The Role of Angiotensin–(1-7) in Cancer

  • Ana Cristina Simões e SilvaEmail author
  • Walkyria O. Sampaio


The rationale to investigate the role of angiotensin-(1-7) [Ang-(1-7)] in cancer relies on the fact that the heptapeptide inhibits the growth of several cell lines. The first studies showed that Ang-(1-7) accelerated hematopoietic recovery in the peripheral blood and bone marrow after chemotherapy and inhibits lung cancer cell growth through the activation of Mas receptor. In this chapter, we summarize studies on the role of Ang-(1-7) in different types of cancer, especially lung, breast, prostate, hepatocellular cancers and in gliobalstoma multiforme (GBM). The antitumor effect of Ang-(1-7) was due to reduction of angiogenesis, cancer-associated fibrosis, osteoclastogenesis, tumor-induced inflammation, and metastasis as well as inhibition of cancer cell growth and proliferation. In clinical trials, Ang-(1-7) was well tolerated with limited toxic or quality-of-life side effects and showed clinical benefit in cancer patients with solid tumors. Further clinical trials are needed to confirm safety, to determine doses and clinical indications.


Cancer Angiotensin-(1-7) Antiangiogenesis Metastasis Lung cancer Breast cancer Prostate cancer Solid tumors 


  1. 1.
    Lever AF, Hole DJ, Gillis CR, McCallum IRMGT, MacKinnon PL, Meredith PA, et al. Do inhibitors of angiotensin-I-converting enzyme protect against risk of cancer? Lancet. 1998;352:179–84.CrossRefGoogle Scholar
  2. 2.
    Luque M, Martin P, Martell N, Fernandez C, Brosnihan KB, Ferrario CM. Effects of captopril related to increased levels of prostacyclin and angiotensin-(1-7) in essential hypertension. J Hypertens. 1996;14:799–805.CrossRefGoogle Scholar
  3. 3.
    Iyer SN, Ferrario CM, Chappell MC. Angiotensin-(1-7) contributes to the antihypertensive effects of blockade of the renin-angiotensin system. Hypertension. 1998;31:356–61.CrossRefGoogle Scholar
  4. 4.
    Simões e Silva AC, Diniz JS, Pereira RM, Pinheiro SV, Santos RAS. Circulating renin angiotensin system in childhood chronic renal failure: marked increase of angiotensin-(1-7) in end- stage renal disease. Pediatr Res. 2006;60:734–9.CrossRefGoogle Scholar
  5. 5.
    Freeman EJ, Chisolm GM, Ferrario CM, Tallant EA. Angiotensin-(1-7) inhibits vascular smooth muscle cell growth. Hypertension. 1996;28:104–8.CrossRefGoogle Scholar
  6. 6.
    McCollum LT, Gallagher PE, Tallant EA. Angiotensin-(1-7) abrogates mitogen-stimulated proliferation of cardiac fibroblasts. Peptides. 2012;34:380–8.CrossRefGoogle Scholar
  7. 7.
    Strawn WB, Ferrario CM, Tallant EA. Angiotensin-(1-7) reduces smooth muscle growth after vascular injury. Hypertension. 1999;33(part II):207–11.CrossRefGoogle Scholar
  8. 8.
    Langeveld B, Van Gilst WH, Gio RA, Zijlstra F, Roks AJ. Angiotensin-(1-7) attenuates neointimal formation after stent implantation in the rat. Hypertension. 2005;45:138–41.CrossRefGoogle Scholar
  9. 9.
    Tallant EA, Ferrario CM, Gallagher PE. Angiotensin-(1-7) inhibits growth of cardiac myocytes through activation of the mas receptor. Am J Physiol Heart Circ Physiol. 2005;289:1560–6.CrossRefGoogle Scholar
  10. 10.
    Rodgers KE, Xiong S, diZerega GS. Accelerated recovery from irradiation injury by angiotensin peptides. Cancer Chemother Pharmacol. 2002;49:403–11.CrossRefGoogle Scholar
  11. 11.
    Rodgers K, Xiong S, DiZerega GS. Effect of angiotensin II and angiotensin(1-7)on hematopoietic recovery after intravenous chemotherapy. Cancer Chemother Pharmacol. 2003;51:97–106.PubMedGoogle Scholar
  12. 12.
    Gallagher PE, Tallant EA. Inhibition of human lung cancer cell growth by angiotensin-(1-7). Carcinogenesis. 2004;25:2045–52.CrossRefGoogle Scholar
  13. 13.
    Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ Jr, Wu YL, Paz-Ares L. Lung cancer: current therapies and new targeted treatments. Lancet. 2017;389:299–311.CrossRefGoogle Scholar
  14. 14.
    Gallagher PE, Arter AL, Deng G, Tallant EA. Angiotensin-(1-7): a peptide hormone with anti-cancer activity. Curr Med Chem. 2014;21:2417–23.CrossRefGoogle Scholar
  15. 15.
    Menon J, Soto-Pantoja DR, Callahan MF, Cline JM, Ferrario CM, Tallant EA, Gallagher PE. Angiotensin-(1-7) inhibits growth of human lung adenocarcinoma xenografts in nude mice through a reduction in cyclooxygenase-2. Cancer Res. 2007;67:2809–15.CrossRefGoogle Scholar
  16. 16.
    Hida T, Yatabe Y, Achiwa H, Muramatsu H, Kozaki K, Nakamura S, et al. Increased expression of cyclooxygenase 2 occurs frequently in human lung cancers, especially in adenocarcinomas. Cancer Res. 1998;58:3761–4.PubMedGoogle Scholar
  17. 17.
    Harris RE, Beebe-Donk J, Schuller HM. Chemoprevention of lung cancer by non-steroidal anti-inflammatory drugs among cigarette smokers. Oncol Rep. 2002;9:693–5.PubMedGoogle Scholar
  18. 18.
    Lee EO, Lee HJ, Hwang HS, Ahn KS, Chae C, Kang KS, et al. Potent inhibition of Lewis lung cancer growth by heyneanol A from the roots of Vitis amurensis through apoptotic and anti-angiogenic activities. Carcinogenesis. 2006;27:2059–69.CrossRefGoogle Scholar
  19. 19.
    Mukherjee D, Topol EJ. Cox-2: where are we in 2003?—Cardiovascular risk and Cox-2 inhibitors. Arthritis Res Ther. 2003;5:8–11.CrossRefGoogle Scholar
  20. 20.
    Soto-Pantoja DR, Menon J, Gallagher PE, Tallant EA. Angiotensin-(1-7) inhibits tumor angiogenesis in human lung cancer xenografts with a reduc- tion in vascular endothelial growth factor. Mol Cancer Ther. 2009;8:1676–83.CrossRefGoogle Scholar
  21. 21.
    de Oliveira da Silva B, Lima KF, Gonçalves LR, Silveira MB, Moraes KC. MicroRNA profiling of the effect of the heptapeptide Angiotensin-(1-7) in A549 lung tumor cells reveals a role for miRNA149-3p in cellular migration processes. PLoS One. 2016;11:e0162094. Scholar
  22. 22.
    Silveira MB, Lima KF, Silva AR, Santos RAS, Moraes KC. Mir-513a-3p contributes to the controlling of cellular migration processes in the A549 lung tumor cells by modulating integrin β-8 expression. Mol Cell Biochem. 2018;444:43–52.CrossRefGoogle Scholar
  23. 23.
    Chen X, Chen S, Pei N, Mao Y, Wang S, Yan R, et al. AAV-Mediated angiotensin 1-7 overexpression inhibits tumor growth of lung cancer in vitro and in vivo. Oncotarget. 2017;8:354–63.PubMedGoogle Scholar
  24. 24.
    Akram M, Iqbal M, Danlyal M, Khan AU. Awareness and current knowledge of breast cancer. Biol Res. 2017;50:33. Scholar
  25. 25.
