Advertisement

Pre-analytics, Current Testing Technologies, and Limitations of Testing

  • Alejandro Luiña ContrerasEmail author
  • Jose Jasper L. Andal
  • Raymundo M. Lo
  • Daphne C. Ang
Chapter

Abstract

Molecular evaluation of genetic abnormalities requires basic knowledge of genetics and molecular pathology. It also requires basic knowledge of pre-analytic variables that affect these tests and the limitations for each test used to detect these abnormalities. Many limitations of testing start before the tests are even performed. In this chapter, we will review pre-analytical variables affecting the molecular evaluation, the landscape of current testing technologies, and the limitations of testing of some of the most commonly used tests. The aim is to cover the most commonly used tests in clinical practice, and tests not commonly used or mainly used for research are not covered in this chapter.

Keywords

Pre-analytical variables Limitation testing Fluorescence in situ hybridization (FISH) Array comparative genomic hybridization (CGH) Multiplex ligation-dependent probe amplification (MLPA) 

Technical Terms and Abbreviations

aCGH

Array comparative genomic hybridization

CNV

Copy number variant

FISH

Fluorescence in situ hybridization

indel

Insertions and deletions

MLPA

Multiplex ligation-dependent probe amplification

NGS

Next-generation sequencing

RT-PCR

Reverse transcription polymerase chain reaction

SNV

Single-nucleotide variant

SV

Structural variants

References

  1. 1.
    Genetically Informed Cancer Medicine – My Cancer Genome [Internet]. Mycancergenome.org. 2019 [cited 31 March 2019]. Available from: https://www.mycancergenome.org/
  2. 2.
    Education Resources [Internet]. Association for Molecular Pathology. 2019 [cited 31 March 2019]. Available from: https://www.amp.org/education/education-resources/.
  3. 3.
    Khoury T, Sait S, Hwang H, Chandrasekhar R, Wilding G, Tan D, et al. Delay to formalin fixation effect on breast biomarkers. Mod Pathol. 2009;22(11):1457–67.PubMedCrossRefGoogle Scholar
  4. 4.
    Greer CE, Lund JK, Manos MM. PCR amplification from paraffin-embedded tissues: recommendations on fixatives for long-term storage and prospective studies. PCR Methods Appl. 1991;1(1):46–50.PubMedCrossRefGoogle Scholar
  5. 5.
    Srinivasan M, Sedmak D, Jewell S. Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol. 2002;161:1961–197.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Godfrey T, Kim S, Chavira M, Ruff D, Warren R, Gray J, et al. Quantitative mRNA expression analysis from formalin-fixed, paraffin-embedded tissues using 5′ nuclease quantitative reverse transcription-polymerase chain reaction. J Mol Diagn. 2000;2(2):84–91.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Coudry R, Meireles S, Stoyanova R, Cooper H, Carpino A, Wang X, et al. Successful application of microarray technology to microdissected formalin-fixed, paraffin-embedded tissue. J Mol Diagn. 2007;9(1):70–9.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Neubauer A, Neubauer B, He M, Effert P, Iglehart D, Frye R, et al. Analysis of gene amplification in archival tissue by differential polymerase chain reaction. Oncogene. 2019;7(5):1019–25.Google Scholar
  9. 9.
    Lott R, Tunnicliffe J, Sheppard E, Santiago J, Hladik C, Nasim M et al. Practical guide to specimen handling in surgical pathology [Internet]. 7th ed. CAP/NSH Histotechnology Committee; 2017 [cited 31 March 2019]. Available from: https://documents.cap.org/documents/practical-guide-specimen-handling.pdf
  10. 10.
    Kösel S, Grasbon-Frodl EM, Arima K, Chimelli L, Hahn M, Hashizume Y, et al. Inter-laboratory comparison of DNA preservation in archival paraffin-embedded human brain tissue from participating centres on four continents. Neurogenetics. 2001;3(3):163–70.PubMedCrossRefGoogle Scholar
  11. 11.
    Nuovo GJ, Richart RM. Buffered formalin is the superior fixative for the detection of HPV DNA by in situ hybridization analysis. Am J Pathol. 1989;132(4):837–42.Google Scholar
  12. 12.
    Ferrer I, Armstrong J, Capellari S, Parchi P, Arzberger T, Bell J, et al. Effects of formalin fixation, paraffin embedding, and time of storage on DNA preservation in brain tissue: a BrainNet Europe Study. Brain Pathol. 2007;17(3):297–303.PubMedCrossRefGoogle Scholar
  13. 13.
    Barcelos D, Franco M, Leão S. Effects of tissue handling and processing steps on PCR for detection of Mycobacterium tuberculosis in formalin-fixed paraffin-embedded samples. Rev Inst Med Trop Sao Paulo. 2008;50(6):321–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Coura R. An alternative protocol for DNA extraction from formalin fixed and paraffin wax embedded tissue. J Clin Pathol. 2005;58(8):894–5.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Miething F, Hering S, Hanschke B, Dressler J. Effect of fixation to the degradation of nuclear and mitochondrial DNA in different tissues. J Histochem Cytochem. 2006;54(3):371–4.PubMedCrossRefGoogle Scholar
  16. 16.
    Apple S, Pucci R, Lowe A, Shintaku I, Shapourifar-Tehrani S, Moatamed N. The effect of delay in fixation, different fixatives, and duration of fixation in estrogen and progesterone receptor results in breast carcinoma. Am J Clin Pathol. 2011;135(4):592–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Hashizume K, Hatanaka Y, Kamihara Y, Kato T, Hata S, Akashi S, et al. Interlaboratory comparison in HercepTest assessment of HER2 protein status in invasive breast carcinoma fixed with various formalin-based fixatives. Appl Immunohistochem Mol Morphol. 2003;11(4):339–44.PubMedCrossRefGoogle Scholar
  18. 18.
    Williams JH, Mepham BL, Wright DH. Tissue preparation for immunocytochemistry. J Clin Pathol. 1997;50(5):422–8.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Pollard K, Lunny D, Holgate CS, Jackson P, Bird CC. Fixation, processing, and immunochemical reagent effects on preservation of T-lymphocyte surface membrane antigens in paraffin-embedded tissue. J Histochem Cytochem. 1987;35(11):1329–38.PubMedCrossRefGoogle Scholar
  20. 20.
    Petersen B, Sørensen M, Pedersen S, Rasmussen M. Fluorescence in situ hybridization on formalin-fixed and paraffin-embedded tissue. Appl Immunohistochem Mol Morphol. 2004;12(3):259–65.PubMedCrossRefGoogle Scholar
  21. 21.
    O’Leary J, Browne G, Landers R, Crowley M, Healy I, Street J, et al. The importance of fixation procedures on DNA template and its suitability for solution-phase polymerase chain reaction and PCR in situ hybridization. Histochem J. 1994;26(4):337–46.PubMedCrossRefGoogle Scholar
  22. 22.
    Jackson D, Lewis F, Taylor G, Boylston A, Quirke P. Tissue extraction of DNA and RNA and analysis by the polymerase chain reaction. J Clin Pathol. 1990;43(6):499–504.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Noguchi M, Furuya J, Takeuchi T, Hirohashi S. Modified formalin and methanol fixation methods for molecular biological and morphological analyses. Pathol Int. 1997;47(10):685–91.PubMedCrossRefGoogle Scholar
  24. 24.
    Hey-Chi H, Shian-Yang P, Chia-Tung S. High quality of DNA retrieved for Southern blot hybridization from microwave-fixed, paraffin-embedded liver tissues. J Virol Methods. 1991;31(2–3):251–61.CrossRefGoogle Scholar
  25. 25.
    Ruijter E, Miller G, Aalders T, Van De Kaa C, Schalken J, Debruyne F, et al. Rapid microwave-stimulated fixation of entire prostatectomy specimens. J Pathol. 1997;183(3):369–75.PubMedCrossRefGoogle Scholar
  26. 26.
    Bödör C, Schmidt O, Csernus B, Rajnai H, Szende B. DNA and RNA isolated from tissues processed by microwave-accelerated apparatus MFX-800-3 are suitable for subsequent PCR and Q-RT-PCR amplification. Pathol Oncol Res. 2007;13(2):149–52.PubMedCrossRefGoogle Scholar
  27. 27.
    Chu W, Liang Q, Tang Y, King R, Wong K, Gong M, et al. Ultrasound-accelerated tissue fixation/processing achieves superior morphology and macromolecule integrity with storage stability. J Histochem Cytochem. 2006;54(5):503–13.PubMedCrossRefGoogle Scholar
  28. 28.
    Fracasso T, Heinrich M, Hohoff C, Brinkmann B, Pfeiffer H. Ultrasound-accelerated formalin fixation improves the preservation of nucleic acids extraction in histological sections. Int J Leg Med. 2009;123(6):521–5.CrossRefGoogle Scholar
  29. 29.
