Advertisement

Liver

  • Aline Silva de Miranda
  • Ana Cristina Simões e SilvaEmail author
Chapter

Abstract

The discovery that renin–angiotensin system (RAS) components are locally expressed in the liver tissue, pointed out to a role for this system in the pathogenesis of hepatic fibrosis and cirrhosis. The RAS counter-regulatory axis composed by the angiotensin converting enzyme 2 (ACE2), angiotensin-(1-7) [Ang-(1-7)] and Mas receptor mediates pro-inflammatory, pro-thrombotic, and pro-fibrotic processes, frequently opposing the classical RAS arm (ACE-Ang II-AT1 receptor) actions. Therefore, the balance between both RAS axes most likely affects the clinical and histopathological expression of liver diseases. It is worth noticing that liver diseases are major causes of morbidity and mortality worldwide. Without proper treatment, all types of chronic hepatitis will progress to end-stage liver diseases, including cirrhosis, liver failure, and hepatocellular carcinoma, which ultimately lead to death. In this context, to better comprehend the role of RAS components in liver failure might pave the way for the search of potential predictive biomarkers as well as the development of novel therapeutic approaches. Valuable data have been generated from preclinical and clinical studies. Herein, we summarize the current evidence, mainly focusing in the ACE2-Ang-(1-7)-Mas receptor arm, regarding the role of RAS in liver diseases. The therapeutic potential of the modulation of RAS molecules in liver diseases is also discussed.

Keywords

Renin–angiotensin system Angiotensin converting enzyme (ACE) Angiotensin II Angiotensin-(1-7) Mas receptors Hepatic cirrhosis Liver fibrosis 

Notes

Acknowledgments

The authors would like to thank FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais, Brazil), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for financial support. ACSS is a CNPq productivity fellowship recipient. ASM is a 2016 NARSAD Young Investigator Grant Awardee from the Brain and Behavior Research Foundation.

Conflict of interest

None declared.

References

  1. 1.
    Paul M, Poyan Mehr A, Kreutz R. Physiology of local renin-angiotensin systems. Physiol Rev. 2006;86(3):747–803.CrossRefGoogle Scholar
  2. 2.
    Santos RA, Brosnihan KB, Chappell MC, Pesquero J, Chernicky CL, Greene LJ, et al. Converting enzyme activity and angiotensin metabolism in the dog brainstem. Hypertension (Dallas, Tex: 1979). 1988;11(2 Pt 2):I153–7.Google Scholar
  3. 3.
    Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res. 2000;87(5):E1–9.CrossRefGoogle Scholar
  4. 4.
    Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem. 2000;275(43):33238–43.CrossRefGoogle Scholar
  5. 5.
    Santos RA, Simoes e Silva AC, Maric C, Silva DM, Machado RP, de Buhr I, et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci U S A. 2003;100(14):8258–63.CrossRefGoogle Scholar
  6. 6.
    Kamo T, Akazawa H, Komuro I. Pleiotropic effects of angiotensin II receptor signaling in cardiovascular homeostasis and aging. Int Heart J. 2015;56(3):249–54.CrossRefGoogle Scholar
  7. 7.
    Rodrigues Prestes TR, Rocha NP, Miranda AS, Teixeira AL, Simoes ESAC. The anti-inflammatory potential of ACE2/Angiotensin-(1-7)/Mas Receptor axis: evidence from basic and clinical research. Curr Drug Targets. 2017;18(11):1301–13.CrossRefGoogle Scholar
  8. 8.
    Simoes e Silva AC, Silveira KD, Ferreira AJ, Teixeira MM. ACE2, angiotensin-(1-7) and Mas receptor axis in inflammation and fibrosis. Br J Pharmacol. 2013;169(3):477–92.CrossRefGoogle Scholar
  9. 9.
    Simoes ESAC, Miranda AS, Rocha NP, Teixeira AL. Renin angiotensin system in liver diseases: friend or foe? World J Gastroenterol. 2017;23(19):3396–406.CrossRefGoogle Scholar
  10. 10.
    Grace JA, Herath CB, Mak KY, Burrell LM, Angus PW. Update on new aspects of the renin-angiotensin system in liver disease: clinical implications and new therapeutic options. Clin Sci (London, England: 1979). 2012;123(4):225–39.CrossRefGoogle Scholar
  11. 11.
    Leung PS. The peptide hormone angiotensin II: its new functions in tissues and organs. Curr Protein Pept Sci. 2004;5(4):267–73.CrossRefGoogle Scholar
  12. 12.
    Moreira CCL, Lourenco FC, Mario EG, Santos RAS, Botion LM, Chaves VE. Long-term effects of angiotensin-(1-7) on lipid metabolism in the adipose tissue and liver. Peptides. 2017;92:16–22.CrossRefGoogle Scholar
  13. 13.
    Moreira de Macedo S, Guimaraes TA, Feltenberger JD, Sousa Santos SH. The role of renin-angiotensin system modulation on treatment and prevention of liver diseases. Peptides. 2014;62:189–96.CrossRefGoogle Scholar
  14. 14.
    Cao X, Yang F, Shi T, Yuan M, Xin Z, Xie R, et al. Angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis activates Akt signaling to ameliorate hepatic steatosis. Sci Rep. 2016;6:21592.CrossRefGoogle Scholar
  15. 15.
    Cao X, Yang FY, Xin Z, Xie RR, Yang JK. The ACE2/Ang-(1-7)/Mas axis can inhibit hepatic insulin resistance. Mol Cell Endocrinol. 2014;393(1–2):30–8.CrossRefGoogle Scholar
  16. 16.
    Clarke NE, Turner AJ. Angiotensin-converting enzyme 2: the first decade. Int J Hypertens. 2012;2012:12.CrossRefGoogle Scholar
  17. 17.
    Santos SH, Fernandes LR, Mario EG, Ferreira AV, Porto LC, Alvarez-Leite JI, et al. Mas deficiency in FVB/N mice produces marked changes in lipid and glycemic metabolism. Diabetes. 2008;57(2):340–7.CrossRefGoogle Scholar
  18. 18.
    Frantz EDC, Medeiros RF, Giori IG, Lima JBS, Bento-Bernardes T, Gaique TG, et al. Exercise training modulates the hepatic renin-angiotensin system in fructose-fed rats. Exp Physiol. 2017;102(9):1208–20.CrossRefGoogle Scholar
  19. 19.
    Musso G, Cassader M, Cohney S, Pinach S, Saba F, Gambino R. Emerging liver-kidney interactions in nonalcoholic fatty liver disease. Trends Mol Med. 2015;21(10):645–62.CrossRefGoogle Scholar
  20. 20.
    Musso G, Gambino R, Cassader M, Pagano G. Meta-analysis: natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity. Ann Med. 2011;43(8):617–49.CrossRefGoogle Scholar
  21. 21.
    de Macedo SM, Guimarares TA, Andrade JM, Guimaraes AL, Batista de Paula AM, Ferreira AJ, et al. Angiotensin converting enzyme 2 activator (DIZE) modulates metabolic profiles in mice, decreasing lipogenesis. Protein Pept Lett. 2015;22(4):332–40.CrossRefGoogle Scholar
  22. 22.
    Feltenberger JD, Andrade JM, Paraiso A, Barros LO, Filho AB, Sinisterra RD, et al. Oral formulation of angiotensin-(1-7) improves lipid metabolism and prevents high-fat diet-induced hepatic steatosis and inflammation in mice. Hypertension (Dallas, Tex: 1979). 2013;62(2):324–30.CrossRefGoogle Scholar
  23. 23.
    Santos SH, Andrade JM, Fernandes LR, Sinisterra RD, Sousa FB, Feltenberger JD, et al. Oral angiotensin-(1-7) prevented obesity and hepatic inflammation by inhibition of resistin/TLR4/MAPK/NF-kappaB in rats fed with high-fat diet. Peptides. 2013;46:47–52.CrossRefGoogle Scholar
  24. 24.
    Ahmadian E, Pennefather PS, Eftekhari A, Heidari R, Eghbal MA. Role of renin-angiotensin system in liver diseases: an outline on the potential therapeutic points of intervention. Expert Rev Gastroenterol Hepatol. 2016;10(11):1279–88.CrossRefGoogle Scholar
  25. 25.
    Wang FS, Fan JG, Zhang Z, Gao B, Wang HY. The global burden of liver disease: the major impact of China. Hepatology (Baltimore, MD). 2014;60(6):2099–108.CrossRefGoogle Scholar
  26. 26.
    Kochanek KD, Murphy SL, Xu J, Tejada-Vera B. Deaths: Final Data for 2014. National vital statistics reports: from the Centers for Disease Control and Prevention, National Center for Health Statistics. Nat Vital Stat Syst. 2016;65(4):1–122.Google Scholar
  27. 27.
    Kim G, Baik SK. Overview and recent trends of systematic reviews and meta-analyses in hepatology. Clin Mol Hepatol. 2014;20(2):137–50.CrossRefGoogle Scholar
  28. 28.
    Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 2005;115(2):209–18.CrossRefGoogle Scholar
  29. 29.
    Friedman SL, Maher JJ, Bissell DM. Mechanisms and therapy of hepatic fibrosis: report of the AASLD Single Topic Basic Research Conference. Hepatology (Baltimore, MD). 2000;32(6):1403–8.CrossRefGoogle Scholar
  30. 30.
    Bataller R, Sancho-Bru P, Gines P, Lora JM, Al-Garawi A, Sole M, et al. Activated human hepatic stellate cells express the renin-angiotensin system and synthesize angiotensin II. Gastroenterology. 2003;125(1):117–25.CrossRefGoogle Scholar
  31. 31.
    Ikura Y, Ohsawa M, Shirai N, Sugama Y, Fukushima H, Suekane T, et al. Expression of angiotensin II type 1 receptor in human cirrhotic livers: its relation to fibrosis and portal hypertension. Hepatol Res. 2005;32(2):107–16.CrossRefGoogle Scholar
  32. 32.
    Lubel JS, Herath CB, Burrell LM, Angus PW. Liver disease and the renin-angiotensin system: recent discoveries and clinical implications. J Gastroenterol Hepatol. 2008;23(9):1327–38.CrossRefGoogle Scholar
  33. 33.
    Paizis G, Cooper ME, Schembri JM, Tikellis C, Burrell LM, Angus PW. Up-regulation of components of the renin-angiotensin system in the bile duct-ligated rat liver. Gastroenterology. 2002;123(5):1667–76.CrossRefGoogle Scholar
  34. 34.
    Pereira RM, dos Santos RAS, da Costa Dias FL, Teixeira MM, ACSe S. Renin-angiotensin system in the pathogenesis of liver fibrosis. World J Gastroenterol. 2009;15(21):2579–86.CrossRefGoogle Scholar
  35. 35.
    Bataller R, Gines P, Nicolas JM, Gorbig MN, Garcia-Ramallo E, Gasull X, et al. Angiotensin II induces contraction and proliferation of human hepatic stellate cells. Gastroenterology. 2000;118(6):1149–56.CrossRefGoogle Scholar
  36. 36.
    Kim G, Kim J, Lim YL, Kim MY, Baik SK. Renin-angiotensin system inhibitors and fibrosis in chronic liver disease: a systematic review. Hepatol Int. 2016;10(5):819–28.CrossRefGoogle Scholar
  37. 37.
    Koh SL, Ager E, Malcontenti-Wilson C, Muralidharan V, Christophi C. Blockade of the renin-angiotensin system improves the early stages of liver regeneration and liver function. J Surg Res. 2013;179(1):66–71.CrossRefGoogle Scholar
  38. 38.
    Zhu Q, Li N, Li F, Zhou Z, Han Q, Lv Y, et al. Therapeutic effect of renin angiotensin system inhibitors on liver fibrosis. J Renin Angiotensin Aldosterone Syst. 2016;17(1):1470320316628717.CrossRefGoogle Scholar
  39. 39.
    Bataller R, Schwabe RF, Choi YH, Yang L, Paik YH, Lindquist J, et al. NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis. J Clin Invest. 2003;112(9):1383–94.CrossRefGoogle Scholar
  40. 40.
    Vilas-Boas WW, Ribeiro-Oliveira A Jr, Pereira RM, da Cunha Ribeiro R, Almeida J, Nadu AP, et al. Relationship between angiotensin-(1-7) and angiotensin II correlates with hemodynamic changes in human liver cirrhosis. World J Gastroenterol. 2009;15(20):2512–9.CrossRefGoogle Scholar
  41. 41.
    Zhang W, Miao J, Li P, Wang Y, Zhang Y. Up-regulation of components of the renin–angiotensin system in liver fibrosis in the rat induced by CCL4. Res Vet Sci. 2013;95(1):54–8.CrossRefGoogle Scholar
  42. 42.
    Cai SM, Yang RQ, Li Y, Ning ZW, Zhang LL, Zhou GS, et al. Angiotensin-(1-7) improves liver fibrosis by regulating the NLRP3 Inflammasome via redox balance modulation. Antioxid Redox Signal. 2016;24(14):795–812.CrossRefGoogle Scholar
  43. 43.
    Herath CB, Warner FJ, Lubel JS, Dean RG, Jia Z, Lew RA, et al. Upregulation of hepatic angiotensin-converting enzyme 2 (ACE2) and angiotensin-(1-7) levels in experimental biliary fibrosis. J Hepatol. 2007;47(3):387–95.CrossRefGoogle Scholar
  44. 44.
    Huang Q, Xie Q, Shi CC, Xiang XG, Lin LY, Gong BD, et al. Expression of angiotensin-converting enzyme 2 in CCL4-induced rat liver fibrosis. Int J Mol Med. 2009;23(6):717–23.PubMedGoogle Scholar
  45. 45.
    Mak KY, Chin R, Cunningham SC, Habib MR, Torresi J, Sharland AF, et al. ACE2 therapy using adeno-associated viral vector inhibits liver fibrosis in mice. Mol Ther. 2015;23(9):1434–43.CrossRefGoogle Scholar
  46. 46.
    Osterreicher CH, Taura K, De Minicis S, Seki E, Penz-Osterreicher M, Kodama Y, et al. Angiotensin-converting-enzyme 2 inhibits liver fibrosis in mice. Hepatol (Baltimore, MD). 2009;50(3):929–38.CrossRefGoogle Scholar
  47. 47.
    Paizis G, Tikellis C, Cooper ME, Schembri JM, Lew RA, Smith AI, et al. Chronic liver injury in rats and humans upregulates the novel enzyme angiotensin converting enzyme 2. Gut. 2005;54(12):1790–6.CrossRefGoogle Scholar
  48. 48.
    Pereira RM, Dos Santos RA, Teixeira MM, Leite VH, Costa LP, da Costa Dias FL, et al. The renin-angiotensin system in a rat model of hepatic fibrosis: evidence for a protective role of angiotensin-(1-7). J Hepatol. 2007;46(4):674–81.CrossRefGoogle Scholar
  49. 49.
    Zhang LL, Huang S, Ma XX, Zhang WY, Wang D, Jin SY, et al. Angiotensin(1-7) attenuated Angiotensin II-induced hepatocyte EMT by inhibiting NOX-derived H2O2-activated NLRP3 inflammasome/IL-1beta/Smad circuit. Free Radic Biol Med. 2016;97:531–43.CrossRefGoogle Scholar
  50. 50.
    Ning ZW, Luo XY, Wang GZ, Li Y, Pan MX, Yang RQ, et al. MicroRNA-21 mediates angiotensin II-induced liver fibrosis by activating NLRP3 Inflammasome/IL-1beta axis via targeting Smad7 and Spry1. Antioxid Redox Signal. 2017;27(1):1–20.CrossRefGoogle Scholar
  51. 51.
    Liu Y, Li B, Wang X, Li G, Shang R, Yang J, et al. Angiotensin-(1-7) suppresses hepatocellular carcinoma growth and angiogenesis via complex interactions of angiotensin II type 1 receptor, angiotensin II type 2 receptor and Mas receptor. Mol Med (Cambridge, Mass). 2015;21:626–36.CrossRefGoogle Scholar
  52. 52.
    Mao Y, Pei N, Chen X, Chen H, Yan R, Bai N, et al. Angiotensin 1-7 overexpression mediated by a capsid-optimized AAV8 vector leads to significant growth inhibition of hepatocellular carcinoma in vivo. Int J Biol Sci. 2018;14(1):57–68.CrossRefGoogle Scholar
  53. 53.
    Lubel JS, Herath CB, Tchongue J, Grace J, Jia Z, Spencer K, et al. Angiotensin-(1-7), an alternative metabolite of the renin-angiotensin system, is up-regulated in human liver disease and has antifibrotic activity in the bile-duct-ligated rat. Clin Sci (London, England: 1979). 2009;117(11):375–86.CrossRefGoogle Scholar
  54. 54.
    Ye G, Qin Y, Lu X, Xu X, Xu S, Wu C, et al. The association of renin-angiotensin system genes with the progression of hepatocellular carcinoma. Biochem Biophys Res Commun. 2015;459(1):18–23.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Aline Silva de Miranda
    • 1
    • 2
  • Ana Cristina Simões e Silva
    • 1
    • 3
    Email author
  1. 1.Interdisciplinary Laboratory of Medical Investigation, Faculty of MedicineFederal University of Minas Gerais (UFMG)Belo HorizonteBrazil
  2. 2.Laboratory of Neurobiology, Department of Morphology, Institute of Biological SciencesUFMGBelo HorizonteBrazil
  3. 3.Department of Pediatrics, Interdisciplinary Laboratory of Medical Investigation, Faculty of MedicineUFMGBelo HorizonteBrazil

Personalised recommendations