Advertisement

Optimality Conditions and Numerical Algorithms for Hybrid Control Systems

  • Nadezhda MaltuguevaEmail author
  • Nikolay Pogodaev
  • Olga Samsonyuk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11548)

Abstract

For an optimal control problem with intermediate state constraints, we construct an iterative descent algorithm and prove a related necessary optimality condition. Finally, we show how these results can be applied to measure-driven multiprocesses.

Keywords

Necessary optimality condition Optimal multiprocesses Numerical method Measure-driven multiprocesses 

References

  1. 1.
    Ashepkov, L.T.: Optimal Control of Discontinuous Systems. Nauka, Novosibirsk (1987)Google Scholar
  2. 2.
    Baturin, V.A., Maltugueva, N.S.: Second-order improvement method to solve problems of optimal control of the logic-dynamic systems. Autom. Remote Control 72(4), 808–817 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Betounes, D.: Differential Equations: Theory and Applications, 2nd edn. Springer, New York (2010).  https://doi.org/10.1007/978-1-4419-1163-6CrossRefzbMATHGoogle Scholar
  4. 4.
    Buss, M., Von Stryk, O., Bulirsch, R., Schmidt, G.: Towards hybrid optimal control. at - Automatisierungstechnik 48(9), 448–459 (2000).  https://doi.org/10.1524/auto.2000.48.9.448
  5. 5.
    Clarke, F.H., Vinter, R.B.: Applications of optimal multiprocesses. SIAM J. Control Optim. 27(5), 1048–1071 (1989)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Clarke, F.H., Vinter, R.B.: Optimal multiprocesses. SIAM J. Control Optim. 27(5), 1072–1091 (1989)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Clarke, F.H.: Functional Analysis, Calculus of Variations and Optimal Control, Graduate Texts in Mathematics, vol. 264. Springer, London (2013).  https://doi.org/10.1007/978-1-4471-4820-3CrossRefGoogle Scholar
  8. 8.
    Dmitruk, A.V., Kaganovich, A.M.: The hybrid maximum principle is a consequence of Pontryagin maximum principle. Syst. Control. Lett. 57(11), 964–970 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dykhta, V.A.: Variational necessary optimality conditions with feedback descent controls for optimal control problems. Dokl. Math. 91(3), 394–396 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dykhta, V.A., Samsonyuk, O.N.: Maximum principle for nonsmooth optimal control problems with multipoint state constraints. Russ. Math. (Izvestiya VUZ. Matematika) 45(2), 16–29 (2001)Google Scholar
  11. 11.
    Dykhta, V.A., Samsonyuk, O.N.: A maximum principle for smooth optimal impulsive control problems with multipoint state constraints. Comput. Math. Math. Phys. 49, 942–957 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gurman, V.I., Baturin, V.A., Danilina, E.V., et al.: New methods for the improvement of control processes. (Novye metody uluchsheniya upravlyaemykh protsessov). Nauka, Novosibirsk. 184 p. R. 1.80 (TIB: FM 1097) (1987)Google Scholar
  13. 13.
    Miller, B.M.: The generalized solutions of nonlinear optimization problems with impulse control. SIAM J. Control Optim. 34, 1420–1440 (1996)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Miller, B.M., Rubinovich, E.Y.: Impulsive Control in Continuous and Discrete-continuous Systems. Kluwer Academic/Plenum Publishers, New York (2003).  https://doi.org/10.1007/978-1-4615-0095-7CrossRefzbMATHGoogle Scholar
  15. 15.
    Miller, B.M., Rubinovich, E.Y.: Discontinuous solutions in the optimal control problems and their representation by singular space-time transformations. Autom. Remote Control 74, 1969–2006 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Motta, M., Rampazzo, F.: Space-time trajectories of nonlinear systems driven by ordinary and impulsive controls. Differ. Integr. Equ. 8(2), 269–288 (1995)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Poliquin, R.A., Rockafellar, R.T., Thibault, L.: Local differentiability of distance functions. Trans. Am. Math. Soc. 352(11), 5231–5249 (2000)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Rasina, I.V.: Iterative optimization algorithms for discrete-continuous processes. Autom. Remote Control 73(10), 1591–1603 (2012).  https://doi.org/10.1134/S0005117912100013MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Samsonyuk, O.N.: Invariant sets for nonlinear impulsive control systems. Autom. Remote Control 76(3), 405–418 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Srochko, V.A.: Iterative Methods for Solving Optimal Control Problems. Fizmatlit, Moscow (2000)Google Scholar
  21. 21.
    von Stryk, O., Bulirsch, R.: Direct and indirect methods for trajectory optimization. Ann. Oper. Res. 37(1–4), 357–373 (1992)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Wei, S., Uthaichana, K., Žefran, M., Decarlo, R.A., Bengea, S.: Applications of numerical optimal control to nonlinear hybrid systems. Nonlinear Anal. Hybrid Syst. 1(2), 264–279 (2007)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Zavalishchin, S.T., Sesekin, A.N.: Dynamic Impulse Systems, Mathematics and Its Applications, vol. 394. Kluwer Academic Publishers Group, Dordrecht (1997).  https://doi.org/10.1007/978-94-015-8893-5CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Matrosov Institute for System Dynamics and Control TheoryIrkutskRussia

Personalised recommendations