. Russo GL, Russo M, Spagnuolo C, Tedesco I, Bilotto S, Iannitti R, Palumbo R (2014) Quercetin a pleiotropic kinase inhibitor against cancer. Cancer Treat Res 159:185–205CrossRefPubMedPubMedCentralGoogle Scholar
  85. Sagar SM (2007) Future directions for research on Silybum marianum for cancer patients. Integr Cancer Ther 6:166–173CrossRefPubMedPubMedCentralGoogle Scholar
  86. Sanchez-Sampedro MA, Fernandez-Tarrago J, Corchete P (2005a) Enhanced silymarin accumulation is related to calcium deprivation in cell suspension cultures of Silybum marianum (L.) Gaertn. J Plant Physiol 162:1177–1182CrossRefGoogle Scholar
  87. Sanchez-Sampedro MA, Fernandez-Tarrago J, Corchete P (2005b) Yeast extract and methyl jasmonate-induced silymarin production in cell cultures of Silybum marianum (L.) Gaertn. J Biotechnol 119(1):60–69CrossRefPubMedPubMedCentralGoogle Scholar
  88. Sanchez-Sampedro A, Kim HK, Choi YH, Verpoorte R, Corchete P (2007) Metabolomic alterations in elicitor treated Silybum marianum suspension cultures monitored by nuclear magnetic resonance spectroscopy. J Biotechnol 130:133–142CrossRefPubMedPubMedCentralGoogle Scholar
  89. Sathiyabama M, Balasubramanian R (1998) Chitosan induces resistance component in Arachis hipogaea leaf rust caused by Puccinia arachidis. Speg Crop Prot 17:307–313CrossRefGoogle Scholar
  90. Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204CrossRefGoogle Scholar
  91. Seibert M, Kadkade PG (1980) Environmental factors. A.Light. In: Staba EJ (ed) Plant tissue culture as a source of Biochemicals. CRC Press, Boca Raton, pp 123–141Google Scholar
  92. Shah J, Klessig DF (1999) Salicylic acid: signal perception and transduction. In: Libbenga K, Hall M, Hooykaas PJJ (eds) Biochemistry and molecular biology of plant hormones. Elsevier, Oxford, pp 513–541CrossRefGoogle Scholar
  93. Shokrpour M, Mohammadi SA, Moghaddam M, Ziai SA, Javanshir A (2007) Variation in flavonolignan concentration of milk thistle (Silybum marianum) fruits grown in Iran. J Herbs Spices Med Plants 13:55–69CrossRefGoogle Scholar
  94. Shualev V, Leon J, Raskin I (1995) Is salicylic acid a translocated signal of systemic acquired resistance in tobacco. Plant Cell 7:1691–1701CrossRefGoogle Scholar
  95. Sivakumar G, Alagumanian S, Rao MV (2006) High frequency in vitro multiplication of Centella asiatica: an Important Industrial Medicinal Herb. Eng Life Sci 6:597–601CrossRefGoogle Scholar
  96. Sivanandhan G, Dev GK, Jeyaraj M, Rajesh M, Arjunan A, Muthuselvam M, Manickavasagam M, Selvaraj N, Ganapathi A (2013) Increased production of withanolide A, withanone, and withaferin A in hairy root cultures of Withania somnifera (L.) Dunal elicited with methyl jasmonate and salicylic acid. Plant Cell Tissue Organ Cult 114:121–129CrossRefGoogle Scholar
  97. Tumova L, Gallova K, Rimakova J (2001) Silybum marianum. In vitro. Ceska Slov Farm 53:135–140Google Scholar
  98. Tumova L, Gallova K, Rimakova J, Dolezal M, Tuma J (2005) The effect of substituted amides of pyrazine-2-carboxylic acids on flavonolignan production in Silybum marianum culture in vitro. Acta Physiol Plant 27(38):357–362CrossRefGoogle Scholar
  99. Tůmová L, Řimáková J, Tůma J, Dušek J (2006) Silybum marianum in vitro-flavonolignan production. Plant Soil Environ 52(10):454–458CrossRefGoogle Scholar
  100. Tůmová L, Tůma J, Megušar K, Doležal M (2010) Substituted pyrazinecarboxamides as abiotic elicitors of flavolignan production in Silybum marianum (L.) Gaertn cultures in vitro. Molecules 15:331–340CrossRefPubMedPubMedCentralGoogle Scholar
  101. Tumova L, Tuma J, Dolezal M (2011) Pyrazinecarboxamides as potential elicitors of flavonolignan and flavonoid production in Silybum marianum and Ononis arvensis cultures in vitro. Molecules 16:9142–9152CrossRefPubMedPubMedCentralGoogle Scholar
  102. Van Loon LC, Pierpoint WS, Voller T, Conejero V (1994) Recommendations for naming plant pathogenesis related protein. Plant Mol Biol Report 12:245–264CrossRefGoogle Scholar
  103. Vander P, Varum KM, Domard A, Gueddari NEE, Moerschbacher BM (1998) Comparison of the ability of partially N-acetylated chitosans and chitooligosaccharides to elicit resistance reactions in wheat leaves. Plant Physiol 118:1353–1359CrossRefPubMedPubMedCentralGoogle Scholar
  104. Vanisree M, Lee CY, Lo SF, Nalawade SM, Lin CY, Tsay HS (2004) Studies on the production of some important secondary metabolites from medicinal plants by tissue culture. Bot Bull Acad Sin 45:1–22Google Scholar
  105. Vasconsuelo A, Boland R (2007) Molecular aspects of the early stages of elicitation of secondary metabolites in plants. Plant Sci 172:861–875CrossRefGoogle Scholar
  106. Vildová A, Hendrychová H, Kubeš J, Tůmová L (2014) Influence of AgNO3 treatment on the flavonolignan production in cell suspension culture of Silybum marianum (L.) Gaertn. Int J Biol Biomol Agric Food Biotech Eng 8(8):959–962Google Scholar
  107. Wi SG, Chung BY, Kim JH, Baek MH, Yang DH, Lee JW, Kim JS (2005) Ultrastructural changes of cell organelles in Arabidopsis stem after gamma irradiation. J Plant Biol 48(2):195–200CrossRefGoogle Scholar
  108. Yoshikawa T, Furuya T (1987) Saponin production by cultures of Panax ginseng transformed with Agrobacterium rhizogenes. Plant Cell Rep 6:449–453PubMedPubMedCentralGoogle Scholar
  109. Younas M, Drouet S, Nadeem M, Giglioli-Guivarch N, Hano C, Bilal Haider Abbasi BH (2018) Differential accumulation of silymarin induced by exposure of Silybum marianum L callus cultures to several spectres of monochromatic lights. J Photochem Photobiol B: Biol 184:61–70CrossRefGoogle Scholar
  110. Zhang SL, Zhang TZ, Yang SH (2014) Establishment of culture system of Silybum marianum hairy roots and determination of silybin. China J Chinese Mater Med Zhongguo Zhong Yao Za Zhi 39(11):2005–2010Google Scholar
  111. Zhao J, Davis LC, Verpoorte R (2005) elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333CrossRefPubMedPubMedCentralGoogle Scholar
  112. Zhao J, Hu Q, Zhu WH (2001) Enhanced catharanthine production in Catharanthus roseus cell cultures by combined elicitor treatment in shake flasks and bioreactors. Enzyme Microb Technol 28:673–681Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohamed Ramadan Rady
    • 1
  1. 1.Department of Plant BiotechnologyNational Research CentreGizaEgypt

Personalised recommendations