Advertisement

Angiotensin 1-7 and Inflammation

  • Izabela Galvão
  • Flavia Rago
  • Isabella Zaidan Moreira
  • Mauro Martins Teixeira
Chapter

Abstract

Ang-(1-7) binds to the G-protein-coupled MAS receptor and exerts many beneficial actions in the context of acute inflammation. Ang-(1-7) reduces production and expression of many cytokines and adhesion molecules and decreases leukocyte movement in vitro and in vivo. In animal models of inflammation, administration of Ang-(1-7) or its analogues is, in general, associated with inhibition of leukocyte influx and inflammatory tissue damage. In addition, Ang-(1-7) reduces fibrogenesis in the context of chronic inflammation. Ang-(1-7) also induces the resolution of inflammation by inducing apoptosis of neutrophils and their clearance by macrophages. Altogether, the available literature suggests that drugs that mimic the action of Ang-(1-7) on the MAS receptor may represent a novel pharmacological strategy to control and treat inflammatory diseases.

Keywords

Inflammation Angiotensin 1-7 Resolution of inflammation 

References

  1. 1.
    Abd-Alhaseeb MM, Zaitone SA, Abou-El-Ela SH, Moustafa YM. Olmesartan potentiates the anti-angiogenic effect of sorafenib in mice bearing Ehrlich’s ascites carcinoma: role of angiotensin (1-7). PLoS One. 2014;9:e85891.CrossRefGoogle Scholar
  2. 2.
    Asghar W, Aghazadeh-Habashi A, Jamali F. Cardiovascular effect of inflammation and nonsteroidal anti-inflammatory drugs on renin–angiotensin system in experimental arthritis. Inflammopharmacology. 2017;25:543–53.CrossRefGoogle Scholar
  3. 3.
    Bader M. Tissue renin-angiotensin-aldosterone systems: targets for pharmacological therapy. Annu Rev Pharmacol Toxicol. 2010;50(1):439–65.  https://doi.org/10.1146/annurev.pharmtox.010909.105610.CrossRefPubMedGoogle Scholar
  4. 4.
    Barroso LC, Magalhaes GS, Galvão I, Reis AC, Souza DG, Sousa LP, Santos RAS, Campagnole-Santos MJ, Pinho V, Teixeira MM. Angiotensin-(1-7) promotes resolution of neutrophilic inflammation in a model of antigen-induced arthritis in mice. Front Immunol. 2017;8:1596.  https://doi.org/10.3389/fimmu.2017.01596.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bihl JC, et al. Angiotensin-(1-7) counteracts the effects of Ang II on vascular smooth muscle cells, vascular remodeling and hemorrhagic stroke: Role of the NFкB inflammatory pathway. Vasc Pharmacol. 2015;73:115–23.CrossRefGoogle Scholar
  6. 6.
    Buckley CD, Gilroy DW, Serhan CN. Proresolving lipid mediators and mechanisms in the resolution of acute inflammation. Immunity. 2014;40(3):315–27.  https://doi.org/10.1016/j.immuni.2014.02.009.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cao G, Della Penna SL, Kouyoumdzian NM, Choi MR, Gorzalczany S, Fernández BE, Toblli JE, Rosón MI. Immunohistochemical expression of intrarenal renin angiotensin system components in response to tempol in rats fed a high salt diet. World J Nephrol. 2017;6(1):29–40.  https://doi.org/10.5527/wjn.v6.i1.29.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Castor MGM, Santos RAS, Duarte IDG, Romero TRL. Angiotensin-(1-7) through Mas receptor activation induces peripheral antinociception by interaction with adrenoreceptors. Peptides. 2015;69:80–5.  https://doi.org/10.1016/j.peptides.2015.04.011.CrossRefPubMedGoogle Scholar
  9. 9.
    Corrêa Barroso L, Daniela Silveira K, Xavier Lima C, Borges V, Bader M, Rachid M, Augusto Souza Santos R, Gloria Souza D, Cristina Simões Silva A, Martins Teixeira M. Renoprotective effects of AVE0991, a nonpeptide Mas receptor agonist, in experimental acute renal injury. Int J Hypertension. Hindawi Publishing Corporation. 2012;8.  https://doi.org/10.1155/2012/808726.