    Brown R, Edwards J, Bartlett J, Jones C, Dogan A. Routine acid decalcification of bone marrow samples can preserve DNA for FISH and CGH studies in metastatic prostate cancer. J Histochem Cytochem. 2002;50(1):113–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Wickham C, Sarsfield P, Joyner M, Jones D, Ellard S, Wilkins B. Formic acid decalcification of bone marrow trephines degrades DNA: alternative use of EDTA allows the amplification and sequencing of relatively long PCR products. Mol Pathol. 2000;53(6):336.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Alers J, Krijtenburg P, Vissers K, van Dekken H. Effect of bone decalcification procedures on DNA in situ hybridization and comparative genomic hybridization: EDTA is highly preferable to a routinely used acid decalcifier. J Histochem Cytochem. 1999;47(5):703–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Babic A, Loftin I, Stanislaw S, Wang M, Miller R, Warren S, et al. The impact of pre-analytical processing on staining quality for H&E, dual hapten, dual color in situ hybridization and fluorescent in situ hybridization assays. Methods. 2010;52(4):287–300.PubMedCrossRefGoogle Scholar
  33. 33.
    Reineke T, Jenni B, Abdou M, Frigerio S, Zubler P, Moch H, et al. Ultrasonic decalcification offers new perspectives for rapid FISH, DNA, and RT-PCR analysis in bone marrow trephines. Am J Surg Pathol. 2006;30(7):892–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Beaulieu M, Desaulniers M, Bertrand N, Deschesnes R, Beaudry G, Garon G, et al. Analytical performance of a qRT-PCR assay to detect guanylyl cyclase C in FFPE lymph nodes of patients with colon cancer. Diagn Mol Pathol. 2010;19(1):20–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Ribeiro-Silva A, Zhang H, Jeffrey S. RNA extraction from ten year old formalin-fixed paraffin-embedded breast cancer samples: a comparison of column purification and magnetic bead-based technologies. BMC Mol Biol. 2007;8(1):118.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Austin M, Smith C, Pritchard C, Tait J. DNA yield from tissue samples in surgical pathology and minimum tissue requirements for molecular testing. Arch Pathol Lab Med. 2016;140(2):130–3.PubMedCrossRefGoogle Scholar
  37. 37.
    Elloumi F, Hu Z, Li Y, Parker J, Gulley M, Amos K, et al. Systematic bias in genomic classification due to contaminating non-neoplastic tissue in breast tumor samples. BMC Med Genet. 2011;4(1):54.Google Scholar
  38. 38.
    Kotoula V, Kalogeras K, Kouvatseas G, Televantou D, Kronenwett R, Wirtz R, et al. Sample parameters affecting the clinical relevance of RNA biomarkers in translational breast cancer research. Virchows Arch. 2012;462(2):141–54.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Poremba C, Uhlendorff J, Pfitzner B, Hennig G, Bohmann K, Bojar H, et al. Preanalytical variables and performance of diagnostic RNA-based gene expression analysis in breast cancer. Virchows Arch. 2014;465(4):409–17.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Mehrotra M, Singh R, Chen W, Huang R, Almohammedsalim A, Barkoh B, et al. Study of preanalytic and analytic variables for clinical next-generation sequencing of circulating cell-free nucleic acid. J Mol Diagn. 2017;19(4):514–24.PubMedCrossRefGoogle Scholar
  41. 41.
    Bettegowda C, Sausen M, Leary R, Kinde I, Wang Y, Agrawal N, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6(224):224ra24.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Frenel J, Carreira S, Goodall J, Roda D, Perez-Lopez R, Tunariu N, et al. Serial next-generation sequencing of circulating cell-free DNA evaluating tumor clone response to molecularly targeted drug administration. Clin Cancer Res. 2015;21(20):4586–96.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    El Messaoudi S, Mouliere F, Du Manoir S, Bascoul-Mollevi C, Gillet B, Nouaille M, et al. Circulating DNA as a strong multimarker prognostic tool for metastatic colorectal cancer patient management care. Clin Cancer Res. 2016;22(12):3067–77.PubMedCrossRefGoogle Scholar
  44. 44.
    Nikolaev S, Lemmens L, Koessler T, Blouin J, Nouspikel T. Circulating tumoral DNA: preanalytical validation and quality control in a diagnostic laboratory. Anal Biochem. 2018;542:34–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Garcia J, Dusserre E, Cheynet V, Bringuier P, Brengle-Pesce K, Wozny AS, et al. Evaluation of pre-analytical conditions and comparison of the performance of several digital PCR assays for the detection of major EGFR mutations in circulating DNA from non-small cell lung cancers: the CIRCAN_0 study. Oncotarget. 2017;8(50):87890–996.CrossRefGoogle Scholar
  46. 46.
    Bridge J. Advantages and limitations of cytogenetic, molecular cytogenetic, and molecular diagnostic testing in mesenchymal neoplasms. J Orthop Sci. 2008;13(3):273–82. PMID:18528664.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Tanas M, Goldblum J. Fluorescence in situ hybridization in the diagnosis of soft tissue neoplasms: a review. Adv Anat Pathol. 2009;16(6):383–91. PMID: 19851129.PubMedCrossRefGoogle Scholar
  48. 48.
    Kallioniemi O, Kallioniemi A, Piper J, Isola J, Waldman F, Gray J, et al. Optimizing comparative genomic hybridization for analysis of DNA sequence copy number changes in solid tumors. Genes Chromosomes Cancer. 1994;10(4):231–43. PMID: 7522536.PubMedCrossRefGoogle Scholar
  49. 49.
    Hömig-Hölzel C, Savola S. Multiplex ligation-dependent probe amplification (MLPA) in tumor diagnostics and prognostics. Diagn Mol Pathol. 2012;21(4):189–206. PMID: 23111197.PubMedCrossRefGoogle Scholar
  50. 50.
    Drets M, Shaw M. Specific banding patterns of human chromosomes. Proc Natl Acad Sci U S A. 1971;68(9):2073–7. PMID: 4109065.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Yunis J. New chromosome techniques in the study of human neoplasia. Hum Pathol. 1981;12(6):540–9. PMID: 7275094PubMedCrossRefGoogle Scholar
  52. 52.
    Philip P, Drivsholm A. G-banding analysis of complex aneuploidy in multiple myeloma bone marrow cells. Blood. 1976;47(1):69–77. PMID: 1244914.PubMedGoogle Scholar
  53. 53.
    Hastings R, Bown N, Tibiletti M, Debiec-Rychter M, Vanni R, Espinet B, et al. Guidelines for cytogenetic investigations in tumours. Eur J Hum Genet. 2015;24(1):6–13. PMID: 25804401.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Sorensen P, Liu X, Delattre O, Biggs C, Thomas G, Triche T. Reverse transcriptase PCR amplification of EWS/FLI-1 fusion transcripts as a diagnostic test for peripheral primitive neuroectodermal tumors of childhood. Diagn Mol Pathol. 1993;2(3):147–57. PMID: 7506981.PubMedCrossRefGoogle Scholar
  55. 55.
    de Alva E, Ladanyi M, Rosai J, Gerald W. Detection of chimeric transcripts in desmoplastic small round cell tumor and related developmental tumors by reverse transcriptase polymerase chain reaction. A specific diagnostic assay. Am J Pathol. 1995;147(6):1584–91. PMID: 7495283.Google Scholar
  56. 56.
    Frohman M, Dush M, Martin G. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A. 1988;85(23):8998–9002. PMID: 2461560.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Chang K, Lu J, Wang G, Trujillo M, Estey E, Cork A, et al. The t(15;17) breakpoint in acute promyelocytic leukemia cluster within two different sites of the myl gene: targets for the detection of minimal residual disease by the polymerase chain reaction. Blood. 1992;79(3):554–8. PMID: 1310060.PubMedGoogle Scholar
  58. 58.
    Cassinat B, Zassadowski F, Balitrand N, Barbey C, Rain J, Fenaux P, et al. Quantitation of minimal residual disease in acute promyelocytic leukemia patients with t(15;17) translocation using real-time RT-PCR. Leukemia. 2000;14(2):324–8. PMID: 10673752.PubMedCrossRefGoogle Scholar
  59. 59.
    Schouten J, McElgunn C, Waaijer R, Zwijnenburg D, Depvens F, Pals G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 2002;30(12):e57. PMID: 12060695.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Stuppia L, Antonucci I, Palka G, Gatta V. Use of the MLPA assay in the molecular diagnosis of gene copy number alterations in human genetic diseases. Int J Mol Sci. 2012;13(3):3245–76. PMID: 22489151.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Solinas-Toldo S, Lampel S, Stilgenbauer S, Nickolenko J, Benner A, Döhner H, et al. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer. 1997;20(4):399–407. PMID: 9408757.PubMedCrossRefGoogle Scholar
  62. 62.
    Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D, et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet. 1998;20(2):207–11. PMID: 9771718.PubMedCrossRefGoogle Scholar
  63. 63.
    Tsiatis A, Norris-Kirby A, Rich R, Hafez M, Gocke C, Eshleman J, et al. Comparison of sanger sequencing, pyrosequencing, and melting curve analysis for the detection of KRAS mutations. J Mol Diagn. 2010;12(4):425–32. PMID: 20431034.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Harrington C, Lin E, Olson M, Eshleman J. Fundamentals of pyrosequencing. Arch Pathol Lab Med. 2013;137(9):1296–303. PMID: 23991743.PubMedCrossRefGoogle Scholar
  65. 65.
    Arcila M, Lau C, Nafa K, Ladanyi M. Detection of KRAS and BRAF mutations in colorectal carcinoma. J Mol Diagn. 2011;13(1):64–73. PMID: 21227396.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Hyman E. A new method of sequencing DNA. Anal Biochem. 1988;174(2):423–36. PMID: 2853582.PubMedCrossRefGoogle Scholar
  67. 67.
    Liang Q, Wei M, Hodge L, Fanburg-Smith J, Nelson A, Miettinen M, et al. Quantitative analysis of activating alpha subunit of the G protein (Gsα) mutation by pyrosequencing in fibrous dysplasia and other bone lesions. J Mol Diagn. 2011;13(2):137–42. PMID: 21354047.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Lyon E. Mutation detection using fluorescent hybridization probes and melting curve analysis. Expert Rev Mol Diagn. 2001;1(1):92–101. PMID: 11901805.PubMedCrossRefGoogle Scholar
  69. 69.
    Lorente A, Mueller W, Urdangarín E, Lázcoz P, von Deimling A, Castresana J. Detection of methylation in promoter sequences by melting curve analysis-based semiquantitative real time PCR. BMC Cancer. 2008;8(1). PMID: 18298842.Google Scholar
  70. 70.
    Quail M, Smith M, Coupland P, Otto T, Harris S, Connor T, et al. A tale of three next generation sequencing platforms: comparison of ion torrent, pacific biosciences and illumina MiSeq sequencers. BMC Genomics. 2012;13(1):341. PMID: 22827831.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Loman N, Misra R, Dallman T, Constantinidou C, Gharbia S, Wain J, et al. Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol. 2012;30(5):434–9. PMID: 22522955.PubMedCrossRefGoogle Scholar
  72. 72.
    Samorodnitsky E, Jewell B, Hagopian R, Miya J, Wing M, Lyon E, et al. Evaluation of hybridization capture versus amplicon-based methods for whole-exome sequencing. Hum Mutat. 2015;36(9):903–14. PMID: 26110913.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Sipos B, Massingham T, Stütz A, Goldman N. An improved protocol for sequencing of repetitive genomic regions and structural variations using mutagenesis and next generation sequencing. PLoS One. 2012;7(8):e43359. PMID: 22912860.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Mandelker D, Amr S, Pugh T, Gowrisankar S, Shakhbatyan R, Duffy E, et al. Comprehensive diagnostic testing for stereocilin. J Mol Diagn. 2014;16(6):639–47. PMID: 25157971.PubMedCrossRefGoogle Scholar
  75. 75.
    Minoche A, Dohm J, Himmelbauer H. Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and genome analyzer systems. Genome Biol. 2011;12(11):R112. PMID: 28782984.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Yohe S, Thyagarajan B. Review of clinical next-generation sequencing. Arch Pathol Lab Med. 2017;141(11):1544–57. PMID: 28782984.PubMedCrossRefGoogle Scholar
  77. 77.
    Shin S, Park J. Characterization of sequence-specific errors in various next-generation sequencing systems. Mol Biosyst. 2016;12(3):914–22. PMID: 26790373.PubMedCrossRefGoogle Scholar
  78. 78.
    Yohe S, Carter A, Pfeifer J, Crawford J, Cushman-Vokoun A, Caughron S, et al. Standards for clinical grade genomic databases. Arch Pathol Lab Med. 2015;139(11):1400–12. PMID: 26516938.PubMedCrossRefGoogle Scholar
  79. 79.
    Bhutiani N, Egger M, Ajkay N, Scoggins C, Martin R, McMasters K. Multigene signature panels and breast cancer therapy: patterns of use and impact on clinical decision making. J Am Coll Surg. 2018;226(4):406–412.e1.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Alejandro Luiña Contreras
    • 1
    Email author
  • Jose Jasper L. Andal
    • 2
    • 3
  • Raymundo M. Lo
    • 4
    • 5
  • Daphne C. Ang
    • 6
  1. 1.Joint Pathology Center, Molecular Diagnostics LaboratorySilver SpringUSA
  2. 2.St. Luke’s Medical CenterQuezon City and Global CityPhilippines
  3. 3.Philippine Orthopedic CenterQuezon CityPhilippines
  4. 4.St. Luke’s Medical CenterQuezon CityPhilippines
  5. 5.Philippine Children’s Medical CenterQuezon CityPhilippines
  6. 6.Department of PathologySt. Luke’s Medical CenterQuezon City and Global CityPhilippines

Personalised recommendations