Advertisement

A PTAS for One Cardinality-Weighted 2-Clustering Problem

  • Anna PanasenkoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11548)

Abstract

We consider one strongly NP-hard problem of clustering a finite set of points in Euclidean space. In this problem, we need to partition a finite set of points into two clusters minimizing the sum over both clusters of the weighted intracluster sums. Each of these sums is the sum of squared distances between the elements of the cluster and their center. The center of the one cluster is unknown and determined as the centroid, while the center of the other one is fixed at the origin. The weight factors for both intracluster sums are the given sizes of the clusters. In this paper, we present an approximation algorithm for the problem and prove that it is a polynomial-time approximation scheme (PTAS).

Keywords

Euclidean space Weighted 2-clustering Quadratic variation NP-hardness Approximation algorithm PTAS 

References

  1. 1.
    Aggarwal, C.C.: Data Mining: The Textbook. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-14142-8CrossRefzbMATHGoogle Scholar
  2. 2.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York (2009).  https://doi.org/10.1007/978-0-387-84858-7CrossRefzbMATHGoogle Scholar
  3. 3.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)zbMATHGoogle Scholar
  4. 4.
    James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning. Springer, New York (2013).  https://doi.org/10.1007/978-1-4614-7138-7CrossRefzbMATHGoogle Scholar
  5. 5.
    Brucker, P.: On the complexity of clustering problems. In: Henn, R., et al. (eds.) Optimization and Operations Research. LNE, vol. 157, pp. 45–54. Springer, Heidelberg (1978).  https://doi.org/10.1007/978-3-642-95322-4_5CrossRefGoogle Scholar
  6. 6.
    Sahni, S., Gonzalez, T.: P-Complete Approximation Problems. J. ACM 23, 555–566 (1976)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kel’manov, A.V., Pyatkin, A.V.: NP-hardness of some quadratic Euclidean 2-clustering problems. Doklady Math. 92(2), 634–637 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kel’manov, A.V., Pyatkin, A.V.: On the complexity of some quadratic Euclidean 2-clustering problems. Comput. Math. Math. Phys. 56(3), 491–497 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    de la Vega F., Karpinski M., Kenyon C., Rabani Y.: Polynomial Time Approximation Schemes for Metric Min-Sum Clustering. Electronic Colloquium on Computational Complexity (ECCC), Report 25 (2002)Google Scholar
  10. 10.
    de la Vega, F., Kenyon, C.: A randomized approximation scheme for metric max-cut. J. Comput. Syst. Sci. 63, 531–541 (2001)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hasegawa, S., Imai, H., Inaba, M., Katoh, N., Nakano, J.: Efficient algorithms for variance-based \(k\)-clustering. In: Proceedings of the 1st Pacific Conference on Computer Graphics and Applications, Pacific Graphics 1993, Seoul, Korea, vol. 1, pp. 75–89. World Scientific, River Edge (1993)Google Scholar
  12. 12.
    Inaba, M., Katoh, N., Imai, H.: Applications of weighted Voronoi diagrams and randomization to variance-based \(k\)-clustering: (extended abstract). In: SCG 1994 Proceedings of the Tenth Annual Symposium on Computational Geometry, Stony Brook, NY, USA, 6–8 June 1994, pp. 332–339. ACM, New York (1994)Google Scholar
  13. 13.
    Dolgushev, A.V., Kel’manov, A.V.: An approximation algorithm for solving a problem of cluster analysis. J. Appl. Indust. Math. 5(4), 551–558 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Dolgushev, A.V., Kel’manov, A.V., Shenmaier, V.V.: Polynomial-time approximation scheme for a problem of partitioning a finite set into two clusters. Proc. Steklov Inst. Math. 295(1), 47–56 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gimadi, E.K., Pyatkin, A.V., Rykov, I.A.: On polynomial solvability of some problems of a vector subset choice in a Euclidean space of fixed dimension. J. Appl. Ind. Math. 4(1), 48–53 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Shenmaier, V.V.: Solving some vector subset problems by Voronoi diagrams. J. Appl. Ind. Math. 10(4), 560–566 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kel’manov, A.V., Khandeev, V.I.: A randomized algorithm for two-cluster partition of a set of vectors. Comput. Math. Math. Phys. 55(2), 330–339 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kel’manov, A.V., Khandeev, V.I.: An exact pseudopolynomial algorithm for a problem of the two-cluster partitioning of a set of vectors. J. Appl. Indust. Math. 9(4), 497–502 (2015)CrossRefGoogle Scholar
  19. 19.
    Kel’manov, A.V., Khandeev, V.I.: Fully polynomial-time approximation scheme for a special case of a quadratic Euclidean 2-clustering problem. Comput. Math. Math. Phys. 56(2), 334–341 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kel’manov, A.V., Motkova, A.V.: Exact pseudopolynomial algorithms for a balanced 2-clustering problem. J. Appl. Ind. Math. 10(3), 349–355 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kel’manov, A., Motkova, A.: A fully polynomial-time approximation scheme for a special case of a balanced 2-clustering problem. In: Kochetov, Y., Khachay, M., Beresnev, V., Nurminski, E., Pardalos, P. (eds.) DOOR 2016. LNCS, vol. 9869, pp. 182–192. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-44914-2_15CrossRefGoogle Scholar
  22. 22.
    Kel’manov, A., Motkova, A., Shenmaier, V.: An approximation scheme for a weighted two-cluster partition problem. In: van der Aalst, W.M.P., Ignatov, D.I., Khachay, M., Kuznetsov, S.O., Lempitsky, V., Lomazova, I.A., Loukachevitch, N., Napoli, A., Panchenko, A., Pardalos, P.M., Savchenko, A.V., Wasserman, S. (eds.) AIST 2017. LNCS, vol. 10716, pp. 323–333. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-73013-4_30CrossRefGoogle Scholar
  23. 23.
    Kel’manov, A.V., Motkova, A.V.: Polynomial-time approximation algorithm for the problem of cardinality-weighted variance-based 2-clustering with a given center. Comp. Math. Math. Phys. 58(1), 130–136 (2018)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Kel’manov, A., Khandeev, V., Panasenko, A.: Randomized algorithms for some clustering problems. In: Eremeev, A., Khachay, M., Kochetov, Y., Pardalos, P. (eds.) OPTA 2018. CCIS, vol. 871, pp. 109–119. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-93800-4_9CrossRefGoogle Scholar
  25. 25.
    Shenmaier, V.V.: An approximation scheme for a problem of search for a vector subset. J. Appl. Ind. Math. 6(3), 381–386 (2012)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kel’manov, A.V., Romanchenko, S.M.: An approximation algorithm for solving a problem of search for a vector subset. J. Appl. Ind. Math. 6(1), 90–96 (2012)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Wirth, N.: Algorithms + Data Structures = Programs. Prentice Hall, New Jersey (1976)zbMATHGoogle Scholar
  28. 28.
    Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (1996)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations