Advertisement

Feedback Optimality Conditions with Weakly Invariant Functions for Nonlinear Problems of Impulsive Control

  • Olga Samsonyuk
  • Stepan SorokinEmail author
  • Maxim Staritsyn
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11548)

Abstract

We consider a broad class of optimal control problems for nonlinear measure-driven equations. For such problems, we propose necessary optimality conditions, which are based on a specific procedure of “feedback variation” of a given, reference impulsive control. The approach is based on using impulsive feedback controls designed by means of “weakly invariant functions”. The concept of weakly invariant function generalizes the notion of weakly monotone function. In the paper, we discuss the advantages of this approach and some perspectives of designing, on its base, nonlocal numeric algorithms for optimal impulsive control.

Keywords

Measure differential equations Impulsive control Feedback control Optimality condition Functions of Lyapunov type 

References

  1. 1.
    Bressan, A., Rampazzo, F.: Impulsive control systems without commutativity assumptions. J. Optim. Theory Appl. 81(3), 435–457 (1994).  https://doi.org/10.1007/BF02193094MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bressan, A., Mazzola, M.: Graph completions for impulsive feedback controls. J. Math. Anal. Appl. 412(2), 976–988 (2014).  https://doi.org/10.1016/j.jmaa.2013.11.015MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bressan, A., Piccoli, B.: Introduction to the mathematical theory of control, AIMS Series on Applied Mathematics, vol. 2. American Institute of Mathematical Sciences (AIMS), Springfield (2007)Google Scholar
  4. 4.
    Bressan, A., Rampazzo, F.: On differential systems with quadratic impulses and their applications to Lagrangian mechanics. SIAM J. Control Optim. 31(5), 1205–1220 (1993).  https://doi.org/10.1137/0331057MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Clarke, F.H., Ledyaev, Yu. S., Stern, R.J., Wolenski, R.R.: Nonsmooth Analysis and Control Theory. Graduate Texts in Mathematics, vol. 178. Springer, New York (1998).  https://doi.org/10.1007/b97650
  6. 6.
    Clarke, F.: Functional Analysis, Calculus of Variations and Optimal Control. Graduate Texts in Mathematics, vol. 264. Springer, London (2013).  https://doi.org/10.1007/978-1-4471-4820-3CrossRefzbMATHGoogle Scholar
  7. 7.
    Dykhta, V.: Variational necessary optimality conditions with feedback descent controls for optimal control problems. Dokl. Math. 91(3), 394–396 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dykhta, V.: Positional strengthenings of the maximum principle and sufficient optimality conditions. Proc. Steklov Inst. Math. 293(1), S43–S57 (2016)CrossRefGoogle Scholar
  9. 9.
    Dykhta, V., Samsonyuk, O.: Optimal Impulsive Control with Applications, 2nd edn. Fizmatlit, Moscow (2003)zbMATHGoogle Scholar
  10. 10.
    Dykhta, V., Samsonyuk, O.: Hamilton-\(\text{ J }\)acobi Inequalities and Variational Optimality Conditions. Irkutsk state university, Irkutsk (2015)Google Scholar
  11. 11.
    Dykhta, V., Samsonyuk, O.: Optimality conditions with feedback controls for optimal impulsive control problems. IFAC-PapersOnLine 51(32), 509–514 (2018)CrossRefGoogle Scholar
  12. 12.
    Fraga, S.L., Pereira, F.L.: Hamilton-Jacobi-Bellman equation and feedback synthesis for impulsive control. IEEE Trans. Autom. Control 57(1), 244–249 (2012).  https://doi.org/10.1109/TAC.2011.2167822MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gurman, V.: The Extension Principle in Optimal Control Problems, 2nd edn. Fizmatlit, Moscow (1997)zbMATHGoogle Scholar
  14. 14.
    Karamzin, D., Oliveira, V., Pereira, F., Silva, G.: On some extension of optimal control theory. Eur. J. Control 20(6), 284–291 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Karamzin, D., Oliveira, V., Pereira, F., Silva, G.: On the properness of the extension of dynamic optimization problems to allow impulsive controls. ESAIM Control Optim. Calc. Var. 21(3), 857–875 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Miller, B.: The generalized solutions of nonlinear optimization problems with impulse control. SIAM J. Control Optim. 34, 1420–1440 (1996)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Miller, B., Rubinovich, E.: Discontinuous solutions in the optimal control problems and their representation by singular space-time transformations. Autom. Remote Control 74, 1969–2006 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Miller, B.M., Rubinovich, E.Y.: Impulsive Control in Continuous and Discrete-Continuous Systems. Kluwer Academic/Plenum Publishers, New York (2003). http://dx.doi.org/10.1007/978-1-4615-0095-7CrossRefGoogle Scholar
  19. 19.
    Motta, M., Rampazzo, F.: Space-time trajectories of nonlinear systems driven by ordinary and impulsive controls. Differ. Integr. Equ. 8, 269–288 (1995)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Samsonyuk, O.: Invariant sets for nonlinear impulsive control systems. Autom. Remote Control 76(3), 405–418 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Sesekin, A., Zavalishchin, S.: Dynamic Impulse Systems: Theory and Applications. Kluwer Academic Publishers, Dordrecht (1997)zbMATHGoogle Scholar
  22. 22.
    Sorokin, S., Staritsyn, M.: Feedback necessary optimality conditions for a class of terminally constrained state-linear variational problems inspired by impulsive control. Numer. Algebra Control Optim. 7(2), 201–210 (2017)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Staritsyn, M., Sorokin, S.: On feedback strengthening of the maximum principle for measure differential equations. J. Glob. Optim. (2019).  https://doi.org/10.1007/s10898-018-00732-3
  24. 24.
    Vinter, R.: Optimal Control. Birkhauser, Berlin (2000)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Matrosov Institute for System Dynamics and Control TheoryIrkutskRussia

Personalised recommendations