    Cook KL, Metheny-Barlow LJ, Tallant EA, Gallagher PE. Angiotensin-(1-7) reduces fibrosis in orthotopic breast tumors. Cancer Res. 2010;70:8319–28.CrossRefGoogle Scholar
  26. 26.
    Yu C, Tang W, Wang Y, Shen Q, Wang B, Cai C, et al. Downregulation of ACE2/Ang-(1-7)/Mas axis promotes breast cancer metastasis by enhancing store-operated calcium entry. Cancer Lett. 2016;376:268–77.CrossRefGoogle Scholar
  27. 27.
    Cambados N, Walther T, Nahmod K, Tocci JM, Ribinstein N, Böhme I, et al. Angiotensin-(1-7) counteracts the transforming effects triggered by angiotensin II in breast cancer cells. Oncotarget. 2017;8:88475–87.CrossRefGoogle Scholar
  28. 28.
    Dong L, Zieren RC, Xue W, de Reijke TM, Pienta KJ. Metastatic prostate cancer remains incurable, why? Asian J Urol. 2019;6:26–41.CrossRefGoogle Scholar
  29. 29.
    Krishnan B, Torti FM, Gallagher PE, Tallant EA. Angiotensin-(1-7) reduces proliferation and angiogenesis of human prostate cancer xenografts with a decrease in angiogenic factors and an increase in sFlt-1. Prostate. 2013;73:60–70.CrossRefGoogle Scholar
  30. 30.
    Krishnan B, Smith TL, Dubey P, Zapadka ME, Torti FM, Willingham MC, et al. Angiotensin-(1-7) attenuates metastatic prostate cancer and reduces osteoclastogenesis. Prostate. 2013;73:71–82.CrossRefGoogle Scholar
  31. 31.
    Liu Y, Li B, Wang X, Li G, Shang R, Yang J, et al. Angiotensin-(1-7) Suppresses Hepatocellular Carcinoma Growth and Angiogenesis via Complex Interactions of Angiotensin II Type 1 Receptor, Angiotensin II Type 2 Receptor and Mas Receptor. Mol Med. 2015;21:626–36.CrossRefGoogle Scholar
  32. 32.
    Mao Y, Pei N, Chen X, Chen H, Yan R, Bai N, et al. Angiotensin 1-7 overexpression mediated by a capsid-optimized AAV8 vector leads to significant growth inhibition of hepatocellular carcinoma in vivo. Int I Biol Sci. 2018;14:57–68.CrossRefGoogle Scholar
  33. 33.
    Raucher D. Tumor targeting peptides: novel therapeutic strategies in glioblastoma. Curr Opin Pharmacol. 2019;47:14–9.CrossRefGoogle Scholar
  34. 34.
    Garcia-Espinosa MA, Lesser GJ, Debinski W, Tallant EA, Gallagher PE. Angiotensin-(1-7), a peptide hormone with therapeutic potential for the treatment of glioblastomas (abstract). In: Proceedings of the 103rd annual meeting of the American Association for Cancer Research; 31 Mar–Apr 4, 2012. Chicago/Philadelphia: AACR. Cancer Res. 1938;72(Suppl 8):Abs.Google Scholar
  35. 35.
    Liu B, Liu Y, Jiang Y. Podocalyxin promotes glioblastoma multiforme cell invasion and proliferation by inhibiting angiotensin-(1-7)/Mas signaling. Oncol Rep. 2015;33:2583–91.CrossRefGoogle Scholar
  36. 36.
    Li X, Wang X, Xie J, Liang B, Wu J. Suppression of angiotensin-(1-7) on the disruption of blood-brain barrier in rat of brain glioma. Pathol Oncol Res. 2019;25:429–35.CrossRefGoogle Scholar
  37. 37.
    Ender SA, Dallmer A, Lässig F, Lendeckel U, Wolke C. Expression and function of the ACE2/angiotensin(1-7)/Mas axis in osteosarcoma cell lines U-2 OS and MNNG-HOS. Mol Med Rep. 2014;10:804–10.CrossRefGoogle Scholar
  38. 38.