  10. 10.
    Costa ACO, Becker LK, Moraes ER, Romero TRL, Guzzo L, Santos RAS, Duarte IDG. Angiotensin-(1-7) induces peripheral antinociception through mas receptor activation in an opioid-independent pathway. Pharmacology. 2012;89(3–4):137–44.  https://doi.org/10.1159/000336340.CrossRefPubMedGoogle Scholar
  11. 11.
    Domenig O, Manzel A, Grobe N, Königshausen E, Kaltenecker CC, Kovarik JJ, Stegbauer J, Gurley SB, van Oyen D, Antlanger M, Bader M, Motta-Santos D, Santos RA, Elased KM, Säemann MD, Linker RA, Poglitsch M. Neprilysin is a mediator of alternative renin-angiotensin-system activation in the murine and human kidney. Sci Rep. 2016;6(1):33678.  https://doi.org/10.1038/srep33678.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    El-Hashim AZ, Renno WM, Raghupathy R, Abduo HT, Akhtar S, Benter IF. Angiotensin-(1-7) inhibits allergic inflammation, via the MAS1 receptor, through suppression of ERK1/2- and NF-κB-dependent pathways. Br J Pharmacol. 2012;166(6):1964–76.  https://doi.org/10.1111/j.1476-5381.2012.01905.x.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fagundes CT, Amaral FA, Teixeira AL, Souza DG, Teixeira MM. Adapting to environmental stresses: the role of the microbiota in controlling innate immunity and behavioral responses. Immunol Rev. 2012;245(1):250–64.  https://doi.org/10.1111/j.1600-065X.2011.01077.x.CrossRefPubMedGoogle Scholar
  14. 14.
    Feltenberger JD, Andrade JMO, Paraíso A, Barros LO, Filho ABM, Sinisterra RDM, Sousa FB, Guimarães ALS, de Paula AMB, Campagnole-Santos MJ, Qureshi M, dos Santos RAS, Santos SHS. Oral formulation of angiotensin-(1-7) improves lipid metabolism and prevents high-fat diet-induced hepatic steatosis and inflammation in mice. Hypertension (Dallas, Tex: 1979). 2013;62(2):324–30.  https://doi.org/10.1161/HYPERTENSIONAHA.111.00919.CrossRefGoogle Scholar
  15. 15.
    Forte BL, Slosky LM, Zhang H, Arnold MR, Staatz WD, Hay M, Largent-Milnes TM, Vanderah TW. Angiotensin-(1-7)/Mas receptor as an antinociceptive agent in cancer-induced bone pain. Pain. 2016;157(12):2709–21.  https://doi.org/10.1097/j.pain.0000000000000690.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Fullerton JN, Gilroy DW. Resolution of inflammation: a new therapeutic frontier. Nat Rev Drug Discov. 2016;15(8):551–67.  https://doi.org/10.1038/nrd.2016.39.CrossRefPubMedGoogle Scholar
  17. 17.
    Hammer A, Yang G, Friedrich J, Kovacs A, Lee D-H, Grave K, Jörg S, Alenina N, Grosch J, Winkler J, Gold R, Bader M, Manzel A, Rump LC, Müller DN, Linker RA, Stegbauer J. Role of the receptor Mas in macrophage-mediated inflammation in vivo. Proc Natl Acad Sci. 2016;113(49):14109–14.  https://doi.org/10.1073/pnas.1612668113.CrossRefPubMedGoogle Scholar
  18. 18.
    Jawien J, Toton-Zuranska J, Gajda M, Niepsuj A, Gebska A, Kus K, Suski M, Pyka-Fosciak G, Nowak B, Guzik TJ, Marcinkiewicz J, Olszanecki R, Korbut R. Angiotensin-(1-7) receptor Mas agonist ameliorates progress of atherosclerosis in apoE-knockout mice. J Physiol Pharmacol. 2012;63(1):77–85. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22460464. Accessed: 23 April 2018.PubMedGoogle Scholar
  19. 19.
