• Maria Jose Campagnole-SantosEmail author
  • Mariela M. Gironacci
  • Marco Antônio Peliky Fontes


Ang-(1-7) effects in the brain are complex, site specific, dependent on the physiological condition and mediated by MAS receptor. Most of the central effects described are related to modulation of autonomic control of the cardiovascular system. However, it was shown that Ang-(1-7) can induce neuroprotection and angiogenesis in brain ischemia, to improve learning and memory, to attenuate emotional stress responses and anxiety- and depression-like behaviors. In this section, we summarize the major pathways of formation, the distribution in different areas/ nuclei, and the major effects of Ang-(1-7) in the brain, as well as the major intracellular mechanisms.


Autonomic nervous system Hypothalamus Medulla Gamma aminobutyric acid Nitric oxide Mas receptor Ang-(1-7) Brain 


  1. 1.
    Agarwal D, Welsch MA, Keller JN, Francis J. Chronic exercise modulates RAS components and improves balance between pro-and anti-inflammatory cytokines in the brain of SHR. Basic Res Cardiol. 2011;106:1069–85.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Albrecht D. Angiotensin-(1-7)-induced plasticity changes in the lateral amygdala are mediated by COX-2 and NO. Learn Mem. 2007;14:177–84.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Allen AM. Inhibition of the hypothalamic paraventricular nucleus in spontaneously hypertensive rats dramatically reduces sympathetic vasomotor tone. Hypertension. 2002;39:275–80.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Almeida-Santos AF, Kangussu LM, Moreira FA, Santos RA, Aguiar DC, Campagnole-Santos MJ. Anxiolytic-and antidepressant-like effects of angiotensin-(1–7) in hypertensive transgenic (mRen2) 27 rats. Clin Sci. 2016;130:1247–55.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Alzamora AC, Santos RA, Campagnole-Santos MJ. Hypotensive effect of ANG II and ANG-(1–7) at the caudal ventrolateral medulla involves different mechanisms. Am J Physiol-Regul Integr Comp Physiol. 2002;283:R1187–95.PubMedCrossRefGoogle Scholar
  6. 6.
    Alzamora AC, Santos RA, Campagnole-Santos MJ. Baroreflex modulation by angiotensins at the rat rostral and caudal ventrolateral medulla. Am J Physiol-Regul Integr Comp Physiol. 2006;290:R1027–34.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Ambühl P, Felix D, Imboden H, Khosla MC, Ferrario CM. Effects of angiotensin analogues and angiotensin receptor antagonists on paraventricular neurones. Regul Pept. 1992;38:111–20.PubMedCrossRefGoogle Scholar
  8. 8.
    Ambühl P, Felix D, Khosla MC. [7-D-ALA]-angiotensin-(1–7): selective antagonism of angiotensin-(1–7) in the rat paraventricular nucleus. Brain Res Bull. 1994;35:289–91.PubMedCrossRefGoogle Scholar
  9. 9.
    Arnold AC, Sakima A, Ganten D, Ferrario CM, Diz DI. Modulation of reflex function by endogenous angiotensins in older transgenic rats with low glial angiotensinogen. Hypertension. 2008;51:1326–31.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Arnold AC, Sakima A, Kasper SO, Vinsant S, Garcia-Espinosa MA, Diz DI. The brain renin-angiotensin system and cardiovascular responses to stress: insights from transgenic rats with low brain angiotensinogen. J Appl Physiol. 2012;113:1929–36.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Barnes KL, Knowles WD, Ferrario CM. Angiotensin II and angiotensin (1–7) excite neurons in the canine medulla in vitro. Brain Res Bull. 1990;24:275–80.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Becker LK, Etelvino GM, Walther T, Santos RAS, Campagnole-Santos MJ. Immunofluorescence localization of the receptor Mas in cardiovascular-related areas of the rat brain. AJP Heart Circ Physiol. 2007;293:H1416–24.CrossRefGoogle Scholar
  13. 13.
    Becker LK, Santos RA, Campagnole-Santos MJ. Cardiovascular effects of angiotensin II and angiotensin-(1–7) at the RVLM of trained normotensive rats. Brain Res. 2005;1040:121–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Bild W, Ciobica A. Angiotensin-(1–7) central administration induces anxiolytic-like effects in elevated plus maze and decreased oxidative stress in the amygdala. J Affect Disord. 2013;145:165–71.PubMedCrossRefGoogle Scholar
  15. 15.
    Block CH, Santos RAS, Brosnihan KB, Ferrario CM. Immunocytochemical localization of angiotensin-(1–7) in the rat forebrain. Peptides. 1988;9:1395–401.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Britto RR, Santos RA, Fagundes-Moura CR, Khosla MC, Campagnole-Santos MJ. Role of angiotensin-(1-7) in the modulation of the baroreflex in renovascular hypertensive rats. Hypertension. 1997;30:549–56.PubMedCrossRefGoogle Scholar
  17. 17.
    Brosnihan KB, Schiavone MT, Sprunger AE, Chappell MC, Rizzo M, Ferrario CM. In vivo release of angiotensin II from the rat hypothalamus. Hypertension. 1988;11:I158.PubMedCrossRefGoogle Scholar
  18. 18.
    Calka J, Block CH. Angiotensin-(1–7) and nitric oxide synthase in the hypothalamo-neurohypophysial system. Brain Res Bull. 1993;30:677–85.PubMedCrossRefGoogle Scholar
  19. 19.
    Campagnole-Santos MJ, Diz DI, Santos RA, Khosla MC, Brosnihan KB, Ferrario CM. Cardiovascular effects of angiotensin-(1-7) injected into the dorsal medulla of rats. Am J Physiol-Heart Circ Physiol. 1989;257:H324–9.CrossRefGoogle Scholar
  20. 20.
    Campagnole-Santos MJ, Heringer SB, Batista EN, Khosla MC, Santos RA. Differential baroreceptor reflex modulation by centrally infused angiotensin peptides. Am J Physiol-Regul Integr Comp Physiol. 1992;263:R89–94.CrossRefGoogle Scholar
  21. 21.
    Campbell DJ, Kladis A, Duncan A-M. Effects of converting enzyme inhibitors on angiotensin and bradykinin peptides. Hypertension. 1994;23:439–49.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Cangussu LM, de Castro UGM, do Pilar Machado R, Silva ME, Ferreira PM, RAS d S, Campagnole-Santos MJ, Alzamora AC. Angiotensin-(1-7) antagonist, A-779, microinjection into the caudal ventrolateral medulla of renovascular hypertensive rats restores baroreflex bradycardia. Peptides. 2009;30:1921–7.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Cerrato BD, Frasch AP, Nakagawa P, Longo-Carbajosa N, Peña C, Höcht C, Gironacci MM. Angiotensin-(1–7) upregulates central nitric oxide synthase in spontaneously hypertensive rats. Brain Res. 2012;1453:1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Chan YS, Wong TM. Relationship of rostral ventrolateral medullary neurons and angiotensin in the central control of blood pressure. Neurosignals. 1995;4:133–41.CrossRefGoogle Scholar
  25. 25.
    Chappell MC, Brosnihan KB, Diz DI, Ferrario CM. Identification of angiotensin-(1-7) in rat brain. Evidence for differential processing of angiotensin peptides J Biol Chem. 1989;264:16518–23.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Chaves GZ, Caligiorne SM, Santos RA, Khosla MC, Campagnole-Santos MJ. Modulation of the baroreflex control of heart rate by angiotensin-(1–7) at the nucleus tractus solitarii of normotensive and spontaneously hypertensive rats. J Hypertens. 2000;18:1841–8.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Chen J, Zhao Y, Chen S, Wang J, Xiao X, Ma X, Penchikala M, Xia H, Lazartigues E, Zhao B. Neuronal over-expression of ACE2 protects brain from ischemia-induced damage. Neuropharmacology. 2014;79:550–8.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Costa-Besada MA, Valenzuela R, Garrido-Gil P, Villar-Cheda B, Parga JA, Lanciego JL, Labandeira-Garcia JL. Paracrine and intracrine angiotensin 1-7/Mas receptor axis in the substantia nigra of rodents, monkeys, and humans. Mol Neurobiol. 2018;55(7):5847–67.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Couto AS, Baltatu O, Santos RA, Ganten D, Bader M, Campagnole-Santos MJ. Differential effects of angiotensin II and angiotensin-(1-7) at the nucleus tractus solitarii of transgenic rats with low brain angiotensinogen. J Hypertens. 2002;20:919–25.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    da Silva AQG, Fontes MAP, Kanagy NL. Chronic infusion of angiotensin receptor antagonists in the hypothalamic paraventricular nucleus prevents hypertension in a rat model of sleep apnea. Brain Res. 2011;1368:231–8.PubMedCrossRefGoogle Scholar
  31. 31.
    de Moura MM, dos Santos RAS, Campagnole-Santos MJ, Todiras M, Bader M, Alenina N, Haibara AS. Altered cardiovascular reflexes responses in conscious Angiotensin-(1-7) receptor Mas-knockout mice. Peptides. 2010;31:1934–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Díez-Freire C, Vázquez J, Correa de Adjounian MF, Ferrari MF, Yuan L, Silver X, Torres R, Raizada MK. ACE2 gene transfer attenuates hypertension-linked pathophysiological changes in the SHR. Physiol Genomics. 2006;27:12–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Diz DI, Garcia-Espinosa MA, Gallagher PE, Ganten D, Ferrario CM, Averill DB. Angiotensin-(1−7) and Baroreflex function in nucleus Tractus Solitarii of (mRen2) 27 transgenic rats. J Cardiovasc Pharmacol. 2008;51:542.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Diz DI, Pirro NT. Differential actions of angiotensin II and angiotensin-(1-7) on transmitter release. Hypertension. 1992;19:II41.PubMedCrossRefGoogle Scholar
  35. 35.
    Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R. A novel angiotensin-converting enzyme–related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res. 2000;87:e1–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Doobay MF, Talman LS, Obr TD, Tian X, Davisson RL, Lazartigues E. Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin-angiotensin system. Am J Physiol-Regul Integr Comp Physiol. 2007;292:R373–81.PubMedCrossRefGoogle Scholar
  37. 37.
    Du D, Chen J, Liu M, Zhu M, Jing H, Fang J, Shen L, Zhu D, Yu J, Wang J. The effects of angiotensin II and angiotensin-(1–7) in the rostral ventrolateral medulla of rats on stress-induced hypertension. PLoS One. 2013;8:e70976.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Felix D, Khosla MC, Barnes KL, Imboden H, Montani B, Ferrario CM. Neurophysiological responses to angiotensin-(1-7). Hypertension. 1991;17:1111–4.PubMedCrossRefGoogle Scholar
  39. 39.
    Feng Y, Xia H, Cai Y, Halabi CM, Becker LK, Santos RA, Speth RC, Sigmund CD, Lazartigues E. Brain-selective overexpression of human angiotensin-converting enzyme type 2 attenuates neurogenic hypertension. Circ Res. 2010;106:373–82.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Feng Y, Yue X, Xia H, Bindom SM, Hickman PJ, Filipeanu CM, Wu G, Lazartigues E. Angiotensin-converting enzyme 2 overexpression in the Subfornical organ prevents the angiotensin II-mediated Pressor and drinking responses and is associated with angiotensin II type 1 receptor Downregulation. Circ Res. 2008;102:729–36.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Fontes M, Baltatu O, Caligiorne S, Campagnole-Santos M, Ganten D, Bader M, Santos R. Angiotensin peptides acting at rostral ventrolateral medulla contribute to hypertension of TGR (mREN2) 27 rats. Physiol Genomics. 2000;2:137–42.PubMedCrossRefGoogle Scholar
  42. 42.
    Fontes MAP, Martins Lima A, dos Santos RAS. Brain angiotensin-(1–7)/Mas axis: a new target to reduce the cardiovascular risk to emotional stress. Neuropeptides. 2016;56:9–17.PubMedCrossRefGoogle Scholar
  43. 43.
    Fontes MAP, Pinge MM, Naves V, Campagnole-Santos MJ, Lopes OU, Khosla MC, Santos RAS. Cardiovascular effects produced by microinjection of angiotensins and angiotensin antagonists into the ventrolateral medulla of freely moving rats. Brain Res. 1997;750:305–10.PubMedCrossRefGoogle Scholar
  44. 44.
    Fontes MAP, Silva LCS, Campagnole-Santos MJ, Khosla MC, Guertzenstein PG, Santos RAS. Evidence that angiotensin-(1–7) plays a role in the central control of blood pressure at the ventro-lateral medulla acting through specific receptors. Brain Res. 1994;665:175–80.PubMedCrossRefGoogle Scholar
  45. 45.
    Fontes MAP, Tagawa T, Polson JW, Cavanagh S-J, Dampney RAL. Descending pathways mediating cardiovascular response from dorsomedial hypothalamic nucleus. Am J Physiol-Heart Circ Physiol. 2001;280:H2891–901.PubMedCrossRefGoogle Scholar
  46. 46.
    Freund M, Walther T, von Bohlen und Halbach O. Immunohistochemical localization of the angiotensin-(1–7) receptor Mas in the murine forebrain. Cell Tissue Res. 2012;348:29–35.PubMedCrossRefGoogle Scholar
  47. 47.
    Ganten D, Speck G. The brain renin-angiotensin system: a model for the synthesis of peptides in the brain. Biochem Pharmacol. 1978;27:2379–89.PubMedCrossRefGoogle Scholar
  48. 48.
    Gao J, Marc Y, Iturrioz X, Leroux V, Balavoine F, Llorens-Cortes C. A new strategy for treating hypertension by blocking the activity of the brain renin–angiotensin system with aminopeptidase a inhibitors. Clin Sci. 2014;127:135–48.PubMedCrossRefGoogle Scholar
  49. 49.
    Garcia-Espinosa MA, Shaltout HA, Gallagher PE, Chappell MC, Diz DI. In vivo expression of angiotensin-(1-7) lowers blood pressure and improves baroreflex function in transgenic (mRen2) 27 rats. J Cardiovasc Pharmacol. 2012;60:150.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Gironacci MM, Carbajosa NAL, Goldstein J, Cerrato BD. Neuromodulatory role of angiotensin-(1–7) in the central nervous system. Clin Sci. 2013;125:57–65.PubMedCrossRefGoogle Scholar
  51. 51.
    Gironacci MM, Valera MS, Yujnovsky I, Pena C. Angiotensin-(1–7) inhibitory mechanism of norepinephrine release in hypertensive rats. Hypertension. 2004;44:783–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Gironacci MM, Vatta M, Rodriguez-Fermepín M, Fernández BE, Peña C. Angiotensin-(1-7) reduces norepinephrine release through a nitric oxide mechanism in rat hypothalamus. Hypertension. 2000;35:1248–52.PubMedCrossRefGoogle Scholar
  53. 53.
    Goldstein J, Carden TR, Perez MJ, Taira CA, Höcht C, Gironacci MM. Angiotensin-(1–7) protects from brain damage induced by Shiga toxin 2-producing enterohemorrhagic Escherichia coli. Am J Physiol-Regul Integr Comp Physiol. 2016;311:R1173–85.PubMedCrossRefGoogle Scholar
  54. 54.
    Gomes da Silva AQ, Sousa dos Santos RA, Peliky Fontes MA. Blockade of endogenous angiotensin-(1-7) in the hypothalamic Paraventricular nucleus reduces renal sympathetic tone. Hypertension. 2005;46:341–8.CrossRefGoogle Scholar
  55. 55.
    Gouveia TLF, Frangiotti MIB, de Brito JMV, de Castro Neto EF, Sakata MM, Febba AC, Casarini DE, Amado D, Cavalheiro EA, Almeida SS. The levels of renin–angiotensin related components are modified in the hippocampus of rats submitted to pilocarpine model of epilepsy. Neurochem Int. 2012;61:54–62.PubMedCrossRefGoogle Scholar
  56. 56.
    Grobe JL, Xu D, Sigmund CD. An intracellular renin-angiotensin system in neurons: fact, hypothesis, or fantasy. Physiology. 2008;23:187–93.PubMedCrossRefGoogle Scholar
  57. 57.
    Guimaraes PS, Oliveira MF, Braga JF, Nadu AP, Schreihofer A, Santos RA, Campagnole-Santos MJ. Increasing angiotensin-(1–7) levels in the brain attenuates metabolic syndrome–related risks in fructose-fed rats. Hypertension. 2014;63:1078–85.PubMedCrossRefGoogle Scholar
  58. 58.
    Guimaraes PS, Santiago NM, Xavier CH, Velloso EP, Fontes MA, Santos RA, Campagnole-Santos MJ. Chronic infusion of angiotensin-(1-7) into the lateral ventricle of the brain attenuates hypertension in DOCA-salt rats. Am J Physiol-Heart Circ Physiol. 2012;303:H393–400.PubMedCrossRefGoogle Scholar
  59. 59.
    Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci. 2006;7:335–46.PubMedCrossRefGoogle Scholar
  60. 60.
    Halbach OVBU, Walther T, Bader M, Albrecht D. Interaction between Mas and the angiotensin AT1 receptor in the amygdala. J Neurophysiol. 2000;83:2012–21.CrossRefGoogle Scholar
  61. 61.
    Hellner K, Walther T, Schubert M, Albrecht D. Angiotensin-(1–7) enhances LTP in the hippocampus through the G-protein-coupled receptor Mas. Mol Cell Neurosci. 2005;29:427–35.PubMedCrossRefGoogle Scholar
  62. 62.
    Heringer-Walther S, Batista ÉN, Walther T, Khosla MC, Santos RA, Campagnole-Santos MJ. Baroreflex improvement in SHR after ACE inhibition involves angiotensin-(1-7). Hypertension. 2001;37:1309–14.PubMedCrossRefGoogle Scholar
  63. 63.
    Höcht C, Gironacci MM, Mayer MA, Schuman M, Bertera FM, Taira CA. Involvement of angiotensin-(1–7) in the hypothalamic hypotensive effect of captopril in sinoaortic denervated rats. Regul Pept. 2008;146:58–66.PubMedCrossRefGoogle Scholar
  64. 64.
    Hoły Z, Braszko J, Kupryszewski G, Witczuk B, Wiśniewski K. Angiotensin II--derived peptides devoid of phenylalanine in position 8 have full psychotropic activity of the parent hormone. J Physiol Pharmacol Off J Pol Physiol Soc. 1992;43:183–92.Google Scholar
  65. 65.
    Isa K, Arnold AC, Westwood BM, Chappell MC, Diz DI. Angiotensin-converting enzyme inhibition, but not AT1 receptor blockade, in the solitary tract nucleus improves baroreflex sensitivity in anesthetized transgenic hypertensive (mRen2) 27 rats. Hypertens Res. 2011;34:1257–62.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Jiang T, Gao L, Guo J, Lu J, Wang Y, Zhang Y. Suppressing inflammation by inhibiting the NF-κB pathway contributes to the neuroprotective effect of angiotensin-(1-7) in rats with permanent cerebral ischaemia. Br J Pharmacol. 2012;167:1520–32.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Jiang T, Yu J-T, Zhu X-C, Zhang Q-Q, Tan M-S, Cao L, Wang H-F, Lu J, Gao Q, Zhang Y-D. Angiotensin-(1–7) induces cerebral ischaemic tolerance by promoting brain angiogenesis in a Mas/eNOS-dependent pathway. Br J Pharmacol. 2014;171:4222–32.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Kangussu LM, Almeida-Santos AF, Bader M, Alenina N, Fontes MAP, Santos RA, Aguiar DC, Campagnole-Santos MJ. Angiotensin-(1-7) attenuates the anxiety and depression-like behaviors in transgenic rats with low brain angiotensinogen. Behav Brain Res. 2013;257:25–30.PubMedCrossRefGoogle Scholar
  69. 69.