    Chua MLK, Wes JTS, Hui EP, Chan ATC. Nasopharyngeal carcinoma. Lancet. 2016;387:1012–24.CrossRefGoogle Scholar
  39. 39.
    Pei N, Wan R, Chen X, Li A, Zhang Y, Li J, et al. Angiotensin-(1-7) decreases cell growth and angiogenesis of human nasopharyngeal carcinoma xenografts. Mol Cancer Ther. 2016;15:37–47.CrossRefGoogle Scholar
  40. 40.
    Lin YT, Wang HC, Chuang HC, Hsu TC, Yang MY, Chien CY. Pre-treatment with angiotensin-(1-7) inhibits tumor growth via autophagy by downregulating PI3K/Akt/mTOR signaling in human nasopharyngeal carcinoma xenografts. J Mol Med (Berl). 2018;96:1407–18.CrossRefGoogle Scholar
  41. 41.
    Hinsley EE, de Oliveira CE, Hunt S, Coletta RD, Lambert DW. Angiotensin 1-7 inhibits angiotensin II-stimulated head and neck cancer progression. Eur J Oral Sci. 2017;125:247–57.CrossRefGoogle Scholar
  42. 42.
    Forte BL, Slosky LM, Zhang H, Arnold MR, Staatz WD, Hay M, et al. Angiotensin-(1-7)/Mas receptor as an antinociceptive agent in cancer-induced bone pain. Pain. 2016;157:2709–21.CrossRefGoogle Scholar
  43. 43.
    Willey JS, Barcey DN, Gallagher PE, Tallant EA, Wiggins WF, Callahan MF, et al. Angiotensin-(1-7) attenuates skeletal muscle fibrosis and stiffening in a mouse model of extremity sarcoma radiation therapy. J Bone Joint Surg Am. 2016;98:48–55.CrossRefGoogle Scholar
  44. 44.
    Ahmad I, Ahmed MM, Ahsraf MF, Naeem A, Tasleem A, Ahmed M, Farooqi MS. Pain management in metastatic bone disease: a literature review. Cureus. 2018;10:e3286. Scholar
  45. 45.
    Straub JM, New J, Hamilton CD, Lominska C, Shnayder Y, Thomas SM. Radiation-induced fibrosis: mechanisms and implications for therapy. J Cancer Res Clin Oncol. 2015;141:1985–94.CrossRefGoogle Scholar
  46. 46.
    Petty WJ, Miller AA, McCoy TP, Gallagher PE, Tallant EA, Torti FM. Phase I and pharmacokinetic study of angiotensin-(1-7), an endogenous antiangiogenic hormone. Clin Cancer Res. 2009;15:7398–404.CrossRefGoogle Scholar
  47. 47.
    Rodgers KE, Oliver J, diZerega GS. Phase I/II dose escalation study of angiotensin 1-7 [A(1-7)] administered before and after chemotherapy in patients with newly diagnosed breast cancer. Cancer Chemother Pharmacol. 2006;57:559–68.CrossRefGoogle Scholar
  48. 48.
    Pham H, Schwartz BM, Delmore JE, Reed E, Cruickshank S, Drummond L, Rodgers KE, Peterson KJ, diZerega GS. Pharmacodynamic stimulation of thrombogenesis by angiotensin (1-7) in recurrent ovarian cancer patients receiving gemcitabine and platinum-based chemotherapy. Cancer Chemother Pharmacol. 2013;71:965–72.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ana Cristina Simões e Silva
    • 1
    • 2
    Email author
  • Walkyria O. Sampaio
    • 3
  1. 1.Department of Pediatrics, Interdisciplinary Laboratory of Medical Investigation, Faculty of MedicineUFMGBelo HorizonteBrazil
  2. 2.Interdisciplinary Laboratory of Medical Investigation, Faculty of MedicineFederal University of Minas Gerais (UFMG)Belo HorizonteBrazil
  3. 3.National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological SciencesFederal University of Minas GeraisBelo HorizonteBrazil

Personalised recommendations