Unsupervised Feature Selection Using RBF Autoencoder

  • Ling Yu
  • Zhen Zhang
  • Xuetao Xie
  • Hua Chen
  • Jian WangEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11554)


In this paper, a novel learning approach to solve unsupervised feature selection in high-dimensional data is proposed, namely Radial Basis Function Autoencoder feature selection (RAFS). This method based on autoencoder uses the radial basis function to achieve mapping instead of the weight. We also consider penalty to give a powerful constraint on redundant features. In extensive experiments, our method shows its outperformance in fair comparison with several other methods.


Unsupervised Feature selection Radial basis function Autoencoder Penalty 


  1. 1.
    Ding, C., Peng, H.: Minimum redundancy feature selection from microarray gene expression data. J. Bioinform. Comput. Biol. 3(02), 185–205 (2003)CrossRefGoogle Scholar
  2. 2.
    Forman, G.: An extensive empirical study of feature selection metrics for text classification. J. Mach. Learn. Res. 3, 1289–1305 (2003)zbMATHGoogle Scholar
  3. 3.
    Akay, M.F.: Support vector machines combined with feature selection for breast cancer diagnosis. Expert Syst. Appl. 36(2–part–P2), 3240–3247 (2009)CrossRefGoogle Scholar
  4. 4.
    Ding, S., Zhu, H., Jia, W., Su, C.: A survey on feature extraction for pattern recognition. Artif. Intell. Rev. 37(3), 169–180 (2012)CrossRefGoogle Scholar
  5. 5.
    Wiatowski, T., Bolcskei, H.: A mathematical theory of deep convolutional neural networks for feature extraction. IEEE Trans. Inf. Theory 1(1), 1845–1866 (2017)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Basu, T., Murthy, C.A.: Effective text classification by a supervised feature selection approach. In: 12th IEEE International Conference on Data Mining Workshops, Brussels, pp. 918–925. IEEE Press (2013)Google Scholar
  7. 7.
    Chakraborty, R., Pal, N.R.: Feature selection using a neural framework with controlled redundancy. IEEE Trans. Neural Netw. Learn. Syst. 26(1), 35–50 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Xu, Z., King, I., Lyu, R.T., Jin, R.: Discriminative semi-supervised feature selection via manifold regularization. IEEE Trans. Neural Netw. 21(7), 1033–1047 (2010)CrossRefGoogle Scholar
  9. 9.
    Zhao, J.: Locality sensitive semi-supervised feature selection. Neurocomputing 71(10), 1842–1849 (2008)CrossRefGoogle Scholar
  10. 10.
    Kalakech, M., Biela, P., Macaire, L., Hamad, D.: Constraint scores for semi-supervised feature selection: a comparative study. Pattern Recogn. Lett. 32(5), 656–665 (2011)CrossRefGoogle Scholar
  11. 11.
    Peña, J.M., Nilsson, R.: On the complexity of discrete feature selection for optimal classification. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1517–1522 (2010)CrossRefGoogle Scholar
  12. 12.
    Sotoca, J.M., Pla, F.: Supervised feature selection by clustering using conditional mutual information-based distances. Pattern Recogn. 43(6), 2068–2081 (2010)CrossRefzbMATHGoogle Scholar
  13. 13.
    Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46(1–3), 389–422 (2002)CrossRefzbMATHGoogle Scholar
  14. 14.
    Zhou, X., Tuck, D.P.: MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA microarray data. Bioinformatics 23(9), 1106–1114 (2007)CrossRefGoogle Scholar
  15. 15.
    Guyon, I.: Pattern classification. Pattern Anal. Appl. 44(1), 87–87 (1998)MathSciNetGoogle Scholar
  16. 16.
    He, X.: Locality Preserving Projections. University of Chicago, Chicago (2005)Google Scholar
  17. 17.
    He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: 19th Advances in Neural Information Processing Systems, Vancouver, pp. 507–514. NIPS Press (2005)Google Scholar
  18. 18.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)CrossRefGoogle Scholar
  19. 19.
    Banerjee, M., Pal, N.: Unsupervised feature selection with controlled redundancy (UFeSCoR). IEEE Trans. Knowl. Data Eng. 27(12), 3390–3403 (2015)CrossRefGoogle Scholar
  20. 20.
    Han, K., Wang, Y., Zhang, C., Li, C., Xu, C.: Autoencoder inspired unsupervised feature selection. In: 43th IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary. IEEE Press (2018)Google Scholar
  21. 21.
    Meng, K., Dong, Z.Y., Wang, D.H., Wong, K.P.: A self-adaptive RBF neural network classifier for transformer fault analysis. IEEE Trans. Power Syst. 25(3), 1350–1360 (2010)CrossRefGoogle Scholar
  22. 22.
    Han, H.G., Qiao, J.F., Chen, Q.L.: Model predictive control of dissolved oxygen concentration based on a self-organizing RBF neural network. Control Eng. Pract. 20(4), 465–476 (2012)CrossRefGoogle Scholar
  23. 23.
    Wilamowski, B., Cecati, C., Kolbusz, J., Rozycki, P., Siano, P.: A novel RBF training algorithm for short-term electric load forecasting and comparative studies. IEEE Trans. Ind. Electron. 62(10), 6519–6529 (2015)CrossRefGoogle Scholar
  24. 24.
    Baghaee, H.R., Mirsalim, M., Gharehpetian, G.B., Talebi, H.A.: Application of RBF neural networks and unscented transformation in probabilistic power-flow of microgrids including correlated wind/pv units and plug-in hybrid electric vehicles. Simul. Model. Pract. Theory 72, 51–68 (2017)CrossRefGoogle Scholar
  25. 25.
    Hartman, E.J., Keeler, J.D., Kowalski, J.M.: Layered neural networks with gaussian hidden units as universal approximations. Neural Comput. 2(2), 210–215 (1990)CrossRefGoogle Scholar
  26. 26.
    Moody, J., Darken, C.J.: Fast learning in networks of locally-tuned processing units. Neural Comput. 1(2), 281–294 (1989)CrossRefGoogle Scholar
  27. 27.
    Lee, S.: A Gaussian potential function network with hierarchically self-organizing learning. Neural Netw. 4(2), 207–224 (1991)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Chakraborty, R., Pal, N.R.: Feature selection using a neural framework with controlled redundancy. IEEE Trans. Neural Netw. Learn. Syst. 26(1), 35–50 (2014)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Meng, J.E., Wu, S., Lu, J.: Face recognition with radial basis function (RBF) neural networks. IEEE Trans Neural Netw. 13(3), 697–710 (2002)CrossRefGoogle Scholar
  30. 30.
    Micchelli, C.A.: Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constr. Approx. 2(1), 11–22 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Haykin, S.: Neural networks and learning machines. McMaster University, Ontario (2009)Google Scholar
  32. 32.
    Haykin, S.: Neural Networks A Comprehensive Foundation. McMaster University, Ontario (1994)zbMATHGoogle Scholar
  33. 33.
    Li, Z., Yang, Y., Liu, J., Zhou, X., Lu, H.: Unsupervised feature selection using nonnegative spectral analysis. In: 26th AAAI Conference on Artificial Intelligence, Toronto, pp. 1026–1032. AAAI Press (2012)Google Scholar
  34. 34.
    Shi, L., Du, L., Shen, Y.D.: Robust spectral learning for unsupervised feature selection. In: 14th IEEE International Conference on Data Mining, Shenzhen, pp. 977–982. IEEE Press (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ling Yu
    • 1
  • Zhen Zhang
    • 1
  • Xuetao Xie
    • 1
  • Hua Chen
    • 1
  • Jian Wang
    • 1
    Email author
  1. 1.College of ScienceChina University of PetroleumQingdaoChina

Personalised recommendations