    Jiang T, Yu J-T, Zhu X-C, Zhang Q-Q, Tan M-S, Cao L, Wang H-F, Lu J, Gao Q, Zhang Y-D, Tan L. Angiotensin-(1-7) induces cerebral ischaemic tolerance by promoting brain angiogenesis in a Mas/eNOS-dependent pathway. Br J Pharmacol. 2014;171(18):4222–32.  https://doi.org/10.1111/bph.12770.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Khajah MA, Fateel MM, Ananthalakshmi KV, Luqmani YA. Anti-inflammatory action of angiotensin 1-7 in experimental colitis may be mediated through modulation of serum cytokines/chemokines and immune cell functions. Dev Comp Immunol. 2017;74:200–8.  https://doi.org/10.1016/j.dci.2017.05.005.CrossRefPubMedGoogle Scholar
  21. 21.
    Klein N, Gembardt F, Supé S, Kaestle SM, Nickles H, Erfinanda L, Lei X, Yin J, Wang L, Mertens M, Szaszi K, Walther T, Kuebler WM. Angiotensin-(1-7) protects from experimental acute lung injury. Crit Care Med. 2013;41(11):e334–43.  https://doi.org/10.1097/CCM.0b013e31828a6688.CrossRefPubMedGoogle Scholar
  22. 22.
    Kucharewicz I, Pawlak R, Matys T, Pawlak D, Buczko W. Antithrombotic effect of captopril and losartan is mediated by angiotensin-(1-7). Hypertension (Dallas, Tex: 1979). 2002;40(5):774–9. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12411476. Accessed: 21 April 2018.CrossRefGoogle Scholar
  23. 23.
    Della Latta V, Cecchettini A, Del Ry S, Morales MA. Bleomycin in the setting of lung fibrosis induction: from biological mechanisms to counteractions. Pharmacol Res. Elsevier Ltd. 2015;97:122–30.  https://doi.org/10.1016/j.phrs.2015.04.012.CrossRefGoogle Scholar
  24. 24.
    Liang B, Wang X, Zhang N, Yang H, Bai R, Liu M, Bian Y, Xiao C, Yang Z. Angiotensin-(1-7) attenuates angiotensin II-induced ICAM-1, VCAM-1, and MCP-1 expression via the MAS receptor through suppression of P38 and NF-κB pathways in HUVECs. Cell Physiol Biochem. 2015;35(6):2472–82.  https://doi.org/10.1159/000374047.CrossRefPubMedGoogle Scholar
  25. 25.
    Liu M, Shi P, Sumners C. Direct anti-inflammatory effects of angiotensin-(1-7) on microglia. J Neurochem. 2016;136(1):163–71.  https://doi.org/10.1111/jnc.13386.CrossRefPubMedGoogle Scholar
  26. 26.
    Lu W, Kang J, Hu K, Tang S, Zhou X, Yu S, Li Y, Xu L. Angiotensin-(1-7) inhibits inflammation and oxidative stress to relieve lung injury induced by chronic intermittent hypoxia in rats. Braz J Med Biol Res. 2016;49(10):e5431.  https://doi.org/10.1590/1414-431X20165431.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lu W, Kang J, Hu K, Tang S, Zhou X, Yu S, Xu L. Angiotensin-(1-7) relieved renal injury induced by chronic intermittent hypoxia in rats by reducing inflammation, oxidative stress and fibrosis. Braz J Med Biol Res. 2017;50(1).  https://doi.org/10.1590/1414-431x20165594.
  28. 28.
    Ma H, Kong J, Wang Y-L, Li J-L, Hei N-H, Cao X-R, Yang J-J, Yan W-J, Liang W-J, Dai H-Y, Dong B. Angiotensin-converting enzyme 2 overexpression protects against doxorubicin-induced cardiomyopathy by multiple mechanisms in rats. Oncotarget. 2017;8(15):24548–63.  https://doi.org/10.18632/oncotarget.15595.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Magalhães GS, et al. Chronic allergic pulmonary inflammation is aggravated in angiotensin-(1–7) Mas receptor knockout mice. Am J Physiol Cell Mol Physiol. 2016;311:L1141–8.CrossRefGoogle Scholar
  30. 30.
    Magalhaes GS, Barroso LC, Reis AC, Rodrigues-Machado MG, Gregório JF, Motta-Santos D, Oliveira AC, Perez DA, Barcelos LS, Teixeira MM, Santos RAS, Pinho V, Campagnole-Santos MJ. Angiotensin-(1-7) promotes resolution of eosinophilic inflammation in an experimental model of asthma. Front Immunol. 2018;9:58.  https://doi.org/10.3389/fimmu.2018.00058.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Magalhães GS, Rodrigues-Machado MG, Motta-Santos D, Silva AR, Caliari MV, Prata LO, Abreu SC, Rocco PRM, Barcelos LS, Santos RAS, Campagnole-Santos MJ. Angiotensin-(1-7) attenuates airway remodelling and hyperresponsiveness in a model of chronic allergic lung inflammation. Br J Pharmacol. 2015;172(9):2330–42.  https://doi.org/10.1111/bph.13057.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Medzhitov R. Inflammation 2010: new adventures of an old flame. Cell. 2010;140(6):771–6.  https://doi.org/10.1016/j.cell.2010.03.006.CrossRefPubMedGoogle Scholar
  33. 33.
    Meng Y, Li T, Zhou GS, Chen Y, Yu CH, Pang MX, Li W, Li Y, Zhang WY, Li X. The angiotensin-converting enzyme 2/angiotensin (1-7)/Mas axis protects against lung fibroblast migration and lung fibrosis by inhibiting the NOX4-derived ROS-mediated RhoA/Rho kinase pathway. Antioxid Redox Signal. 2015;22(3):241–58.  https://doi.org/10.1089/ars.2013.5818.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Meng Y, Yu CH, Li W, Li T, Luo W, Huang S, Wu PS, Cai SX, Li X. Angiotensin-converting enzyme 2/angiotensin-(1-7)/mas axis protects against lung fibrosis by inhibiting the MAPK/NF-κB pathway. Am J Respir Cell Mol Biol. 2014;50(4):723–36.  https://doi.org/10.1165/rcmb.2012-0451OC.CrossRefPubMedGoogle Scholar
  35. 35.
    Miranda AS, Simões e Silva AC. Serum levels of angiotensin converting enzyme as a biomarker of liver fibrosis. World J Gastroenterol. 2017;23(48):8439–42.  https://doi.org/10.3748/wjg.v23.i48.8439.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Moore ED, Kooshki M, Metheny-Barlow LJ, Gallagher PE, Robbins ME. Angiotensin-(1-7) prevents radiation-induced inflammation in rat primary astrocytes through regulation of MAP kinase signaling. Free Radic Biol Med. 2013;65:1060–8.CrossRefGoogle Scholar
  37. 37.
    Morales MG, Abrigo J, Meneses C, Simon F, Cisternas F, Rivera JC, Vazquez Y, Cabello-Verrugio C. The Ang-(1-7)/Mas-1 axis attenuates the expression and signalling of TGF-β1 induced by AngII in mouse skeletal muscle. Clin Sci (Lond). 2014;127(4):251–64.  https://doi.org/10.1042/CS20130585.CrossRefGoogle Scholar
  38. 38.
    Mori J, Patel VB, Ramprasath T, Alrob OA, DesAulniers J, Scholey JW, Lopaschuk GD, Oudit GY. Angiotensin 1-7 mediates renoprotection against diabetic nephropathy by reducing oxidative stress, inflammation, and lipotoxicity. Am J Physiol Renal Physiol. 2014;306(8):F812–21.  https://doi.org/10.1152/ajprenal.00655.2013.CrossRefPubMedGoogle Scholar
  39. 39.
    Ni L, Feng Y, Wan H, Ma Q, Fan L, Qian Y, Li Q, Xiang Y, Gao B. Angiotensin-(1-7) inhibits the migration and invasion of A549 human lung adenocarcinoma cells through inactivation of the PI3K/Akt and MAPK signaling pathways. Oncol Rep. 2012;27(3):783–90.  https://doi.org/10.3892/or.2011.1554.CrossRefPubMedGoogle Scholar
  40. 40.
    Ocaranza MP, Moya J, Barrientos V, Alzamora R, Hevia D, Morales C, Pinto M, Escudero N, García L, Novoa U, Ayala P, Díaz-Araya G, Godoy I, Chiong M, Lavandero S, Jalil JE, Michea L. Angiotensin-(1-9) reverses experimental hypertension and cardiovascular damage by inhibition of the angiotensin converting enzyme/Ang II axis. J Hypertens. 2014;32(4):771–83.  https://doi.org/10.1097/HJH.0000000000000094.CrossRefPubMedGoogle Scholar
  41. 41.
    Pai W-Y, Lo W-Y, Hsu T, Peng C-T, Wang H-J. Angiotensin-(1-7) inhibits thrombin-induced endothelial phenotypic changes and reactive oxygen species production via NADPH oxidase 5 downregulation. Front Physiol. 2017;8:994.  https://doi.org/10.3389/fphys.2017.00994.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Papinska AM, Soto M, Meeks CJ, Rodgers KE. Long-term administration of angiotensin (1-7) prevents heart and lung dysfunction in a mouse model of type 2 diabetes (db/db) by reducing oxidative stress, inflammation and pathological remodeling. Pharmacol Res. 2016;107:372–80.  https://doi.org/10.1016/j.phrs.2016.02.026.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Pena Silva RA, Kung DK, Mitchell IJ, Alenina N, Bader M, Santos RAS, Faraci FM, Heistad DD, Hasan DM. Angiotensin 1-7 reduces mortality and rupture of intracranial aneurysms in mice. Hypertension. 2014;64(2):362–8.  https://doi.org/10.1161/HYPERTENSIONAHA.114.03415.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Pereira RM, dos Santos RAS, Teixeira MM, Leite VHR, Costa LP, da Costa Dias FL, Barcelos LS, Collares GB, Simões e Silva AC. The renin–angiotensin system in a rat model of hepatic fibrosis: evidence for a protective role of angiotensin-(1-7). J Hepatol. 2007;46(4):674–81.  https://doi.org/10.1016/j.jhep.2006.10.018.CrossRefPubMedGoogle Scholar
  45. 45.
    Peres RS, Menezes GB, Teixeira MM, Cunha FQ. Pharmacological opportunities to control inflammatory diseases through inhibition of the leukocyte recruitment. Pharmacol Res. 2016;112:37–48.  https://doi.org/10.1016/j.phrs.2016.01.015.CrossRefPubMedGoogle Scholar
  46. 46.
    Perretti M, Cooper D, Dalli J, Norling LV. Immune resolution mechanisms in inflammatory arthritis. Nat Rev Rheumatol. 2017;13(2):87–99.  https://doi.org/10.1038/nrrheum.2016.193.CrossRefPubMedGoogle Scholar
  47. 47.
    Pinheiro SVB, Simoes e Silva AC, Sampaio WO, de Paula RD, Mendes EP, Bontempo ED, Pesquero JB, Walther T, Alenina N, Bader M, Bleich M, RAS S. Nonpeptide AVE 0991 is an angiotensin-(1-7) receptor Mas agonist in the mouse kidney. Hypertension. 2004;44(4):490–6.  https://doi.org/10.1161/01.HYP.0000141438.64887.42.CrossRefPubMedGoogle Scholar
  48. 48.
    Rodrigues-Machado MG, Magalhães GS, Cardoso JA, Kangussu LM, Murari A, Caliari MV, Oliveira ML, Cara DC, Noviello MLM, Marques FD, Pereira JM, Lautner RQ, Santos RAS, Campagnole-Santos MJ. AVE 0991, a non-peptide mimic of angiotensin-(1-7) effects, attenuates pulmonary remodelling in a model of chronic asthma. Br J Pharmacol. 2013;170(4):835–46.  https://doi.org/10.1111/bph.12318.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Shenoy V, et al. The angiotensin-converting enzyme 2/angiogenesis-(1-7)/Mas axis confers cardiopulmonary protection against lung fibrosis and pulmonary hypertension. Am J Respir Crit Care Med. 2010;182:1065–72.CrossRefGoogle Scholar
  50. 50.
    Shimada K, et al. Angiotensin-(1-7) protects against the development of aneurysmal subarachnoid hemorrhage in mice. J Cereb Blood Flow Metab. 2015;35:1163–8.CrossRefGoogle Scholar
  51. 51.
    Silveira KD, Barroso LC, Vieira AT, Cisalpino D, Lima CX, Bader M, Arantes RME, dos Santos RAS, Simões-e-Silva AC, Teixeira MM. Beneficial effects of the activation of the angiotensin-(1-7) Mas receptor in a murine model of adriamycin-induced nephropathy. PLoS One. Edited by J-C Dussaule. 2013a;8(6):e66082.  https://doi.org/10.1371/journal.pone.0066082.CrossRefGoogle Scholar
  52. 52.
    Silveira KD, Coelho FM, Vieira AT, Barroso LC, Queiroz-Junior CM, Costa VV, Sousa LFC, Oliveira ML, Bader M, Silva TA, Santos RAS, Silva ACSE, Teixeira MM. Mechanisms of the anti-inflammatory actions of the angiotensin type 1 receptor antagonist losartan in experimental models of arthritis. Peptides. 2013b;46:53–63.  https://doi.org/10.1016/j.peptides.2013.05.012.CrossRefPubMedGoogle Scholar
  53. 53.
    da Silveira KD, Coelho FM, Vieira AT, Sachs D, Barroso LC, Costa VV, Bretas TLB, Bader M, de Sousa LP, da Silva TA, dos Santos RAS, Simoes e Silva AC, Teixeira MM. Anti-inflammatory effects of the activation of the angiotensin-(1-7) receptor, Mas, in experimental models of arthritis. J Immunol. 2010;185(9):5569–76.  https://doi.org/10.4049/jimmunol.1000314.CrossRefPubMedGoogle Scholar
  54. 54.
    Simões e Silva A, Silveira K, Ferreira A, Teixeira M. ACE2, angiotensin-(1-7) and Mas receptor axis in inflammation and fibrosis. Br J Pharmacol. 2013;169(3):477–92.  https://doi.org/10.1111/bph.12159.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Skiba DS, Nosalski R, Mikolajczyk TP, Siedlinski M, Rios FJ, Montezano AC, Jawien J, Olszanecki R, Korbut R, Czesnikiewicz-Guzik M, Touyz RM, Guzik TJ. Anti-atherosclerotic effect of the angiotensin 1-7 mimetic AVE0991 is mediated by inhibition of perivascular and plaque inflammation in early atherosclerosis. Br J Pharmacol. 2017;174(22):4055–69.  https://doi.org/10.1111/bph.13685.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    South AM, Nixon PA, Chappell MC, Diz DI, Russell GB, Snively BM, Shaltout HA, Rose JC, O’Shea TM, Washburn LK. Antenatal corticosteroids and the renin-angiotensin-aldosterone system in adolescents born preterm. Pediatr Res. 2017;81(1–1):88–93.  https://doi.org/10.1038/pr.2016.179.CrossRefPubMedGoogle Scholar
  57. 57.
    Souza LL, Costa-Neto CM. Angiotensin-(1-7) decreases LPS-induced inflammatory response in macrophages. J Cell Physiol. 2012;227(5):2117–22.  https://doi.org/10.1002/jcp.22940.CrossRefPubMedGoogle Scholar
  58. 58.
    Sugimoto MA, Sousa LP, Pinho V, Perretti M, Teixeira MM. Resolution of inflammation: what controls its onset? Front Immunol. 2016;7:160.  https://doi.org/10.3389/fimmu.2016.00160.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Sukumaran V, Tsuchimochi H, Tatsumi E, Shirai M, Pearson JT. Azilsartan ameliorates diabetic cardiomyopathy in young db/db mice through the modulation of ACE-2/ANG 1–7/Mas receptor cascade. Biochem Pharmacol. 2017;144:90–9.CrossRefGoogle Scholar
  60. 60.
    Uemura H, Ishiguro H, Kubota Y. Pharmacology and new perspectives of angiotensin II receptor blocker in prostate cancer treatment. Int J Urol. 2008;15(1):19–26.  https://doi.org/10.1111/j.1442-2042.2007.01937.x.CrossRefPubMedGoogle Scholar
  61. 61.
    Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, Godbout K, Parsons T, Baronas E, Hsieh F, Acton S, Patane M, Nichols A, Tummino P. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem. 2002;277(17):14838–43.  https://doi.org/10.1074/jbc.M200581200.CrossRefPubMedGoogle Scholar
  62. 62.
