Advertisement

Black-Box Optimization in an Extended Search Space for SAT Solving

  • Oleg ZaikinEmail author
  • Stepan Kochemazov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11548)

Abstract

The Divide-and-Conquer approach is often used to solve hard instances of the Boolean satisfiability problem (SAT). In particular, it implies splitting an original SAT instance into a series of simpler subproblems. If this split satisfies certain conditions, then it is possible to use a stochastic pseudo-Boolean black-box function to estimate the time required for solving an original SAT instance with the chosen decomposition. One can use black-box optimization methods to minimize the function over the space of all possible decompositions. In the present study, we make use of peculiar features which stem from the NP-completeness of the Boolean satisfiability problem to improve this general approach. In particular, we show that the search space over which the black-box function is minimized can be extended by adding solver parameters and the SAT encoding parameters into it. In the computational experiments, we use the SMAC algorithm to optimize such black-box functions for hard SAT instances encoding the problems of cryptanalysis of several stream ciphers. The results show that the proposed approach outperforms the competition.

Keywords

Black-box optimization Discrete optimization Monte Carlo method SAT Cryptanalysis 

Notes

Acknowledgements

Authors thank Dr. Alexander Semenov for valuable preliminary discussions regarding the SAT algorithms parameter tuning in the context of Divide-and-Conquer solving. We would also like to thank anonymous reviewers for their valuable comments that made it possible to improve the quality of the present paper. The research was partially supported by Council for Grants of the President of the Russian Federation (grant no. MK-4155.2018.9) and by Russian Foundation for Basic Research (grant no. 19-07-00746-a).

References

  1. 1.
    Ashlock, D.: Evolutionary Computation for Modeling and Optimization, 1st edn. Springer, New York (2010)zbMATHGoogle Scholar
  2. 2.
    Audet, C., Hare, W.: Derivative-Free and Blackbox Optimization. Springer Series in Operations Research and Financial Engineering. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68913-5CrossRefzbMATHGoogle Scholar
  3. 3.
    Bard, G.V.: Algebraic Cryptanalysis, 1st edn. Springer, Boston (2009).  https://doi.org/10.1007/978-0-387-88757-9CrossRefzbMATHGoogle Scholar
  4. 4.
    Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009)Google Scholar
  5. 5.
    Borghoff, J., Knudsen, L.R., Matusiewicz, K.: Hill climbing algorithms and Trivium. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 57–73. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19574-7_4CrossRefGoogle Scholar
  6. 6.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefGoogle Scholar
  7. 7.
    De Cannière, C., Preneel, B.: Trivium. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs - The eSTREAM. LNCS, vol. 4986, pp. 244–266. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-68351-3_18CrossRefGoogle Scholar
  8. 8.
    Irkutsk supercomputer center of SB RAS. http://hpc.icc.ru
  9. 9.
    Courtois, N.T., Gawinecki, J.A., Song, G.: Contradiction immunity and guess-then-determine attacks on GOST. Tatra Mt. Math. Publ. 53(1), 2–13 (2012)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Eibach, T., Pilz, E., Völkel, G.: Attacking bivium using SAT solvers. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 63–76. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-79719-7_7CrossRefzbMATHGoogle Scholar
  11. 11.
    Falkner, S., Lindauer, M., Hutter, F.: SpySMAC: automated configuration and performance analysis of SAT solvers. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 215–222. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24318-4_16CrossRefzbMATHGoogle Scholar
  12. 12.
    Le Frioux, L., Baarir, S., Sopena, J., Kordon, F.: PaInleSS: a framework for parallel SAT solving. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 233–250. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66263-3_15CrossRefzbMATHGoogle Scholar
  13. 13.
    Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. OR 13(5), 533–549 (1986)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Günther, C.G.: Alternating step generators controlled by De Bruijn sequences. In: Chaum, D., Price, W.L. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 5–14. Springer, Heidelberg (1988).  https://doi.org/10.1007/3-540-39118-5_2CrossRefGoogle Scholar
  15. 15.
    Hamadi, Y., Jabbour, S., Sais, L.: Manysat: a parallel SAT solver. JSAT 6(4), 245–262 (2009)zbMATHGoogle Scholar
  16. 16.
    Hansen, P., Mladenović, N.: Variable neighborhood search: principles and applications. Eur. J. Oper. Res. 130(3), 449–467 (2001).  https://doi.org/10.1016/S0377-2217(00)00100-4MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Heule, M.J.H., Kullmann, O., Biere, A.: Cube-and-conquer for satisfiability. In: Hamadi, Y., Sais, L. (eds.) Handbook of Parallel Constraint Reasoning, pp. 31–59. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-63516-3_2CrossRefGoogle Scholar
  18. 18.
    Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25566-3_40CrossRefGoogle Scholar
  19. 19.
    Hutter, F., Lindauer, M., Balint, A., Bayless, S., Hoos, H., Leyton-Brown, K.: The configurable SAT solver challenge (CSSC). Artif. Intell. 243, 1–5 (2015).  https://doi.org/10.1016/j.artint.2016.09.006MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: A distribution method for solving SAT in grids. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 430–435. Springer, Heidelberg (2006).  https://doi.org/10.1007/11814948_39CrossRefGoogle Scholar
  21. 21.
    Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kochemazov, S., Zaikin, O.: ALIAS: a modular tool for finding backdoors for SAT. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 419–427. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-94144-8_25CrossRefzbMATHGoogle Scholar
  23. 23.
    Lasry, G.: A Methodology for the Cryptanalysis of Classical Ciphers with Search Metaheuristics. Ph.D. thesis, University of Kassel, Germany (2018). http://www.upress.uni-kassel.de/katalog/abstract.php?978-3-7376-0458-1
  24. 24.
    Marques-Silva, J.P., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In: Biere et al. [4], pp. 131–153Google Scholar
  25. 25.
    Massacci, F.: Using Walk-SAT and Rel-SAT for cryptographic key search. In: IJCAI 1999, pp. 290–295 (1999)Google Scholar
  26. 26.
    Mcdonald, C., Charnes, C., Pieprzyk, J.: Attacking Bivium with MiniSat. Technical Report 2007/040, ECRYPT Stream Cipher Project (2007)Google Scholar
  27. 27.
    Metropolis, N., Ulam, S.: The Monte Carlo method. J. Amer. statistical assoc. 44(247), 335–341 (1949)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Nadel, A., Ryvchin, V.: Chronological backtracking. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 111–121. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-94144-8_7CrossRefGoogle Scholar
  29. 29.
    Nossum, V.: SAT-based preimage attacks on SHA-1. Ph.D. thesis, University of OSLO, Department of Informatics (2012)Google Scholar
  30. 30.
    Otpuschennikov, I., Semenov, A., Gribanova, I., Zaikin, O., Kochemazov, S.: Encoding cryptographic functions to SAT using TRANSALG system. In: ECAI 2016. FAAI, vol. 285, pp. 1594–1595. IOS Press (2016)Google Scholar
  31. 31.
    Prestwich, S.D.: CNF encodings. In: Biere et al. [4], pp. 75–97Google Scholar
  32. 32.
    Semenov, A., Zaikin, O.: Algorithm for finding partitionings of hard variants of boolean satisfiability problem with application to inversion of some cryptographic functions. SpringerPlus 5(1), 1–16 (2016)CrossRefGoogle Scholar
  33. 33.
    Semenov, A., Zaikin, O., Bespalov, D., Posypkin, M.: Parallel logical cryptanalysis of the generator A5/1 in BNB-grid system. In: Malyshkin, V. (ed.) PaCT 2011. LNCS, vol. 6873, pp. 473–483. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23178-0_43CrossRefzbMATHGoogle Scholar
  34. 34.
    Semenov, A., Zaikin, O., Otpuschennikov, I., Kochemazov, S., Ignatiev, A.: On cryptographic attacks using backdoors for SAT. In: AAAI 2018, pp. 6641–6648 (2018)Google Scholar
  35. 35.
    Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02777-2_24CrossRefGoogle Scholar
  36. 36.
    Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siekmann, J.H., Wrightson, G. (eds.) Automation of Reasoning. Symbolic Computation (Artificial Intelligence), pp. 466–483. Springer, Heidelberg (1983).  https://doi.org/10.1007/978-3-642-81955-1_28CrossRefGoogle Scholar
  37. 37.
    Walter, M., Bulygin, S., Buchmann, J.: Optimizing guessing strategies for algebraic cryptanalysis with applications to EPCBC. In: Kutyłowski, M., Yung, M. (eds.) Inscrypt 2012. LNCS, vol. 7763, pp. 175–197. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38519-3_12CrossRefGoogle Scholar
  38. 38.
    Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994).  https://doi.org/10.1007/BF00175354CrossRefGoogle Scholar
  39. 39.
    Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In: IJCAI 2003, pp. 1173–1178 (2003)Google Scholar
  40. 40.
    Zaikin, O., Kochemazov, S.: An improved SAT-based guess-and-determine attack on the alternating step generator. In: Nguyen, P., Zhou, J. (eds.) ISC 2017. LNCS, vol. 10599, pp. 21–38. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69659-1_2CrossRefGoogle Scholar
  41. 41.
    Zaikin, O., Kochemazov, S.: Pseudo-boolean black-box optimization methods in the context of divide-and-conquer approach to solving hard SAT instances. In: OPTIMA 2018 (Supplementary Volume), pp. 76–87. DEStech Publications, Inc. (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.ISDCT SB RASIrkutskRussia

Personalised recommendations