    Kangussu LM, Almeida-Santos AF, Moreira FA, Fontes MA, Santos RA, Aguiar DC, Campagnole-Santos MJ. Reduced anxiety-like behavior in transgenic rats with chronically overproduction of angiotensin-(1–7): role of the Mas receptor. Behav Brain Res. 2017;331:193–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Kangussu LM, Guimaraes PS, Nadu AP, Melo MB, Santos RA, Campagnole-Santos MJ. Activation of angiotensin-(1–7)/Mas axis in the brain lowers blood pressure and attenuates cardiac remodeling in hypertensive transgenic (mRen2) 27 rats. Neuropharmacology. 2015;97:58–66.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Kar S, Gao L, Belatti DA, Curry PL, Zucker IH. Central angiotensin (1-7) enhances baroreflex gain in conscious rabbits with heart failure. Hypertension. 2011;58:627–34.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Kar S, Gao L, Zucker IH. Exercise training normalizes ACE and ACE2 in the brain of rabbits with pacing-induced heart failure. J Appl Physiol. 2010;108:923–32.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Karamyan VT, Speth RC. Enzymatic pathways of the brain renin–angiotensin system: unsolved problems and continuing challenges. Regul Pept. 2007;143:15–27.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Kohara K, Brosnihan KB, Ferrario CM. Angiotensin(1-7) in the spontaneously hypertensive rat. Peptides. 1993;14(5):883–91.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Kow LM, Pfaff DW. Neuromodulatory actions of peptides. Annu Rev Pharmacol Toxicol. 1988;28:163–88.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Krob HA, Vinsant SL, Ferrario CM, Friedman DP. Angiotensin-(1–7) immunoreactivity in the hypothalamus of the (mRen-2d)27 transgenic rat. Brain Res. 1998;798:36–45.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Lautner RQ, Villela DC, Fraga-Silva RA, Silva NC, Verano-Braga T, Costa-Fraga F, Jankowski J, Jankowski V, De Sousa FB, Alzamora AC. Discovery and characterization of alamandine, a novel component of the renin-angiotensin system. Circ Res. 2013;112:1104–11.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Lazaroni TLN, Raslan ACS, Fontes WRP, de Oliveira ML, Bader M, Alenina N, Moraes MFD, dos Santos RA, Pereira GS. Angiotensin-(1–7)/Mas axis integrity is required for the expression of object recognition memory. Neurobiol Learn Mem. 2012;97:113–23.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Li P, Sun H-J, Cui B-P, Zhou Y-B, Han Y. Angiotensin-(1–7) in the rostral ventrolateral medulla modulates enhanced cardiac sympathetic afferent reflex and sympathetic activation in renovascular hypertensive rats. Hypertension. 2013;61:820–7.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Lima AM, Xavier CH, Ferreira AJ, Raizada MK, Wallukat G, Velloso EPP, dos Santos RAS, Fontes MAP. Activation of angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas axis attenuates the cardiac reactivity to acute emotional stress. Am J Physiol-Heart Circ Physiol. 2013;305:H1057–67.CrossRefGoogle Scholar
  81. 81.
    Lima DX, Campagnole-Santos MJ, Fontes MA, Khosla MC, Santos RA. Haemorrhage increases the pressor effect of angiotensin-(1–7) but not of angiotensin II at the rat rostral ventrolateral medulla. J Hypertens. 1999;17:1145–52.PubMedCrossRefGoogle Scholar
  82. 82.
    Lima DX, Fontes MAP, Oliveira RC, Campagnole-Santos MJ, Khosla MC, Santos RA. Pressor action of angiotensin I at the ventrolateral medulla: effect of selective angiotensin blockade. Immunopharmacology. 1996;33:305–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Lopez Verrilli MA, Pirola CJ, Pascual MM, Dominici FP, Turyn D, Gironacci MM. Angiotensin-(1–7) through AT2 receptors mediates tyrosine hydroxylase degradation via the ubiquitin–proteasome pathway. J Neurochem. 2009;109:326–35.PubMedCrossRefGoogle Scholar
  84. 84.
    Lopez Verrilli MA, Rodriguez Fermepín M, Longo Carbajosa N, Landa S, Cerrato BD, García S, Fernandez BE, Gironacci MM. Angiotensin-(1-7) through Mas receptor up-regulates neuronal norepinephrine transporter via Akt and Erk1/2-dependent pathways: Ang-(1-7) on norepinephrine neuronal uptake. J Neurochem. 2012;120:46–55.PubMedCrossRefGoogle Scholar
  85. 85.
    Lu J, Jiang T, Wu L, Gao L, Wang Y, Zhou F, Zhang S, Zhang Y. The expression of angiotensin-converting enzyme 2–angiotensin-(1–7)–Mas receptor axis are upregulated after acute cerebral ischemic stroke in rats. Neuropeptides. 2013;47:289–95.PubMedCrossRefGoogle Scholar
  86. 86.
    Mahon JM, Allen M, Herbert J, Fitzsimons JT. The association of thirst, sodium appetite and vasopressin release with c-fos expression in the forebrain of the rat after intracerebroventricular injection of angiotensin II, angiotensin-(1–7) or carbachol. Neuroscience. 1995;69:199–208.PubMedCrossRefGoogle Scholar
  87. 87.
    Martin KA, Grant SGN, Hockfield S. The mas proto-oncogene is developmentally regulated in the rat central nervous system. Dev Brain Res. 1992;68:75–82.CrossRefGoogle Scholar
  88. 88.
    Mecca AP, Regenhardt RW, O’Connor TE, Joseph JP, Raizada MK, Katovich MJ, Sumners C. Cerebroprotection by angiotensin-(1–7) in endothelin-1-induced ischaemic stroke. Exp Physiol. 2011;96:1084–96.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Moura Santos D, Ribeiro Marins F, Limborço-Filho M, de Oliveira ML, Hamamoto D, Xavier CH, Moreira FA, Santos RAS, Campagnole-Santos MJ, Peliky Fontes MA. Chronic overexpression of angiotensin-(1-7) in rats reduces cardiac reactivity to acute stress and dampens anxious behavior. Stress. 2017;20:189–96.PubMedCrossRefGoogle Scholar
  90. 90.
    Muratani H, Averill DB, Ferrario CM. Effect of angiotensin II in ventrolateral medulla of spontaneously hypertensive rats. Am J Physiol-Regul Integr Comp Physiol. 1991;260:R977–84.CrossRefGoogle Scholar
  91. 91.
    Nakagaki T, Hirooka Y, Ito K, Kishi T, Hoka S, Sunagawa K. Role of angiotensin-(1-7) in rostral ventrolateral medulla in blood pressure regulation via sympathetic nerve activity in Wistar-Kyoto and spontaneous hypertensive rats. Clin Exp Hypertens. 2011;33:223–30.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Nautiyal M, Shaltout HA, de Lima DC, do Nascimento K, Chappell MC, Diz DI. Central angiotensin-(1–7) improves vagal function independent of blood pressure in hypertensive (mRen2) 27 rats. Hypertension. 2012;60:1257–65.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Oliveira DR, Santos RA, Santos GF, Khosla MC, Campagnole-Santos MJ. Changes in the baroreflex control of heart rate produced by central infusion of selective angiotensin antagonists in hypertensive rats. Hypertension. 1996;27:1284–90.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Oliveira RC, Campagnole-Santos MJ, Santos RA. The pressor effect of angiotensin-(1-7) in the rat rostral ventrolateral medulla involves multiple peripheral mechanisms. Clinics. 2013;68:245–52.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Oscar CG, de Figueirêdo Müller-Ribeiro FC, de Castro LG, Lima AM, Campagnole-Santos MJ, Santos RAS, Xavier CH, Fontes MAP. Angiotensin-(1–7) in the basolateral amygdala attenuates the cardiovascular response evoked by acute emotional stress. Brain Res. 2015;1594:183–9.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Patel KP. Role of paraventricular nucleus in mediating sympathetic outflow in heart failure. Heart Fail Rev. 2000;5:73–86.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Pawlak R, Napiorkowska-Pawlak D, Takada Y, Urano T, Nagai N, Ihara H, Takada A. The differential effect of angiotensin II and angiotensin 1-7 on norepinephrine, epinephrine, and dopamine concentrations in rat hypothalamus: the involvement of angiotensin receptors. Brain Res Bull. 2001;54:689–94.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Pereira MG, Souza LL, Becari C, Duarte DA, Camacho FR, Oliveira JAC, Gomes MD, Oliveira EB, Salgado MCO, Garcia-Cairasco N. Angiotensin II–independent angiotensin-(1–7) formation in rat HippocampusNovelty and significance. Hypertension. 2013;62:879–85.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Potts PD, Horiuchi J, Coleman MJ, Dampney RAL. The cardiovascular effects of angiotensin-(1–7) in the rostral and caudal ventrolateral medulla of the rabbit. Brain Res. 2000;877:58–64.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Qadri F, Wolf A, Waldmann T, Rascher W, Unger T. Sensitivity of hypothalamic paraventricular nucleus to C- and N-terminal angiotensin fragments: vasopressin release and drinking. J Neuroendocrinol. 1998;10:275–81.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Regenhardt RW, Desland F, Mecca AP, Pioquinto DJ, Afzal A, Mocco J, Sumners C. Anti-inflammatory effects of angiotensin-(1-7) in ischemic stroke. Neuropharmacology. 2013;71:154–63.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Regenhardt RW, Mecca AP, Desland F, Ritucci-Chinni PF, Ludin JA, Greenstein D, Banuelos C, Bizon JL, Reinhard MK, Sumners C. Centrally administered angiotensin-(1–7) increases the survival of stroke-prone spontaneously hypertensive rats. Exp Physiol. 2014;99:442–53.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Rice GI, Jones AL, Grant PJ, Carter AM, Turner AJ, Hooper NM. Circulating activities of angiotensin-converting enzyme, its homolog, angiotensin-converting enzyme 2, and neprilysin in a family study. Hypertension. 2006;48:914–20.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Rice GI, Thomas DA, Grant PJ, Turner AJ, Hooper NM. Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J. 2004;383:45–51.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Rowe BP, Saylor DL, Speth RC, Absher DR. Angiotensin-(1–7) binding at angiotensin II receptors in the rat brain. Regul Pept. 1995;56:139–46.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Sakima A, Averill DB, Gallagher PE, Kasper SO, Tommasi EN, Ferrario CM, Diz DI. Impaired heart rate Baroreflex in older rats. Hypertension. 2005;46:333–40.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Sakima A, Averill DB, Kasper SO, Jackson L, Ganten D, Ferrario CM, Gallagher PE, Diz DI. Baroreceptor reflex regulation in anesthetized transgenic rats with low glia-derived angiotensinogen. Am J Physiol-Heart Circ Physiol. 2007;292:H1412–9.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Santos R, Campagnole-Santos M, Baracho NC, Fontes M, Silva LC, Neves LA, Oliveira DR, Caligiorne SM, Rodrigues AR, Gropen C. Characterization of a new angiotensin antagonist selective for angiotensin-(1–7): evidence that the actions of angiotensin-(1–7) are mediated by specific angiotensin receptors. Brain Res Bull. 1994;35:293–8.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Santos RA, Brosnihan KB, Chappell MC, Pesquero J, Chernicky CL, Greene LJ, Ferrario CM. Converting enzyme activity and angiotensin metabolism in the dog brainstem. Hypertension. 1988;11:I153.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Santos RA, Campagnole-Santos MJ, Andrade SP. Angiotensin-(1–7): an update. Regul Pept. 2000;91:45–62.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Santos RAS, e Silva ACS, Maric C, Silva DMR, Machado RP, de Buhr I, Heringer-Walther S, Pinheiro SVB, Lopes MT, Bader M, Mendes EP, Lemos VS, Campagnole-Santos MJ, Schultheiss H-P, Speth R, Walther T. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci. 2003;100:8258–63.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Schiavone MT, Santos RA, Brosnihan KB, Khosla MC, Ferrario CM. Release of vasopressin from the rat hypothalamo-neurohypophysial system by angiotensin-(1-7) heptapeptide. Proc Natl Acad Sci. 1988;85:4095–8.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Shekhar A. Angiotensin type 1 receptor antagonists—a novel approach to augmenting posttraumatic stress disorder and phobia therapies? Biol Psychiatry. 2014;75:836–7.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Silva DMR, Vianna HR, Cortes SF, Campagnole-Santos MJ, Santos RAS, Lemos VS. Evidence for a new angiotensin-(1–7) receptor subtype in the aorta of Sprague–Dawley rats. Peptides. 2007;28:702–7.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Silva LCS, Fontes MAP, Campagnole-Santos MJ, Khosla MC, Campos RR, Guertzenstein PG, Santos RAS. Cardiovascular effects produced by micro-injection of angiotensin-(1–7) on vasopressor and vasodepressor sites of the ventrolateral medulla. Brain Res. 1993;613:321–5.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Silva-Barcellos NM, Caligiorne S, dos Santos RA, Frézard F. Site-specific microinjection of liposomes into the brain for local infusion of a short-lived peptide. J Control Release. 2004;95:301–7.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Silva-Barcellos NM, Frézard F, Caligiorne S, Santos RA. Long-lasting cardiovascular effects of liposome-entrapped angiotensin-(1-7) at the rostral ventrolateral medulla. Hypertension. 2001;38:1266–71.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Sriramula S, Cardinale JP, Lazartigues E, Francis J. ACE2 overexpression in the paraventricular nucleus attenuates angiotensin II-induced hypertension. Cardiovasc Res. 2011;92:401–8.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Staschewski J, Kulisch C, Albrecht D. Different isoforms of nitric oxide synthase are involved in angiotensin-(1–7)-mediated plasticity changes in the amygdala in a gender-dependent manner. Neuroendocrinology. 2011;94:191–9.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Stragier B, Hristova I, Sarre S, Ebinger G, Michotte Y. In vivo characterization of the angiotensin-(1–7)-induced dopamine and γ-aminobutyric acid release in the striatum of the rat. Eur J Neurosci. 2005;22:658–64.PubMedCrossRefGoogle Scholar
  121. 121.
    Sumners C, Horiuchi M, Widdop RE, McCarthy C, Unger T, Steckelings UM. Protective arms of the renin–angiotensin-system in neurological disease. Clin Exp Pharmacol Physiol. 2013;40:580–8.PubMedCrossRefGoogle Scholar
  122. 122.
    Sun H-J, Li P, Chen W-W, Xiong X-Q, Han Y. Angiotensin II and angiotensin-(1-7) in Paraventricular nucleus modulate cardiac sympathetic afferent reflex in Renovascular hypertensive rats. PLoS One. 2012;7:e52557.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A human homolog of angiotensin-converting enzyme cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem. 2000;275:33238–43.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Tsuchihashi T, Kagiyama S, Matsumura K, Abe I, Fujishima M. Effects of chronic oral treatment with imidapril and TCV-116 on the responsiveness to angiotensin II in ventrolateral medulla of SHR. J Hypertens. 1999;17:917–22.PubMedCrossRefGoogle Scholar
  125. 125.
    Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, Godbout K, Parsons T, Baronas E, Hsieh F. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem. 2002;277:14838–43.PubMedCrossRefGoogle Scholar
  126. 126.
    von Bohlen und Halbach O, Albrecht D. The CNS renin-angiotensin system. Cell Tissue Res. 2006;326:599–616.CrossRefGoogle Scholar
  127. 127.
    Walther T, Balschun D, Voigt J-P, Fink H, Zuschratter W, Birchmeier C, Ganten D, Bader M. Sustained long term potentiation and anxiety in mice lacking the Mas Protooncogene. J Biol Chem. 1998;273:11867–73.PubMedCrossRefGoogle Scholar
  128. 128.
    Wang J, Peng Y-J, Zhu D-N. Amino acids modulate the hypotensive effect of angiotensin-(1-7) at the caudal ventrolateral medulla in rats. Regul Pept. 2005;129:1–7.PubMedCrossRefGoogle Scholar
  129. 129.
    Wang L, de Kloet AD, Pati D, Hiller H, Smith JA, Pioquinto DJ, Ludin JA, Oh SP, Katovich MJ, Frazier CJ. Increasing brain angiotensin converting enzyme 2 activity decreases anxiety-like behavior in male mice by activating central Mas receptors. Neuropharmacology. 2016;105:114–23.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Wu J, Zhao D, Wu S, Wang D. Ang-(1–7) exerts protective role in blood–brain barrier damage by the balance of TIMP-1/MMP-9. Eur J Pharmacol. 2015;748:30–6.PubMedCrossRefGoogle Scholar
  131. 131.
    Xia H, Lazartigues E. Angiotensin-converting enzyme 2 in the brain: properties and future directions. J Neurochem. 2008;107:1482–94.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Xia H, Sriramula S, Chhabra KH, Lazartigues E. Brain angiotensin-converting enzyme type 2 shedding contributes to the development of neurogenic Hypertension Novelty and significance. Circ Res. 2013;113:1087–96.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Xiao L, Gao L, Lazartigues E, Zucker IH. Brain-selective overexpression of angiotensin-converting enzyme 2 attenuates sympathetic nerve activity and enhances baroreflex function in chronic heart failure. Hypertension. 2011;58:1057–65.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Xie W, Zhu D, Ji L, Tian M, Xu C, Shi J. Angiotensin-(1-7) improves cognitive function in rats with chronic cerebral hypoperfusion. Brain Res. 2014;1573:44–53.PubMedCrossRefGoogle Scholar
  135. 135.
    Xing J, Kong J, Lu J, Li J. Angiotensin-(1-7) inhibits neuronal activity of dorsolateral periaqueductal gray via a nitric oxide pathway. Neurosci Lett. 2012;522:156–61.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Xing J, Lu J, Li J. Role of angiotensin-(1–7) and Mas-R-nNOS pathways in amplified neuronal activity of dorsolateral periaqueductal gray after chronic heart failure. Neurosci Lett. 2014;563:6–11.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Xue B, Zhang Z, Beltz TG, Guo F, Hay M, Johnson AK. Estrogen regulation of the brain renin-angiotensin system in protection against angiotensin II-induced sensitization of hypertension. Am J Physiol-Heart Circ Physiol. 2014;307:H191–8.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Xue B, Zhang Z, Johnson RF, Guo F, Hay M, Johnson AK. Central endogenous angiotensin-(1–7) protects against aldosterone/NaCl-induced hypertension in female rats. Am J Physiol-Heart Circ Physiol. 2013;305:H699–705.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Yamazato M, Yamazato Y, Sun C, Diez-Freire C, Raizada MK. Overexpression of angiotensin-converting enzyme 2 in the rostral ventrolateral medulla causes long-term decrease in blood pressure in the spontaneously hypertensive rats. Hypertension. 2007;49:926–31.PubMedCrossRefGoogle Scholar
  140. 140.
    Yang R-F, Yin J-X, Li Y-L, Zimmerman MC, Schultz HD. Angiotensin-(1–7) increases neuronal potassium current via a nitric oxide-dependent mechanism. Am J Physiol-Cell Physiol. 2011;300:C58–64.PubMedCrossRefGoogle Scholar
  141. 141.
    Zhang D, Xiao Q, Luo H, Zhao K. Effects of angiotensin-(1-7) on hippocampal expressions of GFAP and GDNF and cognitive function in rats with diabetes mellitus. Nan Fang Yi Ke Da Xue Xue Bao. 2015;35:646–51.PubMedGoogle Scholar
  142. 142.
    Zhang Y, Lu J, Shi J, Lin X, Dong J, Zhang S, Liu Y, Tong Q. Central administration of angiotensin-(1–7) stimulates nitric oxide release and upregulates the endothelial nitric oxide synthase expression following focal cerebral ischemia/reperfusion in rats. Neuropeptides. 2008;42:593–600.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Zheng J, Li G, Chen S, Bihl J, Buck J, Zhu Y, Xia H, Lazartigues E, Chen Y, Olson JE. Activation of the ACE2/Ang-(1–7)/Mas pathway reduces oxygen–glucose deprivation-induced tissue swelling, ROS production, and cell death in mouse brain with angiotensin II overproduction. Neuroscience. 2014a;273:39–51.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Zheng J-L, Li G-Z, Chen S-Z, Wang J-J, Olson JE, Xia H-J, Lazartigues E, Zhu Y-L, Chen Y-F. Angiotensin converting enzyme 2/Ang-(1–7)/Mas Axis protects brain from ischemic injury with a tendency of age-dependence. CNS Neurosci Ther. 2014b;20:452–9.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Zhou L-M, Shi Z, Gao J, Han Y, Yuan N, Gao X-Y, Zhu G-Q. Angiotensin-(1–7) and angiotension II in the rostral ventrolateral medulla modulate the cardiac sympathetic afferent reflex and sympathetic activity in rats. Pflüg Arch-Eur J Physiol. 2010;459:681–8.CrossRefGoogle Scholar
  146. 146.
    Zubenko GS, Nixon RA. Mood-elevating effect of captopril in depressed patients. Am J Psychiatry. 1984;1:41.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Maria Jose Campagnole-Santos
    • 1
    Email author
  • Mariela M. Gironacci
    • 2
  • Marco Antônio Peliky Fontes
    • 1
  1. 1.Departamento de Fisiologia e Biofísica, INCT-NanobiofarInstituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Departamento de Química Biológica, IQUIFIB (UBA-CONICET)Facultad de Farmacia y Bioquímica, Universidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations