Advertisement

Pseudo-Cushing’s Syndrome: A Diagnostic Dilemma

  • Teresa Brown
  • Regina Belokovskaya
  • Rachel Pessah-Pollack
Chapter

Abstract

The diagnosis of neoplastic Cushing’s syndrome can be a very challenging undertaking because it can be difficult, though critical, to exclude physiologic or non-neoplastic causes. A thorough history including concurrent medications and medical problems is vital. The most common causes of non-neoplastic physiological hypercortisolism, often referred to as pseudo-Cushing’s syndrome, are alcoholism and alcohol withdrawal, chronic kidney disease, depression or neuropsychiatric disease, pregnancy, uncontrolled diabetes, starvation/malnutrition, chronic intense exercise, and glucocorticoid resistance. Interpretation of diagnostic tests for Cushing’s syndrome requires an assessment for the common causes of non-neoplastic physiological hypercortisolism to prevent a misdiagnosis of Cushing’s syndrome.

Keywords

Pseudo-Cushing’s Cushing’s syndrome Hypercortisolism Salivary cortisol Urinary free cortisol 

References

  1. 1.
    Raff H, Findling JW. A physiologic approach to diagnosis of the Cushing syndrome. Ann Intern Med. 2003;138(12):980–91.CrossRefGoogle Scholar
  2. 2.
    Raff H, Sharma ST, Nieman LK. Physiological basis for the etiology, diagnosis, and treatment of adrenal disorders: Cushing’s syndrome, adrenal insufficiency, and congenital adrenal hyperplasia. Compr Physiol. 2014;4:739–69.CrossRefGoogle Scholar
  3. 3.
    Raff H, Carroll T. Cushing’s syndrome: from physiological principles to diagnosis and clinical care. J Physiol. 2015;593(3):493–506.CrossRefGoogle Scholar
  4. 4.
    Keller-Wood M. Hypothalamic-pituitary-adrenal axis—feedback control. Compr Physiol. 2015;5:1161–82.CrossRefGoogle Scholar
  5. 5.
    Findling JW, Raff H. Differentiation of pathologic/neoplastic hypercortisolism (Cushing syndrome) from physiologic/non-neoplastic hypercortisolism (formerly known as Pseudo-Cushing syndrome): response to Letter to the Editor. Eur J Endocrinol. 2018;178(3):L3.CrossRefGoogle Scholar
  6. 6.
    Inder WJ, Joyce PR, Wells JE, Evans MJ, Ellis MJ, Mattioli L, Donald RA. The acute effects of oral ethanol on the hypothalamic pituitary-adrenal axis in normal human subjects. Clin Endocrinol. 1995;42:65–71.CrossRefGoogle Scholar
  7. 7.
    Waltman C, Blevins LS Jr, Boyd G, Wand GS. The effects of mild ethanol intoxication on the hypothalamic-pituitary-adrenal axis in nonalcoholic men. J Clin Endocrinol Metab. 1993;77:518–22.PubMedGoogle Scholar
  8. 8.
    Wand GS, Dobs AS. Alterations in the hypothalamic-pituitary-adrenal axis in actively drinking alcoholics. J Clin Endocrinol Metab. 1991;72:1290–5.CrossRefGoogle Scholar
  9. 9.
    Rivier C, Bruhn T, Vale W. Effect of ethanol on the hypothalamic pituitary-adrenal axis in the rat: role of corticotropin-releasing factor (CRF). J Pharmacol Exp Ther. 1984;229:127–31.PubMedGoogle Scholar
  10. 10.
    Lamberts SW, de Jong FH, Birkenhager JC. Biochemical characteristics of alcohol-induced pseudo-Cushing’s syndrome [proceedings]. J Endocrinol. 1979;80:62P–3P.PubMedGoogle Scholar
  11. 11.
    Lamberts SW, Klijn JG, de Jong FH, Birkenhager JC. Hormone secretion in alcohol-induced pseudo-Cushing’s syndrome. Differential diagnosis with Cushing disease. JAMA. 1979;242:1640–3.CrossRefGoogle Scholar
  12. 12.
    Lovallo WR, Dickensheets SL, Myers DA, Thomas TL, Nixon SJ. Blunted stress cortisol response in abstinent alcoholic and polysubstance-abusing men. Alcohol Clin Exp Res. 2000;24:651–8.CrossRefGoogle Scholar
  13. 13.
    Coiro V, Volpi R, Capretti L, Caffarri G, Chiodera P. Desmopressin and hexarelin tests in alcohol-induced pseudo-Cushing’s syndrome. J Intern Med. 2000;247:667–73.CrossRefGoogle Scholar
  14. 14.
    Rees LH, Besser GM, Jeffcoate WJ, Goldie DJ, Marks V. Alcohol-induced pseudo-Cushing’s syndrome. Lancet. 1977;1:726–8.CrossRefGoogle Scholar
  15. 15.
    Jacobson L. Hypothalamic-pituitary-adrenocortical axis: neuropsychiatric aspects. Compr Physiol. 2014;4:715–38.CrossRefGoogle Scholar
  16. 16.
    Pariante CM, Lightman SL. The HPA axis in major depression: classical theories and new developments. Trends Neurosci. 2008;31:464–8.CrossRefGoogle Scholar
  17. 17.
    Androulakis II, Kaltsas G, Chrousos G. Pseudo-Cushing’s states. In: De Groot LJ, Chrousos G, Dungan K, Grossman A, Hershman JM, Koch C, Korbonits M, McLachlan R, New M, Purnell J, Rebar R, Singer F, Vinik A, editors. Endotext. South Dartmouth: MDText.com, Inc; 2000.Google Scholar
  18. 18.
    Ising M, Kunzel HE, Binder EB, Nickel T, Modell S, Holsboer F. The combined dexamethasone/CRH test as a potential surrogate marker in depression. Prog Neuro-Psychopharmacol Biol Psychiatry. 2005;29:1085–93.CrossRefGoogle Scholar
  19. 19.
    Krarup T, Krarup T, Hagen C. Do patients with type 2 diabetes mellitus have an increased prevalence of Cushing’s syndrome? Diabetes Metab Res Rev. 2012;28:219–27.CrossRefGoogle Scholar
  20. 20.
    Liu H, Bravata DM, Cabaccan J, Raff H, Ryzen E. Elevated late-night salivary cortisol levels in elderly male type 2 diabetic veterans. Clin Endocrinol. 2005;63:642–9.CrossRefGoogle Scholar
  21. 21.
    Bellastella G, Maiorino MI, De BA, Vietri MT, Mosca C, Scappaticcio L, Pasquali D, Esposito K, Giugliano D. Serum but not salivary cortisol levels are influenced by daily glycemic oscillations in type 2 diabetes. Endocrine. 2015;53:220–6.CrossRefGoogle Scholar
  22. 22.
    Constantinopoulos P, Michalaki M, Kottorou A, Habeos I, Psyrogiannis A, Kalfarentzos F, Kyriazopoulou V. Cortisol in tissue and systemic level as a contributing factor to the development of metabolic syndrome in severely obese patients. Eur J Endocrinol. 2015;172:69–78.CrossRefGoogle Scholar
  23. 23.
    Lindsay JR, Nieman LK. The hypothalamic-pituitary-adrenal axis in pregnancy: challenges in disease detection and treatment. Endocr Rev. 2005;26:775–99.CrossRefGoogle Scholar
  24. 24.
    Lopes LM, Francisco RP, Galletta MA, Bronstein MD. Determination of nighttime salivary cortisol during pregnancy: comparison with values in non-pregnancy and Cushing’s disease. Pituitary. 2015;19:30–8.CrossRefGoogle Scholar
  25. 25.
    Jung C, Ho JT, Torpy DJ, Rogers A, Doogue M, Lewis JG, Czajko RJ, Inder WJ. A longitudinal study of plasma and urinary cortisol in pregnancy and postpartum. J Clin Endocrinol Metab. 2011;96:1533–40.CrossRefGoogle Scholar
  26. 26.
    Carr BR, Parker CR Jr, Madden JD, MacDonald PC, Porter JC. Maternal plasma adrenocorticotropin and cortisol relationships throughout human pregnancy. Am J Obstet Gynecol. 1981;139:416–22.CrossRefGoogle Scholar
  27. 27.
    Suda T, Iwashita M, Tozawa F, Ushiyama T, Tomori N, Sumitomo T, Nakagami Y, Demura H, Shizume K. Characterization of corticotropin-releasing hormone binding protein in human plasma by chemical cross-linking and its binding during pregnancy. J Clin Endocrinol Metab. 1988;67:1278–83.  https://doi.org/10.1210/jcem-67-6-1278.CrossRefPubMedGoogle Scholar
  28. 28.
    Sasaki A, Shinkawa O, Yoshinaga K. Placental corticotropin-releasing hormone may be a stimulator of maternal pituitary adrenocorticotropic hormone secretion in humans. J Clin Invest. 1989;84:19–2001.  https://doi.org/10.1172/jci114390.CrossRefGoogle Scholar
  29. 29.
    Thomson M. The physiological roles of placental corticotropin releasing hormone in pregnancy and childbirth. J Physiol Biochem. 2013;69:559–73.CrossRefGoogle Scholar
  30. 30.
    Van den Berghe G. Novel insights into the neuroendocrinology of critical illness. Eur J Endocrinol. 2000;143:1–13.CrossRefGoogle Scholar
  31. 31.
    Valentine AR, Raff H, Liu H, Ballesteros M, Rose JM, Jossart GH, Cirangle P, Bravata DM. Salivary cortisol increases after bariatric surgery in women. Horm Metab Res. 2011;43:587–90.CrossRefGoogle Scholar
  32. 32.
    Miller KK. Endocrine dysregulation in anorexia nervosa update. J Clin Endocrinol Metab. 2011;96:2939–49.  https://doi.org/10.1210/jc.2011-1222.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Duclos M, Corcuff JB, Roger P, Tabarin A. The dexamethasone-suppressed corticotrophin-releasing hormone stimulation test in anorexia nervosa. Clin Endocrinol. 1999;51:725–31.CrossRefGoogle Scholar
  34. 34.
    Lawson EA, Donoho D, Miller KK, Misra M, Meenaghan E, Lydecker J, Wexler T, Herzog DB, Klibanski A. Hypercortisolemia is associated with severity of bone loss and depression in hypothalamic amenorrhea and anorexia nervosa. J Clin Endocrinol Metab. 2009;94:4710–6.  https://doi.org/10.1210/jc.2009-1046.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Misra M, Miller KK, Almazan C, Ramaswamy K, Lapcharoensap W, Worley M, Neubauer G, Herzog DB, Klibanski A. Alterations in cortisol secretory dynamics in adolescent girls with anorexia nervosa and effects on bone metabolism. J Clin Endocrinol Metab. 2004;89:4972–80.CrossRefGoogle Scholar
  36. 36.
    Nieman LK, et al. The diagnosis of Cushing’s syndrome: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2008;93(5):1526–40.CrossRefGoogle Scholar
  37. 37.
    Chan KCA, et al. Diminished urinary free cortisol excretion in patients with moderate and severe renal impairment. Clinical Chemistry. 2004;50(4):757–9.CrossRefGoogle Scholar
  38. 38.
    Kidambi S, Raff H, Findling JW. Limitations of nocturnal salivary cortisol and urine free cortisol in the diagnosis of mild Cushing’s syndrome. Eur J Endocrinol. 2007;157(6):725–31.CrossRefGoogle Scholar
  39. 39.
    Nieman L. Diagnosis of Cushings syndrome in the modern era. Endocrinol Metab Clin. 2018;47(2):259–73.CrossRefGoogle Scholar
  40. 40.
    Baid SK, et al. Radioimmunoassay and tandem mass spectrometry measurement of bedtime salivary cortisol levels: a comparison of assays to establish hypercortisolism. J Clin Endocrinol Metab. 2007;92(8):3102–7.CrossRefGoogle Scholar
  41. 41.
    Butler PWP, Besser GM. Pituitary-adrenal function in severe depressive illness. Lancet. 1968;291(7554):1234–6.CrossRefGoogle Scholar
  42. 42.
    Pfohl B, et al. Pituitary-adrenal axis rhythm disturbances in psychiatric depression. Arch Gen Psychiatry. 1985;42(9):897–903.CrossRefGoogle Scholar
  43. 43.
    Ross RJM, et al. Levels of GH binding activity, IGFBP-1, insulin, blood glucose and cortisol in intensive care patients. Clin Endocrinol. 1991;35(4):361–7.CrossRefGoogle Scholar
  44. 44.
    Badrick E, Kirschbaum C, Kumari M. The relationship between smoking status and cortisol secretion. J Clin Endocrinol Metabol. 2007;92(3):819–24.CrossRefGoogle Scholar
  45. 45.
    Raff H, Raff JL, Findling JW. Late-night salivary cortisol as a screening test for Cushing’s syndrome. J Clin Endocrinol Metabol. 1998;83(8):2681–6.Google Scholar
  46. 46.
    Crapo L. Cushing’s syndrome: a review of diagnostic tests. Metab Clin Exp. 1979;28(9):955–77.CrossRefGoogle Scholar
  47. 47.
    Storr HL, et al. Clinical features, diagnosis, treatment and molecular studies in paediatric Cushing’s syndrome due to primary nodular adrenocortical hyperplasia. Clin Endocrinol. 2004;61(5):553–9.CrossRefGoogle Scholar
  48. 48.
    Newell-Price J, et al. A single sleeping midnight cortisol has 100% sensitivity for the diagnosis of Cushing’s syndrome. Clin Endocrinol. 1995;43(5):545–50.CrossRefGoogle Scholar
  49. 49.
    Pecori Giraldi F, et al. The dexamethasone-suppressed corticotropin-releasing hormone stimulation test and the desmopressin test to distinguish Cushing’s syndrome from pseudo-Cushing’s states. Clin Endocrinol. 2007;66(2):251–7.CrossRefGoogle Scholar
  50. 50.
    Yanovski JA, Cutler GB Jr, Doppman JL, Miller DL, Chrousos GP, Oldfield EH, Nieman LK. The limited ability of inferior petrosal sinus sampling with corticotropin-releasing hormone to distinguish Cushing’s disease from pseudo-Cushing states or normal physiology. J Clin Endocrinol Metab. 1993;77:503–9.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Zampetti B, Grossrubatscher E, Ciaramella PD, Boccardi E, Loli P. Bilateral inferior petrosal sinus sampling. Endocr Connect. 2016;5(4):R12–25.CrossRefGoogle Scholar
  52. 52.
    Qureshi AC, Bahri A, Breen LA, et al. The influence of the route of oestrogen administration on serum levels of cortisol-binding globulin and total cortisol. Clin Endocrinol. 2007;66:632–5.CrossRefGoogle Scholar
  53. 53.
    Crewther BT, Hamilton D, Casto K, Kilduff LP, Cook CJ. Effects of oral contraceptive use on the salivary testosterone and cortisol responses to training sessions and competitions in elite women athletes. Physiol Behav. 2015;147:84–90.CrossRefGoogle Scholar
  54. 54.
    Manetti L, Rossi G, Grasso L, Raffaelli V, Scattina I, Del Sarto S, Cosottini M, Iannelli A, Gasperi M, Bogazzi F, Martino E. Usefulness of salivary cortisol in the diagnosis of hypercortisolism: comparison with serum and urinary cortisol. Eur J Endocrinol. 2012;4:1–25.Google Scholar
  55. 55.
    Vastbinder M, et al. The influence of oral contraceptives on overnight 1 mg dexamethasone suppression test. Neth J Med. 2016;74(4):158–61.Google Scholar
  56. 56.
    Elias PCL, et al. Late-night salivary cortisol has a better performance than urinary free cortisol in the diagnosis of Cushing’s syndrome. J Clin Endocrinol Metab. 2014;99(6):2045–51.CrossRefGoogle Scholar
  57. 57.
    Carrol TB, Javorsky BR, Findling JW. Postsurgical recurrent Cushing disease: clinical benefit of early intervention in patients with normal urinary free cortisol. Endocr Pract. 2016;22(10):1216–23.CrossRefGoogle Scholar
  58. 58.
    Amlash EG, et al. Accuracy of late-night salivary cortisol in evaluating postoperative remission and recurrence in Cushing’s disease. J Clin Endocrinol Metab. 2015;100(10):3770–7.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Teresa Brown
    • 1
  • Regina Belokovskaya
    • 1
  • Rachel Pessah-Pollack
    • 1
  1. 1.Icahn School of Medicine at Mount Sinai Medical Center, Division of Endocrinology, Diabetes, & Bone DiseaseNew YorkUSA

Personalised recommendations