Advertisement

Local Search Approach for the Medianoid Problem with Multi-purpose Shopping Trips

  • Sergey Khapugin
  • Andrey MelnikovEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11548)

Abstract

We consider a modification to the classic medianoid problem, where facilities of different types are present on the market. A newcomer firm opens facilities providing a specific type of products and competes with existing facilities of that type. Each customer requires multiple products of different types and chooses the shortest route visiting facilities providing the needed types of products. A local search approach to maximize the market share of the newcomer firm is proposed, utilizing upper and lower bounds for the customers’ trip lengths to avoid time-consuming computations.

Keywords

Competitive location Multi-purpose trips Local search 

References

  1. 1.
    Ashtiani, M.: Competitive location: a state-of-art review. Int. J. Ind. Eng. Comput. 7(1), 1–18 (2016).  https://doi.org/10.5267/j.ijiec.2015.8.002CrossRefGoogle Scholar
  2. 2.
    Benchmarks library “Discrete location problems”. http://math.nsc.ru/AP/benchmarks/Competitive/p_med_comp_tests_eucl_eng.html. Accessed 01 Apr 2019
  3. 3.
    Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  4. 4.
    Eiselt, H., Laporte, G.: Sequential location problems. Eur. J. Oper. Res. 96(2), 217–231 (1997).  https://doi.org/10.1016/S0377-2217(96)00216-0CrossRefzbMATHGoogle Scholar
  5. 5.
    Gurobi Optimization, I.: Gurobi optimizer reference manual (2019). http://www.gurobi.com. Accessed 01 Apr 2019
  6. 6.
    Hakimi, S.: On locating new facilities in a competitive environment. Eur. J. Oper. Res. 12, 29–35 (1983)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Helsgaun, K.: Solving the equality generalized traveling salesman problem using the Lin-Kernighan-Helsgaun algorithm. Math. Program. Comput. 7(3), 269–287 (2015).  https://doi.org/10.1007/s12532-015-0080-8MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hotelling, H.: Stability in competition. Econ. J. 39, 41–57 (1929)CrossRefGoogle Scholar
  9. 9.
    Karakitsiou, A.: Modeling Discrete Competitive Facility Location. SO. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21341-5CrossRefzbMATHGoogle Scholar
  10. 10.
    Khachai, M., Neznakhina, E.: Approximation schemes for the generalized traveling salesman problem. Proc. Steklov Inst. Math. 299, 97–105 (2017).  https://doi.org/10.1134/S0081543817090127MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kress, D., Pesch, E.: Sequential competitive location on networks. Eur. J. Oper. Res. 217, 483–499 (2012).  https://doi.org/10.1016/j.ejor.2011.06.036MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Laporte, G., Asef-Vaziri, A., Sriskandarajah, C.: Some applications of the generalized travelling salesman problem. J. Oper. Res. Soc. 47(12), 1461–1467 (1996).  https://doi.org/10.1057/jors.1996.190CrossRefzbMATHGoogle Scholar
  13. 13.
    López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Stützle, T., Birattari, M.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016).  https://doi.org/10.1016/j.orp.2016.09.002MathSciNetCrossRefGoogle Scholar
  14. 14.
    Marianov, V., Eiselt, H., Lüer-Villagra, A.: Effects of multipurpose shopping trips on retail store location in a duopoly. Eur. J. Oper. Res. 269(2), 782–792 (2018).  https://doi.org/10.1016/j.ejor.2018.02.024MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Mel’nikov, A.: Randomized local search for the discrete competitive facility location problem. Autom. Remote Control 75, 700–714 (2014).  https://doi.org/10.1134/S0005117914040109MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Roboredo, M.C., Pessoa, A.A.: A branch-and-cut algorithm for the discrete \((r|p)\)-centroid problem. Eur. J. Oper. Res. 224(1), 101–109 (2013).  https://doi.org/10.1016/j.ejor.2012.07.042MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Smith, S.L., Imeson, F.: GLNS: an effective large neighborhood search heuristic for the generalized traveling salesman problem. Comput. Oper. Res. 87, 1–19 (2017).  https://doi.org/10.1016/j.cor.2017.05.010MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Novosibirsk State UniversityNovosibirskRussia
  2. 2.Sobolev Institute of MathematicsNovosibirskRussia

Personalised recommendations