    Villalobos LA, San Hipólito-Luengo Á, Ramos-González M, Cercas E, Vallejo S, Romero A, Romacho T, Carraro R, Sánchez-Ferrer CF, Peiró C. The angiotensin-(1-7)/mas Axis counteracts angiotensin II-dependent and -independent pro-inflammatory Signaling in human vascular smooth muscle cells. Front Pharmacol. 2016;7:482.  https://doi.org/10.3389/fphar.2016.00482.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Wang J, Liu R, Qi H, Wang Y, Cui L, Wen Y, Li H, Yin C. The ACE2-angiotensin-(1-7)-Mas axis protects against pancreatic cell damage in cell culture. Pancreas. 2015;44(2):266–72.  https://doi.org/10.1097/MPA.0000000000000247.CrossRefPubMedGoogle Scholar
  64. 64.
    Wang Y, et al. Angiotensin 1-7 ameliorates caerulein-induced inflammation in pancreatic acinar cells by downregulating Toll-like receptor 4/nuclear factor-κB expression. Mol Med Rep. 2018;17:3511–8.PubMedGoogle Scholar
  65. 65.
    Yang L-W, Qin D-Z, James E, McKallip RJ, Wang N-P, Zhang W-W, Zheng R-H, Han Q-H, Zhao Z-Q. CD44 deficiency in mice protects the heart against angiotensin II-induced cardiac fibrosis. Shock. 2018:1.  https://doi.org/10.1097/SHK.0000000000001132.
  66. 66.
    Young D, Waitches G, Birchmeier C, Fasano O, Wigler M. Isolation and characterization of a new cellular oncogene encoding a protein with multiple potential transmembrane domains. Cell. 1986;45(5):711–9. Available at: http://www.ncbi.nlm.nih.gov/pubmed/3708691. Accessed: 23 April 2018.CrossRefGoogle Scholar
  67. 67.
    Yu X, Cui L, Hou F, Liu X, Wang Y, Wen Y, Chi C, Li C, Liu R, Yin C. Angiotensin-converting enzyme 2-angiotensin (1-7)-mas axis prevents pancreatic acinar cell inflammatory response via inhibition of the p38 mitogen-activated protein kinase/nuclear factor-κB pathway. Int J Mol Med. 2018;41(1):409–20.  https://doi.org/10.3892/ijmm.2017.3252.CrossRefPubMedGoogle Scholar
  68. 68.
    Zambelli V, et al. Angiotensin-(1-7) improves oxygenation, while reducing cellular infiltrate and fibrosis in experimental Acute Respiratory Distress Syndrome. Intensive Care Med Exp. 2015;3(8)Google Scholar
  69. 69.
    Zhang F, Ren X, Zhao M, Zhou B, Han Y. Angiotensin-(1-7) abrogates angiotensin II-induced proliferation, migration and inflammation in VSMCs through inactivation of ROS-mediated PI3K/Akt and MAPK/ERK signaling pathways. Sci Rep. 2016;6:34621.CrossRefGoogle Scholar
  70. 70.
    Zhao Y, Qin Y, Liu T, Hao D. Chronic nerve injury-induced Mas receptor expression in dorsal root ganglion neurons alleviates neuropathic pain. Exp Ther Med. 2015;10(6):2384–8.  https://doi.org/10.3892/etm.2015.2801.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Zong W, Yang X, Chen X, Huang H, Zheng H, Qin X, Yong Y, Cao K, Huang J, Lu X. Regulation of angiotensin-(1-7) and angiotensin II type 1 receptor by telmisartan and losartan in adriamycin-induced rat heart failure. Acta Pharmacol Sin. 2011;32(11):1345–50.  https://doi.org/10.1038/aps.2011.96.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Izabela Galvão
    • 1
  • Flavia Rago
    • 1
  • Isabella Zaidan Moreira
    • 2
  • Mauro Martins Teixeira
    • 1
  1. 1.Departamento de Bioquímica e Imunologia, Instituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Departamento de Análises Clínicas e Toxicológicas, Faculdade de FarmáciaUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations