Advertisement

A Dynamic Algorithm for Constructing the Dual Representation of a Polyhedral Cone

  • Sergey O. Semenov
  • Nikolai Yu. ZolotykhEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11548)

Abstract

We propose a dynamic version of the double description method for generating the extreme rays of a polyhedral cone. The dynamic version of the algorithm supports online input of inequalities. Some modifications of the method were implemented and the results of computational experiments are presented. On a series of problems, our implementation of the algorithm showed higher performance results in comparison with the known analogues.

Keywords

System of linear inequalities Convex hull Cone Polyhedron Double description method 

References

  1. 1.
    Amato, G., Scozzari, F., Zaffanella, E.: Efficient constraint/generator removal from double description of polyhedra. Electron. Notes Theor. Comput. Sci. 307, 3–15 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Avis, D.: A revised implementation of the reverse search vertex enumeration algorithm. In: Kalai, G., Ziegler, G.M. (eds.) Polytopes-Combinatorics and Computation, vol. 29, pp. 177–198. Springer, Basel (2000).  https://doi.org/10.1007/978-3-0348-8438-9_9CrossRefGoogle Scholar
  3. 3.
    Avis, D., Bremner, D., Seidel, R.: How good are convex hull algorithms? Comput. Geom. 7(5–6), 265–301 (1997)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Avis, D., Fukuda, K.: A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discret. Comput. Geom. 8(3), 295–313 (1992)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma polyhedra library: toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. (TOMS) 22(4), 469–483 (1996)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bastrakov, S.I., Zolotykh, N.Y.: Elimination of inequalities from a facet description of a polyhedron. Trudy Inst. Mat. i Mekh. UrO RAN 21(3), 37–45 (2015). (in Russian)Google Scholar
  8. 8.
    Bastrakov, S.I., Zolotykh, N.Y.: On the dynamic problem of computing generators of a polyhedral cone. Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz. 9(1), 5–12 (2017). (in Russian)zbMATHGoogle Scholar
  9. 9.
    Bastrakov, S.I., Zolotykh, N.Y.: Fast method for verifying Chernikov rules in Fourier-Motzkin elimination. Comput. Math. Math. Phys. 55(1), 160–167 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bremner, D., Fukuda, K., Marzetta, A.: Primal-dual methods for vertex and facet enumeration. Discret. Comput. Geom. 20(3), 333–357 (1998)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Chernikov, S.: Linear Inequalities. Nauka, Moscow (1968). (in Russian)zbMATHGoogle Scholar
  12. 12.
    Chernikova, N.: Algorithm for finding a general formula for the non-negative solutions of system of linear inequalities. U.S.S.R. Comput. Math. Math. Phys. 5(2), 228–233 (1965)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Demenkov, M., Filimonov, N.: Polyhedral barrier regulator design using non-monotonic Lyapunov function. In: 2016 International Conference Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy’s Conference), pp. 1–3. IEEE (2016)Google Scholar
  14. 14.
    Fukuda, K., Prodon, A.: Double description method revisited. In: Deza, M., Euler, R., Manoussakis, I. (eds.) CCS 1995. LNCS, vol. 1120, pp. 91–111. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-61576-8_77CrossRefGoogle Scholar
  15. 15.
    Horst, R., Pardalos, P.M., Van Thoai, N.: Introduction to Global Optimization. Springer, Dordrecht (2000)CrossRefGoogle Scholar
  16. 16.
    Motzkin, T., Raiffa, H., Thompson, G., Thrall, R.: The double description method. In: Kuhn, H., Tucker, A.W. (eds.) Contributions to Theory of Games, vol. 2. Princeton University Press, Princeton (1953)Google Scholar
  17. 17.
    Perry, J.: Exploring the dynamic Buchberger algorithm. In: Proceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic Computation, pp. 365–372. ACM (2017)Google Scholar
  18. 18.
    Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1998)zbMATHGoogle Scholar
  19. 19.
    Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, vol. 24. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  20. 20.
    Terzer, M., Stelling, J.: Large-scale computation of elementary flux modes with bit pattern trees. Bioinformatics 24(19), 2229–2235 (2008)CrossRefGoogle Scholar
  21. 21.
    Ziegler, G.M.: Lectures on Polytopes, vol. 152. Springer, Heidelberg (2012)zbMATHGoogle Scholar
  22. 22.
    Zolotykh, N.Y., Kubarev, V.K., Lyalin, S.S.: Double description method over the field of algebraic numbers. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki 28(2), 161–175 (2018). (in Russian)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Zolotykh, N.: New modification of the double description method for constructing the skeleton of a polyhedral cone. Comput. Math. Math. Phys. 52(1), 146–156 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations